ECON4150 - Introductory Econometrics

Lecture 2: Review of Statistics

Monique de Haan
(moniqued@econ.uio.no)

Stock and Watson Chapter 2-3

Lecture outline

- Simple random sampling
- Distribution of the sample average
- Large sample approximation to the distribution of the sample mean
- Law of large numbers
- central limit theorem
- Estimation of the population mean
- unbiasedness
- consistency
- efficiency
- Hypothesis test concerning the population mean
- Confidence intervals for the population mean

Simple random sampling

Simple random sampling means that n objects are drawn randomly from a population and each object is equally likely to be drawn

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote the 1 st to the nth randomly drawn object.
Under simple random sampling:

- The marginal probability distribution of Y_{i} is the same for all $i=1,2, . ., n$ and equals the population distribution of Y.
- because $Y_{1}, Y_{2}, \ldots, Y_{n}$ are drawn randomly from the same population.
- Y_{1} is distributed independently from Y_{2}, \ldots, Y_{n}
- knowing the value of Y_{i} does not provide information on Y_{j} for $i \neq j$

When Y_{1}, \ldots, Y_{n} are drawn from the same population and are independently distributed, they are said to be i.i.d random variables

Simple random sampling: Example

- Let G be the gender of an individual ($G=1$ if female, $G=0$ if male)
- G is a Bernoulli random variable with $E(G)=\mu_{G}=\operatorname{Pr}(G=1)=0.5$
- Suppose we take the population register and randomly draw a sample of size n
- The probability distribution of G_{i} is a Bernoulli distribution with mean 0.5
- G_{1} is distributed independently from G_{2}, \ldots, G_{n}
- Suppose we draw a random sample of individuals entering the building of the physics department
- This is not a sample obtained by simple random sampling and G_{1}, \ldots, G_{n} are not i.i.d
- Men are more likely to enter the building of the physics department!

The sampling distribution of the sample average

The sample average \bar{Y} of a randomly drawn sample is a random variable with a probability distribution called the sampling distribution.

$$
\bar{Y}=\frac{1}{n}\left(Y_{1}+Y_{2}+\ldots+Y_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

Suppose Y_{1}, \ldots, Y_{n} are i.i.d and the mean \& variance of the population distribution of Y are respectively $\mu_{Y} \& \sigma_{Y}^{2}$

- The mean of \bar{Y} is

$$
E(\bar{Y})=E\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(Y_{i}\right)=\frac{1}{n} n E(Y)=\mu_{Y}
$$

- The variance of \bar{Y} is

$$
\begin{array}{rlc}
\operatorname{Var}(\bar{Y}) & = & \operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)+2 \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}\left(Y_{i}, Y_{j}\right) \\
& = & \frac{1}{n^{2}} n \operatorname{Var}(Y)+0 \\
& = & \frac{1}{n} \sigma_{Y}^{2}
\end{array}
$$

The sampling distribution of the sample average:example

- Let G be the gender of an individual ($G=1$ if female, $G=0$ if male)
- The mean of the population distribution of G is

$$
E(G)=\mu_{G}=p=0.5
$$

- The variance of the population distribution of G is

$$
\operatorname{Var}(G)=\sigma_{G}^{2}=p(1-p)=0.5(1-05)=0.25
$$

- The mean and variance of the average gender (proportion of women) \bar{G} in a random sample with $n=10$ are

$$
\begin{gathered}
E(\bar{G})=\mu_{G}=0.5 \\
\operatorname{Var}(\bar{G})=\frac{1}{n} \sigma_{G}^{2}=\frac{1}{10} 0.25=0.025
\end{gathered}
$$

The finite sample distribution of the sample average

The finite sample distribution is the sampling distribution that exactly describes the distribution of \bar{Y} for any sample size n.

- In general the exact sampling distribution of \bar{Y} is complicated and depends on the population distribution of Y.
- A special case is when $Y_{1}, Y_{2}, \ldots, Y_{n}$ are i.i.d draws from the $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, because in this case

$$
\bar{Y} \sim N\left(\mu_{Y}, \frac{\sigma_{Y}^{2}}{n}\right)
$$

The finite sample distribution of average gender \bar{G}

Suppose we draw 999 samples of $n=2$:

Sample 1			Sample 2			Sample 3			\ldots	Sample 999		
G_{1}	G_{2}	\bar{G}	G_{1}	G_{2}	\bar{G}	G_{1}	G_{2}	\bar{G}		G_{1}	G_{2}	\bar{G}
1	0	0.5	1	1	1	0	1	0.5		0	0	0

Sample distribution of average gender 999 samples of $n=2$

The asymptotic distribution of \bar{Y}

- Given that the exact sampling distribution of \bar{Y} is complicated
- and given that we generally use large samples in econometrics
- we will often use an approximation of the sample distribution that relies on the sample being large

The asymptotic distribution is the approximate sampling distribution of \bar{Y} if the sample size $n \longrightarrow \infty$

We will use two concepts to approximate the large-sample distribution of the sample average

- The law of large numbers.
- The central limit theorem.

Law of Large Numbers

The Law of Large Numbers states that if

- $Y_{i}, i=1, \ldots, n$ are independently and identically distributed with $E\left(Y_{i}\right)=\mu_{Y}$
- and large outliers are unlikely; $\operatorname{Var}\left(Y_{i}\right)=\sigma_{Y}^{2}<\infty$
\bar{Y} will be near μ_{Y} with very high probability when n is very large $(n \longrightarrow \infty)$

$$
\bar{Y} \xrightarrow{p} \mu_{Y}
$$

Law of Large Numbers

Example: Gender G ~ Bernouilli (0.5, 0.25)

Sample distribution of average gender 999 samples of $n=2$

Sample distribution of average gender
999 samples of $n=100$

Sample distribution of average gender 999 samples of $n=10$

Sample distribution of average gender 999 samples of $n=250$

The Central Limit theorem

The Central Limit Theorem states that if

- $Y_{i}, i=1, . ., n$ are i.i.d. with $E\left(Y_{i}\right)=\mu_{Y}$
- and $\operatorname{Var}\left(Y_{i}\right)=\sigma_{Y}^{2}$ with $0<\sigma_{Y}^{2}<\infty$

The distribution of the sample average is approximately normal if $n \longrightarrow \infty$

$$
\bar{Y} \sim N\left(\mu_{Y}, \frac{\sigma_{Y}^{2}}{n}\right)
$$

The distribution of the standardized sample average is approximately standard normal for $n \longrightarrow \infty$

$$
\frac{\bar{Y}-\mu_{Y}}{\sigma_{\bar{Y}}^{2}} \sim N(0,1)
$$

The Central Limit theorem
 Example: Gender G ~ Bernouilli $(0.5,0.25)$

Sample distribution of average gender 999 samples of $n=2$

\square Finite sample distr. standardized sample average

- Standard normal probability densitiy

Sample distribution of average gender 999 samples of $n=100$

Finite sample distr. standardized sample average
Standard normal probability densitiy

Sample distribution of average gender 999 samples of $n=10$

Finite sample distr. standardized sample average
Standard normal probability densitiy

Sample distribution of average gender 999 samples of $n=250$

Finite sample distr. standardized sample average
Standard normal probability densitiy

The Central Limit theorem

How good is the large-sample approximation?

- If $Y_{i} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ the approximation is perfect
- If Y_{i} is not normally distributed the quality of the approximation depends on how close n is to infinity
- For $n \geq 100$ the normal approximation to the distribution of \bar{Y} is typically very good for a wide variety of population distributions

Estimation

Estimators and estimates

An Estimator is a function of a sample of data to be drawn randomly from a population

- An estimator is a random variable because of randomness in drawing the sample

An Estimate is the numerical value of an estimator when it is actually computed using a specific sample.

Estimation of the population mean

Suppose we want to know the mean value of $Y\left(\mu_{Y}\right)$ in a population, for example

- The mean wage of college graduates.
- The mean level of education in Norway.
- The mean probability of passing the econometrics exam.

Suppose we draw a random sample of size n with Y_{1}, \ldots, Y_{n} i.i.d
Possible estimators of μ_{y} are:

- The sample average $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$
- The first observation Y_{1}
- The weighted average: $\widetilde{Y}=\frac{1}{n}\left(\frac{1}{2} Y_{1}+\frac{3}{2} Y_{2}+\ldots+\frac{1}{2} Y_{n-1}+\frac{3}{2} Y_{n}\right)$

Estimation of the population mean

To determine which of the estimators, \bar{Y}, Y_{1} or \widetilde{Y} is the best estimator of μ_{Y} we consider 3 properties:

Let $\hat{\mu}_{Y}$ be an estimator of the population mean μ_{Y}.

Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_{Y}$ equals μ_{Y}

$$
E\left(\hat{\mu}_{Y}\right)=\mu_{Y}
$$

Consistency: The probability that $\hat{\mu}_{Y}$ is within a very small interval of μ_{Y} approaches 1 if $n \longrightarrow \infty$

$$
\hat{\mu}_{Y} \xrightarrow{p} \mu_{Y}
$$

Efficiency: If the variance of the sampling distribution of $\hat{\mu}_{Y}$ is smaller than that of some other estimator $\widetilde{\mu}_{Y}, \hat{\mu}_{Y}$ is more efficient

$$
\operatorname{Var}\left(\hat{\mu}_{Y}\right)<\operatorname{Var}\left(\widetilde{\mu}_{Y}\right)
$$

Example

Suppose we are interested in the mean wages μ_{w} of individuals with a master degree

We draw the following sample $(n=10)$ by simple random sampling

i	W_{i}	The 3 estimators give the following estimates:
1	47281.92	
2	70781.94	$W=\frac{1}{10} \sum_{i=1} W_{i}=52618.18$
3	55174.46	$W_{1}=47281.92$
4	49096.05	
5	67424.82	$W=\frac{1}{10}\left(\frac{1}{2} W_{1}+\frac{3}{2} W_{2}+\ldots .+\frac{1}{2} W_{9}+\frac{3}{2} W_{10}\right)=49398.82$.
6	39252.85	
7	78815.33	
8	46750.78	
9	46587.89	
10	25015.71	

Unbiasedness

All 3 proposed estimators are unbiased:

- As shown on slide 5: $E(\bar{Y})=\mu_{Y}$
- Since Y_{i} are i.i.d. $E\left(Y_{1}\right)=E(Y)=\mu_{Y}$

$$
\begin{array}{rlc}
E(\widetilde{Y}) & = & E\left(\frac{1}{n}\left(\frac{1}{2} Y_{1}+\frac{3}{2} Y_{2}+\ldots+\frac{1}{2} Y_{n-1}+\frac{3}{2} Y_{n}\right)\right) \\
& =\frac{1}{n}\left(\frac{1}{2} E\left(Y_{1}\right)+\frac{3}{2} E\left(Y_{2}\right)+\ldots+\frac{1}{2} E\left(Y_{n-1}\right)+\frac{3}{2} E\left(Y_{n}\right)\right) \\
& = & \frac{1}{n}\left[\left(\frac{n}{2} \cdot \frac{1}{2}\right) E\left(Y_{i}\right)+\left(\frac{n}{2} \cdot \frac{3}{2}\right) E\left(Y_{i}\right)\right]
\end{array}
$$

$$
E\left(Y_{i}\right)
$$

Consistency

Example: mean wages of individuals with a master degree with $\mu_{w}=60000$

By the law of large numbers

$$
\bar{W} \xrightarrow{p} \mu_{W}
$$

which implies that the probability that \bar{W} is within a very small interval of μ_{W} approaches 1 if $n \longrightarrow \infty$

Consistency

Example: mean wages of individuals with a master degree with $\mu_{w}=60000$

$$
\widetilde{W}=\frac{1}{n}\left(\frac{1}{2} W_{1}+\frac{3}{2} W_{2}+\ldots+\frac{1}{2} W_{n-1}+\frac{3}{2} W_{n}\right) \text { is also consistent }
$$

However W_{1} is not a consistent estimator of μ_{W} :

First observation W1 as estimator of population mean
999 samples of $n=10$

first observation W1

First observation W1 as estimator of population mean
999 samples of $n=100$

first observation W1

Efficiency

Efficiency entails a comparison of estimators on the basis of their variance

- The variance of \bar{Y} equals

$$
\operatorname{Var}(\bar{Y})=\frac{1}{n} \sigma_{Y}^{2}
$$

- The variance of Y_{1} equals

$$
\operatorname{Var}\left(Y_{1}\right)=\operatorname{Var}(Y)=\sigma_{Y}^{2}
$$

- The variance of \widetilde{Y} equals

$$
\operatorname{Var}(\widetilde{Y})=1.25 \frac{1}{n} \sigma_{Y}^{2}
$$

For any $n \geq 2 \bar{Y}$ is more efficient than Y_{1} and \widetilde{Y}

BLUE: Best Linear Unbiased Estimator

- \bar{Y} is not only more efficient than Y_{1} and \widetilde{Y}, but it is more efficient than any unbiased estimator of μ_{γ} that is a weighted average of $Y_{1}, \ldots ., Y_{n}$
\bar{Y} is the Best Linear Unbiased Estimator (BLUE) it is the most efficient estimator of μ_{Y} among all unbiased estimators that are weighted averages of $Y_{1}, \ldots ., Y_{n}$
- Let $\hat{\mu}_{Y}$ be an unbiased estimator of μ_{Y}

$$
\hat{\mu}_{Y}=\frac{1}{n} \sum_{i=1}^{n} a_{i} Y_{i} \quad \text { with } a_{1}, \ldots a_{n} \text { nonrandom constants }
$$

then \bar{Y} is more efficient than $\hat{\mu}_{Y}$, that is

$$
\operatorname{Var}(\bar{Y})<\operatorname{Var}\left(\hat{\mu}_{Y}\right)
$$

Hypothesis tests concerning the population mean

Hypothesis tests concerning the population mean

Consider the following questions:

- Is the mean monthly wage of college graduates equal to NOK 60000 ?
- Is the mean level of education in Norway equal to 12 years?
- Is the mean probability of passing the econometrics exam equal to 1 ?

These questions involve the population mean taking on a specific value $\mu_{Y, 0}$
Answering these questions implies using data to compare a null hypothesis

$$
H_{0}: E(Y)=\mu_{Y, 0}
$$

to an alternative hypothesis, which is often the following two sided hypothesis

$$
H_{1}: E(Y) \neq \mu_{Y, 0}
$$

Hypothesis tests concerning the population mean p-value

Suppose we have a sample of n i.i.d observations and compute the sample average \bar{Y}

The sample average can differ from $\mu_{Y, 0}$ for two reasons
(1) The population mean μ_{Y} is not equal to $\mu_{Y, 0}\left(H_{0}\right.$ not true)

2 Due to random sampling $\bar{Y} \neq \mu_{Y}=\mu_{Y, 0}\left(H_{0}\right.$ true $)$

To quantify the second reason we define the p-value

The p-value is the probability of drawing a sample with \bar{Y} at least as far from $\mu_{Y, 0}$ given that the null hypothesis is true.

Hypothesis tests concerning the population mean

$$
p-\text { value }=\operatorname{Pr}_{H_{0}}\left[\left|\bar{Y}-\mu_{Y, 0}\right|>\left|\bar{Y}^{\text {act }}-\mu_{Y, 0}\right|\right]
$$

To compute the p -value we need to know the sampling distribution of \bar{Y}

- Sampling distribution of \bar{Y} is complicated for small n
- With large n the central limit theorem states that

$$
\bar{Y} \sim N\left(\mu_{Y}, \frac{\sigma_{Y}^{2}}{n}\right)
$$

- This implies that if the null hypothesis is true:

$$
\frac{\bar{Y}-\mu_{Y, 0}}{\sqrt{\frac{\sigma_{Y}^{2}}{n}}} \sim N(0,1)
$$

Computing the p -value when σ_{Y} is known

$$
p-\text { value }=\operatorname{Pr}_{H_{0}}\left[\left|\frac{\bar{Y}_{-\mu_{Y, 0}}}{\sqrt{\frac{\sigma_{Y}^{2}}{n}}}\right|>\left|\frac{\bar{Y}^{\text {act }}-\mu_{Y, 0}}{\sqrt{\frac{\sigma_{Y}^{2}}{n}}}\right|\right]=2 \Phi\left(-\left\lvert\, \frac{\bar{Y}^{\text {act }}-\mu_{Y, 0}}{\left.\left.\sqrt{\frac{\sigma_{Y}^{2}}{n}} \right\rvert\,\right)}\right.\right.
$$

- For large n, p-value $=$ the probability that Z falls outside $\left|\frac{\bar{Y}^{\text {act }}-\mu_{Y, 0}}{\sqrt{\frac{\sigma_{Y}^{2}}{n}}}\right|$

Estimating the standard deviation of \bar{Y}

- In practice σ_{Y}^{2} is usually unknown and must be estimated

The sample variance s_{Y}^{2} is the estimator of $\sigma_{Y}^{2}=E\left[\left(Y_{i}-\mu_{Y}\right)^{2}\right]$

$$
s_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

- division by $n-1$ because we "replace" μ_{\curlyvee} by \bar{Y} which uses up 1 degree of freedom
- if Y_{1}, \ldots, Y_{n} are i.i.d. and $E\left(Y^{4}\right)<\infty, s_{Y}^{2} \xrightarrow{p} \sigma_{Y}^{2}$ (Law of Large Numbers)

The sample standard deviation $s_{Y}=\sqrt{s_{Y}^{2}}$ is the estimator of σ_{Y}

Computing the p-value using $S E(\bar{Y})=\widehat{\sigma}_{\bar{Y}}$

The standard error $\operatorname{SE}(\bar{Y})$ is an estimator of $\sigma_{\bar{Y}}$

$$
S E(\bar{Y})=\frac{S_{Y}}{\sqrt{n}}
$$

- Because s_{Y}^{2} is a consistent estimator of σ_{Y}^{2}, we can (for large n) replace $\sqrt{\frac{\sigma_{Y}^{2}}{n}}$ by $S E(\bar{Y})=\frac{s_{Y}}{\sqrt{n}}$
- This implies that when σ_{Y}^{2} is unknown and Y_{1}, \ldots, Y_{n} are i.i.d. the p -value is computed as

$$
p-\text { value }=2 \Phi\left(-\left|\frac{\bar{Y}^{\text {act }}-\mu_{Y, 0}}{S E(\bar{Y})}\right|\right)
$$

The t-statistic and its large-sample distribution

- The standardized sample average $\left(\bar{Y}^{\text {act }}-\mu_{Y, 0}\right) / S E(\bar{Y})$ plays a central role in testing statistical hypothesis
- It has a special name, the t-statistic

$$
t=\left|\frac{\bar{Y}-\mu_{Y, 0}}{S E(\bar{Y})}\right|
$$

- t is approximately $N(0,1)$ distributed for large n
- The p-value can be computed as

$$
p-\text { value }=2 \Phi\left(-\left|t^{\text {act }}\right|\right)
$$

The t-statistic and its large-sample distribution

Type I and type II errors and the significance level

There are 2 types of mistakes when conduction a hypothesis test

Type I error refers to the mistake of rejecting H_{0} when it is true Type II error refers to the mistake of not rejecting H_{0} when it is false

- In hypothesis testing we usually fix the probability of a type I error

The significance level α is the probability of rejecting H_{0} when it is true

- Most often used significance level is $5 \%(\alpha=0.05)$

Since area in tails of $N(0,1)$ outside ± 1.96 is 5% :

- We reject H_{0} if p-value is smaller than 0.05 .
- We reject H_{0} if $\left|t^{\text {act }}\right|>1.96$

4 steps in testing a hypothesis about the population mean

$$
H_{0}: E(Y)=\mu_{Y, 0} \quad H_{1}: E(Y) \neq \mu_{Y, 0}
$$

Step 1: Compute the sample average \bar{Y}
Step 2: Compute the standard error of \bar{Y}

$$
S E(\bar{Y})=\frac{S_{Y}}{\sqrt{n}}
$$

Step 3: Compute the t-statistic

$$
t^{a c t}=\frac{\bar{Y}-\mu_{Y, 0}}{S E(\bar{Y})}
$$

Step 4: Reject the null hypothesis at a 5% significance level if

- $\left|t^{\text {act }}\right|>1.96$
- or if p - value <0.05

Hypothesis tests concerning the population mean
 Example: The mean wage of individuals with a master degree

Suppose we would like to test

$$
H_{0}: E(W)=60000 \quad H_{1}: E(W) \neq 60000
$$

using a sample of 250 individuals with a master degree

$$
\begin{aligned}
& \text { Step 1: } \bar{W}=\frac{1}{n} \sum_{i=1}^{n} W_{i}=61977.12 \\
& \text { Step 2: } S E(\bar{W})=\frac{s_{W}}{\sqrt{n}}=1334.19 \\
& \text { Step 3: } t^{a c t}=\frac{\bar{W}-\mu_{W}, 0}{S E(\bar{W})}=\frac{61977.12-60000}{1334.19}=1.48
\end{aligned}
$$

Step 4: Since we use a 5% significance level, we do not reject H_{0} because $\left|t^{\text {act }}\right|=1.48<1.96$

Note: We do never accept the null hypothesis!

Hypothesis tests concerning the population mean
 Example: The mean wage of individuals with a master degree

This is how to do the test in Stata:

. ttest wage=60000
One-sample t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf. Interval]	
wage	$\mathbf{2 5 0}$	$\mathbf{6 1 9 7 7 . 1 2}$	$\mathbf{1 3 3 4 . 1 8 9}$	$\mathbf{2 1 0 9 5 . 3 7}$	$\mathbf{5 9 3 4 9 . 3 9}$	$\mathbf{6 4 6 0 4 . 8 5}$
mean $=$ mean(wage $)$			$t=$	$\mathbf{1 . 4 8 1 9}$		
Ho: mean $=6000$						

```
    Ha: mean < 60000
    Pr(T < t) = 0.9302
```

Ha: mean != 60000
$\operatorname{Pr}(|T|>|t|)=0.1396$

Ha: mean > 60000
$\operatorname{Pr}(T>t)=0.0698$

Hypothesis test with a one-sides alternative

- Sometimes the alternative hypothesis is that the mean exceeds $\mu_{Y, 0}$

$$
H_{0}: E(Y)=\mu_{Y, 0} \quad H_{1}: E(Y)>\mu_{Y, 0}
$$

- In this case the p-value is the area under $N(0,1)$ to the right of the t-statistic

$$
p-\text { value }=\operatorname{Pr}_{H_{0}}\left(t>t^{a c t}\right)=1-\Phi\left(t^{a c t}\right)
$$

- With a significance level of $5 \%(\alpha=0.05)$ we reject H_{0} if $t^{\text {act }}>1.64$
- If the alternative hypothesis is $H_{1}: E(Y)<\mu_{Y, 0}$

$$
p-\text { value }=\operatorname{Pr}_{H_{0}}\left(t<t^{a c t}\right)=1-\Phi\left(-t^{a c t}\right)
$$

and we reject H_{0} if $t^{\text {act }}<-1.64 / p-$ value <0.05

Hypothesis test with a one-sides alternative
 Example: The mean wage of individuals with a master degree

. ttest wage=60000
One-sample t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	5\% Conf.	rval]		
wage	250	61977.12	1334.189	21095.37	59349.39	64604.85		
mean $=$ mean(wage $)$				degrees of freedom $=$		1.4819		
Ho: mean $=$						249		
Ha: mean	000	$\begin{gathered} \text { Ha: mean ! }=\mathbf{6 0 0 0 0} \\ \operatorname{Pr}(\|\mathrm{T}\|>\|\mathrm{t}\|)=\mathbf{0 . 1 3 9 6} \end{gathered}$			$\begin{aligned} \mathrm{Ha}: \text { mean } & >60000 \\ \operatorname{Pr}(\mathrm{~T}>\mathrm{t}) & =0.0698 \end{aligned}$			
$\operatorname{Pr}(\mathrm{T}<\mathrm{t})$	9302							

Confidence intervals for the population mean

- Suppose we would do a two-sides hypothesis test for many different values of $\mu_{Y, 0}$
- On the basis of this we can construct a set of values which are not rejected at a 5% significance level
- If we were able to test all possible values of $\mu_{Y, 0}$ we could construct a 95% confidence interval

A 95\% confidence interval is an interval that contains the true value of μ_{Y} in 95% of all possible random samples.

- Instead of doing infinitely many hypothesis tests we can compute the 95% confidence interval as

$$
\{\bar{Y}-1.96 \cdot \operatorname{SE}(\bar{Y}) \quad, \quad \bar{Y}+1.96 \cdot S E(\bar{Y})\}
$$

- Intuition: a value of $\mu_{Y, 0}$ smaller than $\bar{Y}-1.96 \cdot \operatorname{SE}(\bar{Y})$ or bigger than $\bar{Y}-1.96 \cdot \operatorname{SE}(\bar{Y})$ will be rejected at $\alpha=0.05$

Confidence intervals for the population mean
 Example: The mean wage of individuals with a master degree

When the sample size n is large:

$$
\begin{aligned}
& 95 \% \text { confidence interval for } \mu_{Y}=\{\bar{Y} \pm 1.96 \cdot \operatorname{SE}(\bar{Y})\} \\
& 90 \% \text { confidence interval for } \mu_{Y}=\{\bar{Y} \pm 1.64 \cdot \operatorname{SE}(\bar{Y})\} \\
& 99 \% \text { confidence interval for } \mu_{Y}=\{\bar{Y} \pm 2.58 \cdot \operatorname{SE}(\bar{Y})\}
\end{aligned}
$$

Using the sample of 250 individuals with a master degree:

$$
\begin{gathered}
95 \% \text { conf. int. for } \mu_{W} \text { is } \\
\{61977.12 \pm 1.96 \cdot 1334.19\}=\{59349.39,64604.85\} \\
90 \% \text { conf. int. for } \mu_{W} \text { is } \\
\{61977.12 \pm 1.64 \cdot 1334.19\}=\{59774.38,64179.86\} \\
99 \% \text { conf. int. for } \mu_{W} \text { is } \\
\{61977.12 \pm 2.58 \cdot 1334.19\}=\{58513.94,65440.30\}
\end{gathered}
$$

