ECON4150 - Introductory Econometrics

Lecture 2: Review of Statistics

Monique de Haan (moniqued@econ.uio.no)

Stock and Watson Chapter 2-3

- Simple random sampling
- Distribution of the sample average
- Large sample approximation to the distribution of the sample mean
 - · Law of large numbers
 - central limit theorem
- Estimation of the population mean
 - unbiasedness
 - consistency
 - efficiency
- Hypothesis test concerning the population mean
- Confidence intervals for the population mean

Simple random sampling means that *n* objects are drawn randomly from a population and each object is equally likely to be drawn

Let $Y_1, Y_2, ..., Y_n$ denote the 1st to the *n*th randomly drawn object.

Under simple random sampling:

- The marginal probability distribution of Y_i is the same for all i = 1, 2, ..., n and equals the population distribution of Y.
 - because *Y*₁, *Y*₂, ..., *Y_n* are drawn randomly from the same population.
- Y₁ is distributed independently from Y₂, ..., Y_n
 - knowing the value of Y_i does not provide information on Y_j for $i \neq j$

When $Y_1, ..., Y_n$ are drawn from the same population and are independently distributed, they are said to be i.i.d random variables

Simple random sampling: Example

- Let G be the gender of an individual (G = 1 if female, G = 0 if male)
- G is a Bernoulli random variable with $E(G) = \mu_G = Pr(G = 1) = 0.5$
- Suppose we take the population register and randomly draw a sample of size *n*
 - The probability distribution of *G_i* is a Bernoulli distribution with mean 0.5
 - G₁ is distributed independently from G₂,..., G_n
- Suppose we draw a random sample of individuals entering the building of the physics department
 - This is not a sample obtained by simple random sampling and $G_1, ..., G_n$ are not i.i.d
 - Men are more likely to enter the building of the physics department!

The sampling distribution of the sample average

The sample average \overline{Y} of a randomly drawn sample is a random variable with a probability distribution called the sampling distribution.

$$\bar{Y} = \frac{1}{n} (Y_1 + Y_2 + ... + Y_n) = \frac{1}{n} \sum_{i=1}^n Y_i$$

Suppose $Y_1, ..., Y_n$ are i.i.d and the mean & variance of the population distribution of Y are respectively $\mu_Y \& \sigma_Y^2$

• The mean of \overline{Y} is

$$E\left(\bar{Y}\right) = E\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E\left(Y_{i}\right) = \frac{1}{n}nE(Y) = \mu_{Y}$$

• The variance of \overline{Y} is

$$Var\left(\overline{Y}\right) = Var\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right)$$
$$= \frac{1}{n^{2}}\sum_{i=1}^{n}Var\left(Y_{i}\right) + 2\frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1, j\neq i}^{n}Cov(Y_{i}, Y_{j})$$
$$= \frac{1}{n^{2}}NVar\left(Y\right) + 0$$
$$= \frac{1}{n}\sigma_{Y}^{2}$$

The sampling distribution of the sample average:example

- Let G be the gender of an individual (G = 1 if female, G = 0 if male)
- The mean of the population distribution of G is

$$E(G) = \mu_G = p = 0.5$$

• The variance of the population distribution of G is

$$Var(G) = \sigma_G^2 = p(1-p) = 0.5(1-05) = 0.25$$

• The mean and variance of the average gender (proportion of women) \overline{G} in a random sample with n = 10 are

$$E\left(\overline{G}\right) = \mu_G = 0.5$$
$$(\overline{G}) = \frac{1}{2}\sigma_c^2 = \frac{1}{2}0.25 = 0$$

$$Var\left(\overline{G}\right) = \frac{1}{n}\sigma_G^2 = \frac{1}{10}0.25 = 0.025$$

The finite sample distribution is the sampling distribution that exactly describes the distribution of \overline{Y} for any sample size *n*.

- In general the exact sampling distribution of Y is complicated and depends on the population distribution of Y.
- A special case is when $Y_1, Y_2, ..., Y_n$ are i.i.d draws from the $N(\mu_Y, \sigma_Y^2)$, because in this case

$$\overline{Y} \sim N\left(\mu_{Y}, \ \frac{\sigma_{Y}^{2}}{n}
ight)$$

The finite sample distribution of average gender \overline{G}

Suppose we draw 999 samples of $n = 2$:
--

Sample 1		Sample 2		Sample 3			 Sar	nple S	99		
G ₁	G ₂	G	G ₁	G ₂	<u>G</u>	G ₁	G ₂	G	G ₁	G ₂	<u>G</u>
1	0	0.5	1	1	1	0	1	0.5	0	0	0

The asymptotic distribution of \overline{Y}

- Given that the exact sampling distribution of \overline{Y} is complicated
- and given that we generally use large samples in econometrics
- we will often use an approximation of the sample distribution that relies on the sample being large

The asymptotic distribution is the approximate sampling distribution of \overline{Y} if the sample size $n \longrightarrow \infty$

We will use two concepts to approximate the large-sample distribution of the sample average

- The law of large numbers.
- The central limit theorem.

The Law of Large Numbers states that if

- Y_i, i = 1,.., n are independently and identically distributed with E (Y_i) = μ_Y
- and large outliers are unlikely; *Var* (Y_i) = $\sigma_Y^2 < \infty$

 \overline{Y} will be near μ_Y with very high probability when *n* is very large ($n \longrightarrow \infty$)

$$\overline{\mathbf{Y}} \xrightarrow{p} \mu_{\mathbf{Y}}$$

Law of Large Numbers Example: Gender *G* ~ *Bernouilli* (0.5, 0.25)

The Central Limit Theorem states that if

•
$$Y_i$$
, $i = 1, ..., n$ are i.i.d. with $E(Y_i) = \mu_Y$

• and
$$Var(Y_i) = \sigma_Y^2$$
 with $0 < \sigma_Y^2 < \infty$

The distribution of the sample average is approximately normal if $n \longrightarrow \infty$

$$\overline{Y} \sim N\left(\mu_{Y}, \ \frac{\sigma_{Y}^{2}}{n}
ight)$$

The distribution of the standardized sample average is approximately standard normal for $n \longrightarrow \infty$

$$\frac{\overline{\mathbf{Y}} - \mu_{\mathbf{Y}}}{\sigma_{\overline{\mathbf{Y}}}^2} \sim N(0, 1)$$

The Central Limit theorem Example: Gender $G \sim Bernouilli$ (0.5, 0.25)

How good is the large-sample approximation?

- If $Y_i \sim N(\mu_Y, \sigma_Y^2)$ the approximation is perfect
- If *Y_i* is not normally distributed the quality of the approximation depends on how close *n* is to infinity
- For n ≥ 100 the normal approximation to the distribution of Y is typically very good for a wide variety of population distributions

Estimation

An Estimator is a function of a sample of data *to be* drawn randomly from a population

 An estimator is a random variable because of randomness in drawing the sample

An Estimate is the numerical value of an estimator when it is actually computed using a specific sample.

Suppose we want to know the mean value of Y (μ_Y) in a population, for example

- The mean wage of college graduates.
- The mean level of education in Norway.
- The mean probability of passing the econometrics exam.

Suppose we draw a random sample of size *n* with $Y_1, ..., Y_n$ i.i.d

Possible estimators of μ_Y are:

- The sample average $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$
- The first observation Y₁
- The weighted average: $\widetilde{Y} = \frac{1}{n} \left(\frac{1}{2} Y_1 + \frac{3}{2} Y_2 + ... + \frac{1}{2} Y_{n-1} + \frac{3}{2} Y_n \right)$

To determine which of the estimators, \overline{Y} , Y_1 or \widetilde{Y} is the best estimator of μ_Y we consider 3 properties:

Let $\hat{\mu}_{Y}$ be an estimator of the population mean μ_{Y} .

Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_{Y}$ equals μ_{Y}

$$E\left(\hat{\mu}_{Y}\right)=\mu_{Y}$$

Consistency: The probability that $\hat{\mu}_Y$ is within a very small interval of μ_Y approaches 1 if $n \longrightarrow \infty$

$$\hat{\mu}_{\mathbf{Y}} \xrightarrow{\mathbf{p}} \mu_{\mathbf{Y}}$$

Efficiency: If the variance of the sampling distribution of $\hat{\mu}_Y$ is smaller than that of some other estimator $\tilde{\mu}_Y$, $\hat{\mu}_Y$ is more efficient

$$Var(\hat{\mu}_Y) < Var(\widetilde{\mu}_Y)$$

Suppose we are interested in the mean wages $\mu_{\rm W}$ of individuals with a master degree

We draw the following sample (n = 10) by simple random sampling

i	Wi	The 3 estimators give the following estimates:
1	47281.92	$\overline{W} = \frac{1}{10} \sum_{i=1}^{10} W_i = 52618.18$
2	70781.94	$W = \frac{10}{10} \sum_{i=1}^{10} W_i = 52010.10$
3	55174.46	$W_1 = 47281.92$
4	49096.05	$\widetilde{W} = \frac{1}{1} (1W + 3W + \cdots + 1W + 3W) = 40000.0$
5	67424.82	$\overline{W} = \frac{1}{10} \left(\frac{1}{2} W_1 + \frac{3}{2} W_2 + \dots + \frac{1}{2} W_9 + \frac{3}{2} W_{10} \right) = 49398.8$
6	39252.85	
7	78815.33	
8	46750.78	
9	46587.89	
10	25015.71	

•

All 3 proposed estimators are unbiased:

• As shown on slide 5:
$$E\left(\overline{Y}\right) = \mu_Y$$

• Since
$$Y_i$$
 are i.i.d. $E(Y_1) = E(Y) = \mu_Y$

$$E\left(\widetilde{Y}\right) = E\left(\frac{1}{n}\left(\frac{1}{2}Y_{1} + \frac{3}{2}Y_{2} + \dots + \frac{1}{2}Y_{n-1} + \frac{3}{2}Y_{n}\right)\right)$$

$$= \frac{1}{n}\left(\frac{1}{2}E(Y_{1}) + \frac{3}{2}E(Y_{2}) + \dots + \frac{1}{2}E(Y_{n-1}) + \frac{3}{2}E(Y_{n})\right)$$

$$= \frac{1}{n}\left[\left(\frac{n}{2} \cdot \frac{1}{2}\right)E(Y_{i}) + \left(\frac{n}{2} \cdot \frac{3}{2}\right)E(Y_{i})\right]$$

$$E(Y_{i}) = \mu_{Y}$$

By the law of large numbers

$$\overline{W} \stackrel{\rho}{\longrightarrow} \mu_W$$

which implies that the probability that \overline{W} is within a very small interval of μ_W approaches 1 if $n \longrightarrow \infty$

Consistency Example: mean wages of individuals with a master degree with $\mu_w = 60\ 000$

 $\widetilde{W} = \frac{1}{n} \left(\frac{1}{2} W_1 + \frac{3}{2} W_2 + ... + \frac{1}{2} W_{n-1} + \frac{3}{2} W_n \right)$ is also consistent

However W_1 is not a consistent estimator of μ_W :

Efficiency entails a comparison of estimators on the basis of their variance

• The variance of \overline{Y} equals

$$Var\left(\overline{Y}\right) = \frac{1}{n}\sigma_Y^2$$

• The variance of Y₁ equals

$$Var(Y_1) = Var(Y) = \sigma_Y^2$$

• The variance of \widetilde{Y} equals

$$Var\left(\widetilde{Y}\right) = 1.25\frac{1}{n}\sigma_Y^2$$

For any $n \ge 2 \overline{Y}$ is more efficient than Y_1 and \widetilde{Y}

BLUE: Best Linear Unbiased Estimator

Y is not only more efficient than Y₁ and *Y*, but it is more efficient than any unbiased estimator of μ_Y that is a weighted average of Y₁,..., Y_n

 \overline{Y} is the Best Linear Unbiased Estimator (BLUE) it is the most efficient estimator of μ_Y among all unbiased estimators that are weighted averages of $Y_1, ..., Y_n$

Let μ̂_Y be an unbiased estimator of μ_Y

$$\hat{\mu}_{Y} = \frac{1}{n} \sum_{i=1}^{n} a_{i} Y_{i}$$
 with $a_{1}, ..., a_{n}$ nonrandom constants

then \overline{Y} is more efficient than $\hat{\mu}_{Y}$, that is

$$Var\left(\overline{Y}\right) < Var\left(\hat{\mu}_{Y}\right)$$

Hypothesis tests concerning the population mean

Consider the following questions:

- Is the mean monthly wage of college graduates equal to NOK 60 000?
- Is the mean level of education in Norway equal to 12 years?
- Is the mean probability of passing the econometrics exam equal to 1?

These questions involve the population mean taking on a specific value $\mu_{Y,0}$

Answering these questions implies using data to compare a null hypothesis

$$H_0: E(Y) = \mu_{Y,0}$$

to an alternative hypothesis, which is often the following two sided hypothesis

$$H_1$$
: $E(Y) \neq \mu_{Y,0}$

Suppose we have a sample of n i.i.d observations and compute the sample average \overline{Y}

The sample average can differ from $\mu_{Y,0}$ for two reasons

- **1** The population mean μ_Y is not equal to $\mu_{Y,0}$ (H_0 not true)
- 2 Due to random sampling $\overline{Y} \neq \mu_Y = \mu_{Y,0}$ (*H*₀ true)

To quantify the second reason we define the p-value

The p-value is the probability of drawing a sample with \overline{Y} at least as far from $\mu_{Y,0}$ given that the null hypothesis is true.

$$p - value = Pr_{H_0} \left[|\overline{Y} - \mu_{Y,0}| > |\overline{Y}^{act} - \mu_{Y,0}|
ight]$$

To compute the p-value we need to know the sampling distribution of \overline{Y}

- Sampling distribution of \overline{Y} is complicated for small n
- With large *n* the central limit theorem states that

$$\overline{\mathbf{Y}} \sim \mathbf{N}\left(\mu_{\mathbf{Y}}, \ \frac{\sigma_{\mathbf{Y}}^2}{n}
ight)$$

• This implies that if the null hypothesis is true:

$$\frac{\overline{Y} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \sim N(0,1)$$

Computing the p-value when σ_{Y} is known

For large n, p-value = the probability that *Z* falls outside $\left| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sqrt{\sigma_Y^2}} \right|$

Estimating the standard deviation of \overline{Y}

• In practice σ_Y^2 is usually unknown and must be estimated

The sample variance s_Y^2 is the estimator of $\sigma_Y^2 = E\left[(Y_i - \mu_Y)^2\right]$

$$s_Y^2 = rac{1}{n-1} \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2$$

- division by n 1 because we "replace" μ_Y by Y which uses up 1 degree of freedom
- if Y₁,..., Y_n are i.i.d. and E (Y⁴) < ∞, s²_Y → σ²_Y (Law of Large Numbers)

The sample standard deviation $s_Y = \sqrt{s_Y^2}$ is the estimator of σ_Y

Computing the p-value using $SE(\overline{Y}) = \widehat{\sigma}_{\overline{Y}}$

The standard error $SE(\overline{Y})$ is an estimator of $\sigma_{\overline{Y}}$

$$SE\left(\overline{Y}\right) = rac{s_Y}{\sqrt{n}}$$

- Because s_Y^2 is a consistent estimator of σ_Y^2 , we can (for large *n*) replace $\sqrt{\frac{\sigma_Y^2}{n}}$ by $SE\left(\overline{Y}\right) = \frac{s_Y}{\sqrt{n}}$
- This implies that when σ²_Y is unknown and Y₁, ..., Y_n are i.i.d. the p-value is computed as

$$p-\textit{value} = 2 \varPhi \left(- \left| rac{\overline{Y}^{act} - \mu_{Y,0}}{SE\left(\overline{Y}
ight)}
ight|
ight)$$

The t-statistic and its large-sample distribution

- The standardized sample average (<u>Y</u>^{act} μ_{Y,0}) /SE(<u>Y</u>) plays a central role in testing statistical hypothesis
- It has a special name, the t-statistic

$$t = \left| \frac{\overline{\mathbf{Y}} - \mu_{\mathbf{Y},\mathbf{0}}}{SE\left(\overline{\mathbf{Y}}\right)} \right|$$

- t is approximately N(0,1) distributed for large n
- The p-value can be computed as

$$p - value = 2\Phi\left(-\left|t^{act}\right|\right)$$

The t-statistic and its large-sample distribution

Type I and type II errors and the significance level

There are 2 types of mistakes when conduction a hypothesis test

Type I error refers to the mistake of rejecting H_0 when it is true Type II error refers to the mistake of not rejecting H_0 when it is false

In hypothesis testing we usually fix the probability of a type I error

The significance level α is the probability of rejecting H_0 when it is true

• Most often used significance level is 5% ($\alpha = 0.05$)

Since area in tails of N(0, 1) outside ± 1.96 is 5%:

- We reject H_0 if p-value is smaller than 0.05.
- We reject *H*₀ if |*t^{act}*| > 1.96

4 steps in testing a hypothesis about the population mean

$$H_0: E(Y) = \mu_{Y,0}$$
 $H_1: E(Y) \neq \mu_{Y,0}$

Step 1: Compute the sample average \overline{Y} Step 2: Compute the standard error of \overline{Y}

$$SE\left(\overline{Y}\right) = \frac{s_Y}{\sqrt{n}}$$

Step 3: Compute the t-statistic

$$t^{act} = \frac{\overline{Y} - \mu_{Y,0}}{SE\left(\overline{Y}\right)}$$

Step 4: Reject the null hypothesis at a 5% significance level if

• or if *p* - *value* < 0.05

Suppose we would like to test

$$H_0: E(W) = 60000$$
 $H_1: E(W) \neq 60000$

using a sample of 250 individuals with a master degree

Step 1:
$$\overline{W} = \frac{1}{n} \sum_{i=1}^{n} W_i = 61977.12$$

Step 2: $SE(\overline{W}) = \frac{s_W}{\sqrt{n}} = 1334.19$
Step 3: $t^{act} = \frac{\overline{W} - \mu_{W,0}}{SE(\overline{W})} = \frac{61977.12 - 60000}{1334.19} = 1.48$
Step 4: Since we use a 5% significance level, we do not reject H_0
because $|t^{act}| = 1.48 < 1.96$

Note: We do never accept the null hypothesis!

Hypothesis tests concerning the population mean Example: The mean wage of individuals with a master degree

This is how to do the test in Stata:

. ttest wage=60000

One-sample t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf. Inte	erval]
wage	250	61977.12	1334.189	21095.37	59349.39	64604.85
mean = Ho: mean =	mean(wage) 60000			degree	t = s of freedom =	1.4819 249
	< 60000 = 0.9302		Ha: mean != T > t) =		Ha: mean Pr(T > t)	

Hypothesis test with a one-sides alternative

Sometimes the alternative hypothesis is that the mean exceeds µ_{Y,0}

$$H_0: E(Y) = \mu_{Y,0}$$
 $H_1: E(Y) > \mu_{Y,0}$

 In this case the p-value is the area under N(0, 1) to the right of the t-statistic

$$p - value = Pr_{H_0}\left(t > t^{act}\right) = 1 - \Phi\left(t^{act}\right)$$

- With a significance level of 5% ($\alpha = 0.05$) we reject H_0 if $t^{act} > 1.64$
- If the alternative hypothesis is H₁ : E (Y) < μ_{Y,0}

$$p - value = Pr_{H_0}\left(t < t^{act}
ight) = 1 - \Phi\left(-t^{act}
ight)$$

and we reject H_0 if $t^{act} < -1.64 / p - value < 0.05$

Hypothesis test with a one-sides alternative Example: The mean wage of individuals with a master degree

/___/ / / / / / (R) Statistics/Data Analysis

. ttest wage=60000

One-sample t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf. Inte	erval]
wage	250	61977.12	1334.189	21095.37	59349.39	64604.85
mean = Ho: mean =	mean(wage) 60000			degree	t = s of freedom =	1.4819 249
	< 60000 = 0.9302	-	Ha: mean != T > t) =		Ha: mean Pr(T > t)	> 60000 = 0.0698

Confidence intervals for the population mean

- Suppose we would do a two-sides hypothesis test for many different values of $\mu_{Y,0}$
- On the basis of this we can construct a set of values which are not rejected at a 5% significance level
- If we were able to test all possible values of $\mu_{\rm Y,0}$ we could construct a 95% confidence interval

A 95% confidence interval is an interval that contains the true value of μ_Y in 95% of all possible random samples.

 Instead of doing infinitely many hypothesis tests we can compute the 95% confidence interval as

$$\left\{ \overline{Y} - 1.96 \cdot SE\left(\overline{Y}\right) \quad , \quad \overline{Y} + 1.96 \cdot SE\left(\overline{Y}\right) \right\}$$

• Intuition: a value of $\mu_{Y,0}$ smaller than $\overline{Y} - 1.96 \cdot SE(\overline{Y})$ or bigger than $\overline{Y} - 1.96 \cdot SE(\overline{Y})$ will be rejected at $\alpha = 0.05$

Confidence intervals for the population mean Example: The mean wage of individuals with a master degree

When the sample size *n* is large:

95% confidence interval for
$$\mu_{Y} = \left\{ \overline{Y} \pm 1.96 \cdot SE\left(\overline{Y}\right) \right\}$$

90% confidence interval for
$$\mu_{Y} = \left\{ \overline{Y} \pm 1.64 \cdot SE\left(\overline{Y}\right) \right\}$$

99% confidence interval for
$$\mu_{Y} = \left\{ \overline{Y} \pm 2.58 \cdot SE\left(\overline{Y}\right) \right\}$$

Using the sample of 250 individuals with a master degree:

95% conf. int. for μ_W is {61977.12 ± 1.96 · 1334.19} = {59349.39, 64604.85}

90% conf. int. for μ_W is {61977.12 ± 1.64 · 1334.19} = {59774.38, 64179.86}

99% conf. int. for μ_W is {61977.12 ± 2.58 · 1334.19} = {58513.94, 65440.30}