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Lecture outline

e Simple random sampling
o Distribution of the sample average

e Large sample approximation to the distribution of the sample mean

e Law of large numbers
e central limit theorem

e Estimation of the population mean

e unbiasedness
e consistency
o efficiency

e Hypothesis test concerning the population mean

e Confidence intervals for the population mean



Simple random sampling

Simple random sampling means that n objects are drawn randomly from a
population and each object is equally likely to be drawn

Let Y1, Yo, ..., Yn denote the 1st to the nth randomly drawn object.

Under simple random sampling:

e The marginal probability distribution of Y; is the same foralli =1,2,..,n
and equals the population distribution of Y.

e because Yy, Yo, ..., Y, are drawn randomly from the same
population.

e Y is distributed independently from Yz, ..., Y,

e knowing the value of Y; does not provide information on Y; for i # j

When Vi, ..., Y, are drawn from the same population and are independently
distributed, they are said to be i.i.d random variables



Simple random sampling: Example

Let G be the gender of an individual (G = 1 if female, G = 0 if male)

e Gis a Bernoulli random variable with E (G) = pg = Pr(G=1) =05

Suppose we take the population register and randomly draw a sample of
size n

e The probability distribution of G; is a Bernoulli distribution with
mean 0.5
e G is distributed independently from Gg, ..., G,

e Suppose we draw a random sample of individuals entering the building
of the physics department

e This is not a sample obtained by simple random sampling and
Gi,...,Gparenoti.id
e Men are more likely to enter the building of the physics department!



The sampling distribution of the sample average

The sample average Y of a randomly drawn sample is a random variable with
a probability distribution called the sampling distribution.

1 n
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Suppose Yi, ..., Y, are i.i.d and the mean & variance of the population
distribution of Y are respectively iy & 0%
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The sampling distribution of the sample average:example

Let G be the gender of an individual (G = 1 if female, G = 0 if male)

The mean of the population distribution of G is

E(G)=pe=p=05

The variance of the population distribution of G is
Var (G) = 0% = p(1 — p) = 0.5(1 — 05) = 0.25

The mean and variance of the average gender (proportion of women) G
in a random sample with n =10 are

E(é) — ug =05

1, B
Var (G) = ~of = 750-25 = 0.025



The finite sample distribution of the sample average

The finite sample distribution is the sampling distribution that exactly
describes the distribution of Y for any sample size n.

¢ In general the exact sampling distribution of Y is complicated and
depends on the population distribution of Y.

o A special case is when Y;, Yz, ..., Y are i.i.d draws from the N (uy, o%),

because in this case )
_ o2
Y~N =



The finite sample distribution of average gender G

Suppose we draw 999 samples of n = 2:

Sample 1 Sample 2 Sample3 ... Sample 999
G G G G G G G G G G G G
1 0 05 1 1 1 0 1 05 0 0 O

Sample distribution of average gender
999 samples of n=2

probability

0 2 4 5 6 8 1
sample average



The asymptotic distribution of Y

¢ Given that the exact sampling distribution of Y is complicated
e and given that we generally use large samples in econometrics

o we will often use an approximation of the sample distribution that relies
on the sample being large

The asymptotic distribution is the approximate sampling distribution of Y if
the sample size n —o0

We will use two concepts to approximate the large-sample distribution of the
sample average

e The law of large numbers.

e The central limit theorem.
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Law of Large Numbers

The Law of Large Numbers states that if
e Y, i=1,.., nare independently and identically

distributed with E (Y;) = uy
e and large outliers are unlikely; Var (Y;) = 0% < oo

Y will be near iy with very high probability when n is very large (n — co)

VLHLY



Law of Large Numbers

Example: Gender G ~ Bernouilli (0.5, 0.25)

Sample distribution of average gender Sample distribution of average gender
999 samples of n=2 999 samples of n=10
57 254
41 29
z z
= 34 Z 15
[ [
Q Qo
o 29 o .14
o Qo
14 .05+
ol ol o | .
0 2 4 5 8 8 i 0 2 4 5 6 8 i
sample average sample average
Sample distribution of average gender Sample distribution of average gender
999 samples of n=100 999 samples of n=250
-1 .06
.08
= 2 .044
3 .06 3
2 2
o .044 [
o a .02
HH Hh |
o " ..|I||| |||.| . o4 1 L
0 2 4 5 6 8 i 0 2 4 5 6 8 i

sample average sample average
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The Central Limit theorem

The Central Limit Theorem states that if

e Y,i=1,.,nareiid. with E(Y;) = py
e and Var (V) = % with 0 < 02 < oo

The distribution of the sample average is approximately normal if n — oo

2
Y 9y
Y~N (/,Ly, p )

The distribution of the standardized sample average is approximately
standard normal for n — oo

Y—iz,uYNN(O,.I)
oy



The Central Limit theorem

Example: Gender G ~ Bernouilli (0

0.25)

probability

probability

Sample distribution of average gender
999 samples of n=2

Sample distribution of average gender
999 samples of n=10

sample average

[N Finite sample distr. standardized sample average
Standard normal probability densitiy

5 .25
4 > 2
3 3 15
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-4 -2 0 2 4 -4 -2 0 2 4
sample average sample average
[ Finite sample distr. standardized sample average [ Finite sample distr. standardized sample average
Standard normal probability densitiy Standard normal probability densitiy
Sample distribution of average gender Sample distribution of average gender
999 samples of n=100 999 samples of n=250
A .06
.08 >
06 7 o
8
.04 S o
02 " I e
0 2l I I I 'y 0
3 2 6 2 4 4 2 08 2 4

sample average

[ Finite sample distr. standardized sample average
Standard normal probability densitiy
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The Central Limit theorem

How good is the large-sample approximation?

o If Yi ~ N (py, 0%) the approximation is perfect

o [f Y;is not normally distributed the quality of the approximation depends
on how close n is to infinity

e For n > 100 the normal approximation to the distribution of Y is typically
very good for a wide variety of population distributions



Estimation
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Estimators and estimates

An Estimator is a function of a sample of data to be drawn randomly from a
population

o An estimator is a random variable because of randomness in drawing
the sample

An Estimate is the numerical value of an estimator when it is actually
computed using a specific sample.
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Estimation of the population mean

Suppose we want to know the mean value of Y (uy) in a population, for
example

e The mean wage of college graduates.
e The mean level of education in Norway.

e The mean probability of passing the econometrics exam.

Suppose we draw a random sample of size n with Y;, ..., Y, i.i.d

Possible estimators of uy are:

e The sample average Y = 1 37 . Y;
e The first observation Y;

e The weighted average: Y = FYi+3Yo+ o+ Yo+ 3Y0)
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Estimation of the population mean

To determine which of the estimators, Y, Y; or Y is the best estimator of y
we consider 3 properties:

Let iy be an estimator of the population mean py.

Unbiasedness: The mean of the sampling distribution of jiy equals uy

E(v) = py

Consistency: The probability that fiy is within a very small interval of py
approaches 1if n — oo

py 25 py

Efficiency: If the variance of the sampling distribution of fiy is smaller
than that of some other estimator iy, iy is more efficient

Var (fiy) < Var (i)
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Example

Suppose we are interested in the mean wages u of individuals with a
master degree

We draw the following sample (n = 10) by simple random sampling

W, The 3 estimators give the following estimates:
47281.92
70781.94
55174.46 Wy = 47281.92
49096.05
67424.82
39252.85
78815.33
46750.78
46587.89
25015.71

—_ | o~

W=15>° W =52618.18

W=35 AW+ 3We + .o+ I We + 2Wio) = 49398.82.

Ol |N[foO|O|Bd~|W|IN

-
o
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Unbiasedness

All 3 proposed estimators are unbiased:

e As shown on slide 5: E (7) =y

e Since Y;areiid. E(Y:)=E(Y)=pny

E(Y) = EQQYi+3Ya+ 41V +2Y0)
= L(BEM)+ 3E(Ve) + o+ FE(Vor) + FE(Yn)
= 232 EM)+(3-3) E(Y)]
E(Y) =y



Consistency
Example: mean wages of individuals with a master degree with p,, = 60 000

By the law of large numbers

w - mw
which implies that the probability that W is within a very small interval of uw
approaches 1 if n — oo

Sample average as estimator of population mean Sample average as estimator of population mean
999 samples of n=10 999 samples of n=100

probability
g
probability

0 [
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sample average sample average



Consistency

Example: mean wages of individuals with a master degree with p,, = 60 000

W=2(1W + W+ ...+ LW, s + 2W,) is also consistent

Weighted average as estimator of population mean

Weighted average as estimator of population mean
999 samples of n=10

999 samples of n=100

probability
probability
5

weighted average

weighted average

However W, is not a consistent estimator of pw:

First observation W1 as estimator of population mean
999 samples of n=10

First observation W1 as estimator of population mean
999 samples of n=100

.04 .04

9

@
Q
@

probability
N
probability
S

2
2

FESLSSS S
WEQEOECSEONN
S
O E O RS

first observation W1

first observation W1



23

Efficiency

Efficiency entails a comparison of estimators on the basis of their variance

e The variance of Y equals
v\ _ 1 >
Var (Y) = an
e The variance of Y; equals
Var (Yy) = Var (Y) = o%
e The variance of Y equals
S\ 1 5
Var (V) = 1.25-0%

Forany n>2 Y is more efficient than Y; and %



24

BLUE: Best Linear Unbiased Estimator

e Y is not only more efficient than Y; and Y, but it is more efficient than
any unbiased estimator of uy that is a weighted average of Yi, ...., Y

Y is the Best Linear Unbiased Estimator (BLUE) it is the most efficient
estimator of 1y among all unbiased estimators that are
weighted averages of Yi,...., Y

e Let iy be an unbiased estimator of py
1 n
fy =~ Z aY;  with ay,...a, nonrandom constants
i=1

then Y is more efficient than jiy, that is

Var (7) < Var (jiy)



Hypothesis tests concerning the
population mean



26

Hypothesis tests concerning the population mean

Consider the following questions:

o |s the mean monthly wage of college graduates equal to NOK 60 0007?
o |s the mean level of education in Norway equal to 12 years?

e |s the mean probability of passing the econometrics exam equal to 17?

These questions involve the population mean taking on a specific value wy o

Answering these questions implies using data to compare a null hypothesis
Ho : E(Y) = Ky,

to an alternative hypothesis, which is often the following two sided hypothesis

H1 : E(Y) 76/}4/,0



Hypothesis tests concerning the population mean
p-value

Suppose we have a sample of ni.i.d observations and compute the sample
average Y

The sample average can differ from py o for two reasons

© The population mean py is not equal to py o (Ho not true)

@ Due to random sampling Y # uy = uy,o (Ho true)
To quantify the second reason we define the p-value

The p-value is the probability of drawing a sample with Y at least as far
from py o given that the null hypothesis is true.



Hypothesis tests concerning the population mean
p-value

p — value = Pry, [ Y — piy ol > |7m - uy,ol]

To compute the p-value we need to know the sampling distribution of Y

e Sampling distribution of Y is complicated for small n

e With large n the central limit theorem states that

Y ~N -

e This implies that if the null hypothesis is true:

Tl N (o,1)
Ty

n
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Computing the p-value when oy is known

Y—uyo Yy, Y —uy,o
p — value = Pry, = | > | =29 [ - —
- -2 o2

Y

n n

The p-value is the shaded area
in the graph

f
0
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Estimating the standard deviation of Y

e In practice ¢% is usually unknown and must be estimated

The sample variance s? is the estimator of 6% = E [(Y,- - uy)z]

(v Y)

o division by n — 1 because we “replace” iy by Y which uses up 1 degree
of freedom

2
Sy =

o if Yi,.., Yaareiid. and E (Y*) < o0, 85 25 0%
(Law of Large Numbers)

The sample standard deviation sy = /s? is the estimator of oy
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Computing the p-value using SE (Y) = oy

The standard error SE(Y) is an estimator of o

SE (V) = %

e Because s is a consistent estimator of o2, we can (for large n) replace
2 g,
Toy SE(Y) =2

n

o This implies that when o2 is unknown and Y4, ..., Y, are i.i.d. the p-value
is computed as

~act

Y —uvo

SE (7)

p — value = 2% (—




The t-statistic and its large-sample distribution

The standardized sample average (Vad - uv,o) /SE (7) plays a
central role in testing statistical hypothesis

It has a special name, the t-statistic

Y — pvo
SE (7)

t is approximately N (0, 1) distributed for large n

The p-value can be computed as

p — value = 2& (f 2

)



The t-statistic and its large-sample distribution

2.5%

95%

2.5%

-1.96

1.96
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Type | and type Il errors and the significance level

There are 2 types of mistakes when conduction a hypothesis test

Type | error refers to the mistake of rejecting Hy when it is true
Type Il error refers to the mistake of not rejecting Hp when it is false

e In hypothesis testing we usually fix the probability of a type | error
The significance level « is the probability of rejecting Hy when it is true
o Most often used significance level is 5% (o = 0.05)
Since area in tails of N (0, 1) outside +1.96 is 5%:

o We reject Hj if p-value is smaller than 0.05.
e We reject Hp if [t*] > 1.96
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4 steps in testing a hypothesis about the population mean

HoZE(Y):,LLyyo H12E(Y)7£p,y’0
Step 1: Compute the sample average Y

Step 2: Compute the standard error of Y

SE (Y) = —ﬁ
Step 3: Compute the t-statistic

et — Y- Hy,0

SE (?)
Step 4: Reject the null hypothesis at a 5% significance level if
o |t%° > 1.96

e orif p— value < 0.05



Hypothesis tests concerning the population mean

Example: The mean wage of individuals with a master degree

Suppose we would like to test
Ho : E (W) = 60000 H; : E (W) # 60000

using a sample of 250 individuals with a master degree

Step1: W=1%7, W, =61977.12

Step 2: SE (W) = S = 1334.19

. qact _ W—pwo _ 61977.12-60000 _
Step 3: t*% = SE(w) 1319 1.48

Step 4: Since we use a 5% significance level, we do not reject Hyp
because [t = 1.48 < 1.96

Note: We do never accept the null hypothesis!



Hypothesis tests concerning the population mean
Example: The mean wage of individuals with a master degree

This is how to do the test in Stata:
[ — ()
/__ VA 4 / /7
. / /_/ 7 /7
Statistics/Data Analysis
. ttest wage=60000

One-sample t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
wage 250 61977.12 1334.189 21095.37 59349.39 64604 .85
mean = mean( wage) t= 1.4819

Ho: mean = 60000 degrees of freedom = 249

Ha: mean < 60000 Ha: mean != 60000 Ha: mean > 60000

Pr(T < t) = 0.9302 Pr(ITl > |t]) = 0.1396 Pr(T > t) = 0.0698
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Hypothesis test with a one-sides alternative

e Sometimes the alternative hypothesis is that the mean exceeds vy o
Ho:E(Y):,uy’o H, :E(Y)>,U/Y,o
¢ In this case the p-value is the area under N (0, 1) to the right of the
t-statistic
p — value = Pry, (t > ta"’) =1-9 (t“’)
e With a significance level of 5% (o = 0.05) we reject Hy if 1% > 1.64

o If the alternative hypothesisis Hi : E(Y) < uy,o
p — value = Pry, (t < ta“") =1-9 (—tac’)

and we reject Hy if t° < —1.64 / p — value < 0.05



Hypothesis test with a one-sides alternative
Example: The mean wage of individuals with a master degree

- R
/7 7 7 7

/7 7/ /7 1 /T

Statistics/Data Analysis

. ttest wage=60000

One-sample t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
wage 250 61977.12 1334.189 21095.37 59349.39 64604.85
mean = mean( wage) t = 1.4819

Ho: mean = degrees of freedom = 249

Ha: mean < 60000 Ha: mean != 60000 Ha: mean > 60000

Pr(T < t) = 0.9302 Pr(|T] > |t]) = 0.1396 Pr(T > t) = 0.0698
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Confidence intervals for the population mean

e Suppose we would do a two-sides hypothesis test for many different
values of py o

e On the basis of this we can construct a set of values which are not
rejected at a 5% significance level

o If we were able to test all possible values of 1.y o we could construct a
95% confidence interval

A 95% confidence interval is an interval that contains the true value of py in
95% of all possible random samples.

o Instead of doing infinitely many hypothesis tests we can compute the
95% confidence interval as

{7—1.96»SE<7) , 7+1.96.SE(7)}

e Intuition: a value of py o smallerthan Y — 1.96 - SE (7) or bigger than
Y- 1.96-SE (7) will be rejected at a = 0.05



Confidence intervals for the population mean
Example: The mean wage of individuals with a master degree

When the sample size nis large:

95% confidence interval for py = {7 +1.96-SE (7)}
90% confidence interval for py = {7 +1.64-SE (7)}

99% confidence interval for py = {7 +258-SE (7)}
Using the sample of 250 individuals with a master degree:

95% conf. int. for pw is
{61977.12 £ 1.96 - 1334.19} = {59349.39, 64604.85}

90% conf. int. for uw is
{61977.12 £ 1.64 - 1334.19} = {59774.38 , 64179.86}

99% conf. int. for uw is
{61977.12 £ 2.58 - 1334.19} = {58513.94 , 65440.30}



