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Lecture outline

• Simple random sampling

• Distribution of the sample average

• Large sample approximation to the distribution of the sample mean

• Law of large numbers
• central limit theorem

• Estimation of the population mean

• unbiasedness
• consistency
• efficiency

• Hypothesis test concerning the population mean

• Confidence intervals for the population mean
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Simple random sampling

Simple random sampling means that n objects are drawn randomly from a
population and each object is equally likely to be drawn

Let Y1,Y2, ...,Yn denote the 1st to the nth randomly drawn object.

Under simple random sampling:

• The marginal probability distribution of Yi is the same for all i = 1, 2, .., n
and equals the population distribution of Y .

• because Y1,Y2, ...,Yn are drawn randomly from the same
population.

• Y1 is distributed independently from Y2, ...,Yn

• knowing the value of Yi does not provide information on Yj for i 6= j

When Y1, ...,Yn are drawn from the same population and are independently
distributed, they are said to be i.i.d random variables
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Simple random sampling: Example

• Let G be the gender of an individual (G = 1 if female, G = 0 if male)

• G is a Bernoulli random variable with E (G) = µG = Pr(G = 1) = 0.5

• Suppose we take the population register and randomly draw a sample of
size n

• The probability distribution of Gi is a Bernoulli distribution with
mean 0.5

• G1 is distributed independently from G2, ...,Gn

• Suppose we draw a random sample of individuals entering the building
of the physics department

• This is not a sample obtained by simple random sampling and
G1, ...,Gn are not i.i.d

• Men are more likely to enter the building of the physics department!
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The sampling distribution of the sample average

The sample average Ȳ of a randomly drawn sample is a random variable with
a probability distribution called the sampling distribution.

Ȳ =
1
n

(Y1 + Y2 + ...+ Yn) =
1
n

n∑
i=1

Yi

Suppose Y1, ...,Yn are i.i.d and the mean & variance of the population
distribution of Y are respectively µY & σ2

Y

• The mean of Y is

E
(
Ȳ
)

= E

(
1
n

n∑
i=1

Yi

)
=

1
n

n∑
i=1

E (Yi ) =
1
n

nE(Y ) = µY

• The variance of Y is

Var
(

Y
)

= Var
( 1

n

∑n
i=1 Yi

)
= 1

n2

∑n
i=1 Var (Yi ) + 2 1

n2

∑n
i=1

∑n
j=1,j 6=i Cov(Yi ,Yj )

= 1
n2 nVar (Y ) + 0

= 1
nσ

2
Y
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The sampling distribution of the sample average:example

• Let G be the gender of an individual (G = 1 if female, G = 0 if male)

• The mean of the population distribution of G is

E (G) = µG = p = 0.5

• The variance of the population distribution of G is

Var (G) = σ2
G = p(1− p) = 0.5(1− 05) = 0.25

• The mean and variance of the average gender (proportion of women) G
in a random sample with n = 10 are

E
(

G
)

= µG = 0.5

Var
(

G
)

=
1
n
σ2

G =
1
10

0.25 = 0.025
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The finite sample distribution of the sample average

The finite sample distribution is the sampling distribution that exactly
describes the distribution of Y for any sample size n.

• In general the exact sampling distribution of Y is complicated and
depends on the population distribution of Y .

• A special case is when Y1,Y2, ...,Yn are i.i.d draws from the N
(
µY , σ

2
Y
)
,

because in this case

Y ∼ N
(
µY ,

σ2
Y

n

)
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The finite sample distribution of average gender G

Suppose we draw 999 samples of n = 2:

Sample 1 Sample 2 Sample 3 ..... Sample 999

G1 G2 G G1 G2 G G1 G2 G G1 G2 G
1 0 0.5 1 1 1 0 1 0.5 0 0 0

0
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0 .2 .4 .5 .6 .8 1
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999 samples of n=2
Sample distribution of average gender

.
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The asymptotic distribution of Y

• Given that the exact sampling distribution of Y is complicated

• and given that we generally use large samples in econometrics

• we will often use an approximation of the sample distribution that relies
on the sample being large

The asymptotic distribution is the approximate sampling distribution of Y if
the sample size n −→∞

We will use two concepts to approximate the large-sample distribution of the
sample average

• The law of large numbers.

• The central limit theorem.
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Law of Large Numbers

The Law of Large Numbers states that if

• Yi , i = 1, .., n are independently and identically
distributed with E (Yi ) = µY

• and large outliers are unlikely; Var (Yi ) = σ2
Y <∞

Y will be near µY with very high probability when n is very large (n −→∞)

Y
p−→ µY



11

Law of Large Numbers
Example: Gender G ∼ Bernouilli (0.5, 0.25)
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The Central Limit theorem

The Central Limit Theorem states that if

• Yi , i = 1, .., n are i.i.d. with E (Yi ) = µY

• and Var (Yi ) = σ2
Y with 0 < σ2

Y <∞

The distribution of the sample average is approximately normal if n −→∞

Y ∼ N
(
µY ,

σ2
Y

n

)
The distribution of the standardized sample average is approximately
standard normal for n −→∞

Y − µY

σ2
Y

∼ N (0, 1)



13

The Central Limit theorem
Example: Gender G ∼ Bernouilli (0.5, 0.25)
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The Central Limit theorem

How good is the large-sample approximation?

• If Yi ∼ N
(
µY , σ

2
Y
)

the approximation is perfect

• If Yi is not normally distributed the quality of the approximation depends
on how close n is to infinity

• For n ≥ 100 the normal approximation to the distribution of Y is typically
very good for a wide variety of population distributions



Estimation
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Estimators and estimates

An Estimator is a function of a sample of data to be drawn randomly from a
population

• An estimator is a random variable because of randomness in drawing
the sample

An Estimate is the numerical value of an estimator when it is actually
computed using a specific sample.
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Estimation of the population mean

Suppose we want to know the mean value of Y (µY ) in a population, for
example

• The mean wage of college graduates.

• The mean level of education in Norway.

• The mean probability of passing the econometrics exam.

Suppose we draw a random sample of size n with Y1, ...,Yn i.i.d

Possible estimators of µY are:

• The sample average Y = 1
n

∑n
i=1 Yi

• The first observation Y1

• The weighted average: Ỹ = 1
n

( 1
2 Y1 + 3

2 Y2 + ...+ 1
2 Yn−1 + 3

2 Yn
)
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Estimation of the population mean

To determine which of the estimators, Y , Y1 or Ỹ is the best estimator of µY

we consider 3 properties:

Let µ̂Y be an estimator of the population mean µY .

Unbiasedness: The mean of the sampling distribution of µ̂Y equals µY

E (µ̂Y ) = µY

Consistency: The probability that µ̂Y is within a very small interval of µY

approaches 1 if n −→∞

µ̂Y
p−→ µY

Efficiency: If the variance of the sampling distribution of µ̂Y is smaller
than that of some other estimator µ̃Y , µ̂Y is more efficient

Var (µ̂Y ) < Var (µ̃Y )
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Example

Suppose we are interested in the mean wages µw of individuals with a
master degree

We draw the following sample (n = 10) by simple random sampling

i Wi

1 47281.92

2 70781.94

3 55174.46

4 49096.05

5 67424.82

6 39252.85

7 78815.33

8 46750.78

9 46587.89

10 25015.71

The 3 estimators give the following estimates:

W = 1
10

∑10
i=1 Wi = 52618.18

W1 = 47281.92

W̃ = 1
10

( 1
2 W1 + 3

2 W2 + ....+ 1
2 W9 + 3

2 W10
)

= 49398.82.
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Unbiasedness

All 3 proposed estimators are unbiased:

• As shown on slide 5: E
(

Y
)

= µY

• Since Yi are i.i.d. E (Y1) = E (Y ) = µY

•
E
(

Ỹ
)

= E
( 1

n

( 1
2 Y1 + 3

2 Y2 + ...+ 1
2 Yn−1 + 3

2 Yn
))

= 1
n

( 1
2 E(Y1) + 3

2 E(Y2) + ...+ 1
2 E(Yn−1) + 3

2 E(Yn)
)

= 1
n

[( n
2 ·

1
2

)
E (Yi ) +

( n
2 ·

3
2

)
E (Yi )

]
E (Yi ) = µY
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Consistency
Example: mean wages of individuals with a master degree with µw = 60 000

By the law of large numbers
W

p−→ µW

which implies that the probability that W is within a very small interval of µW

approaches 1 if n −→∞
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Consistency
Example: mean wages of individuals with a master degree with µw = 60 000

W̃ = 1
n

( 1
2 W1 + 3

2 W2 + ...+ 1
2 Wn−1 + 3

2 Wn
)
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Efficiency

Efficiency entails a comparison of estimators on the basis of their variance

• The variance of Y equals

Var
(

Y
)

=
1
n
σ2

Y

• The variance of Y1 equals

Var (Y1) = Var (Y ) = σ2
Y

• The variance of Ỹ equals

Var
(

Ỹ
)

= 1.25
1
n
σ2

Y

For any n ≥ 2 Y is more efficient than Y1 and Ỹ
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BLUE: Best Linear Unbiased Estimator

• Y is not only more efficient than Y1 and Ỹ , but it is more efficient than
any unbiased estimator of µY that is a weighted average of Y1, ....,Yn

Y is the Best Linear Unbiased Estimator (BLUE) it is the most efficient
estimator of µY among all unbiased estimators that are
weighted averages of Y1, ....,Yn

• Let µ̂Y be an unbiased estimator of µY

µ̂Y =
1
n

n∑
i=1

aiYi with a1, ...an nonrandom constants

then Y is more efficient than µ̂Y , that is

Var
(

Y
)
< Var (µ̂Y )



Hypothesis tests concerning the
population mean
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Hypothesis tests concerning the population mean

Consider the following questions:

• Is the mean monthly wage of college graduates equal to NOK 60 000?

• Is the mean level of education in Norway equal to 12 years?

• Is the mean probability of passing the econometrics exam equal to 1?

These questions involve the population mean taking on a specific value µY ,0

Answering these questions implies using data to compare a null hypothesis

H0 : E (Y ) = µY ,0

to an alternative hypothesis, which is often the following two sided hypothesis

H1 : E (Y ) 6= µY ,0
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Hypothesis tests concerning the population mean
p-value

Suppose we have a sample of n i.i.d observations and compute the sample
average Y

The sample average can differ from µY ,0 for two reasons

1 The population mean µY is not equal to µY ,0 (H0 not true)

2 Due to random sampling Y 6= µY = µY ,0 (H0 true)

To quantify the second reason we define the p-value

The p-value is the probability of drawing a sample with Y at least as far
from µY ,0 given that the null hypothesis is true.
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Hypothesis tests concerning the population mean
p-value

p − value = PrH0

[
|Y − µY ,0| > |Y

act − µY ,0|
]

To compute the p-value we need to know the sampling distribution of Y

• Sampling distribution of Y is complicated for small n

• With large n the central limit theorem states that

Y ∼ N
(
µY ,

σ2
Y

n

)
• This implies that if the null hypothesis is true:

Y − µY ,0√
σ2

Y
n

∼ N (0, 1)
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Computing the p-value when σY is known

p − value = PrH0

∣∣∣∣∣∣Y−µY ,0√
σ2

Y
n

∣∣∣∣∣∣ >
∣∣∣∣∣∣Y act−µY ,0√

σ2
Y
n

∣∣∣∣∣∣
 = 2Φ

−
∣∣∣∣∣∣Y act−µY ,0√

σ2
Y
n

∣∣∣∣∣∣


• For large n, p-value = the probability that Z falls outside

∣∣∣∣∣∣Y act−µY ,0√
σ2

Y
n

∣∣∣∣∣∣
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Estimating the standard deviation of Y

• In practice σ2
Y is usually unknown and must be estimated

The sample variance s2
Y is the estimator of σ2

Y = E
[
(Yi − µY )2

]

s2
Y =

1
n − 1

n∑
i=1

(
Yi − Y

)2

• division by n − 1 because we “replace” µY by Y which uses up 1 degree
of freedom

• if Y1, ...,Yn are i.i.d. and E
(
Y 4) <∞, s2

Y
p−→ σ2

Y
(Law of Large Numbers)

The sample standard deviation sY =
√

s2
Y is the estimator of σY
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Computing the p-value using SE
(
Y
)
= σ̂Y

The standard error SE(Y ) is an estimator of σY

SE
(
Y
)
=

sY√
n

• Because s2
Y is a consistent estimator of σ2

Y , we can (for large n) replace√
σ2

Y
n by SE

(
Y
)

= sY√
n

• This implies that when σ2
Y is unknown and Y1, ...,Yn are i.i.d. the p-value

is computed as

p − value = 2Φ

−
∣∣∣∣∣∣Y

act − µY ,0

SE
(

Y
)
∣∣∣∣∣∣

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The t-statistic and its large-sample distribution

• The standardized sample average
(

Y
act − µY ,0

)
/SE

(
Y
)

plays a
central role in testing statistical hypothesis

• It has a special name, the t-statistic

t =

∣∣∣∣∣∣Y − µY ,0

SE
(

Y
)
∣∣∣∣∣∣

• t is approximately N (0, 1) distributed for large n

• The p-value can be computed as

p − value = 2Φ
(
−
∣∣∣tact

∣∣∣)
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The t-statistic and its large-sample distribution

95%
2.5% 2.5%

-1.96 0 1.96
t
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Type I and type II errors and the significance level

There are 2 types of mistakes when conduction a hypothesis test

Type I error refers to the mistake of rejecting H0 when it is true

Type II error refers to the mistake of not rejecting H0 when it is false

• In hypothesis testing we usually fix the probability of a type I error

The significance level α is the probability of rejecting H0 when it is true

• Most often used significance level is 5% (α = 0.05)

Since area in tails of N (0, 1) outside ±1.96 is 5%:

• We reject H0 if p-value is smaller than 0.05.
• We reject H0 if

∣∣tact
∣∣ > 1.96
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4 steps in testing a hypothesis about the population mean

H0 : E (Y ) = µY ,0 H1 : E (Y ) 6= µY ,0

Step 1: Compute the sample average Y

Step 2: Compute the standard error of Y

SE
(

Y
)

=
sY√

n

Step 3: Compute the t-statistic

tact =
Y − µY ,0

SE
(

Y
)

Step 4: Reject the null hypothesis at a 5% significance level if

• |tact | > 1.96
• or if p − value < 0.05
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Hypothesis tests concerning the population mean
Example: The mean wage of individuals with a master degree

Suppose we would like to test

H0 : E (W ) = 60000 H1 : E (W ) 6= 60000

using a sample of 250 individuals with a master degree

Step 1: W = 1
n

∑n
i=1 Wi = 61977.12

Step 2: SE
(

W
)

= sW√
n = 1334.19

Step 3: tact =
W−µW,0

SE(W)
= 61977.12−60000

1334.19 = 1.48

Step 4: Since we use a 5% significance level, we do not reject H0

because |tact | = 1.48 < 1.96

Note: We do never accept the null hypothesis!
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Hypothesis tests concerning the population mean
Example: The mean wage of individuals with a master degree

This is how to do the test in Stata:  Thursday January 12 12:17:46 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . ttest wage=60000

One-sample t test

Variable      Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

    wage      250    61977.12    1334.189    21095.37    59349.39    64604.85

    mean = mean( wage)                                             t =   1.4819
Ho: mean = 60000                                 degrees of freedom =      249

  Ha: mean < 60000             Ha: mean != 60000             Ha: mean > 60000
 Pr(T < t) = 0.9302         Pr(|T| > |t|) = 0.1396          Pr(T > t) = 0.0698
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Hypothesis test with a one-sides alternative

• Sometimes the alternative hypothesis is that the mean exceeds µY ,0

H0 : E (Y ) = µY ,0 H1 : E (Y ) > µY ,0

• In this case the p-value is the area under N (0, 1) to the right of the
t-statistic

p − value = PrH0

(
t > tact

)
= 1− Φ

(
tact
)

• With a significance level of 5% (α = 0.05) we reject H0 if tact > 1.64

• If the alternative hypothesis is H1 : E (Y ) < µY ,0

p − value = PrH0

(
t < tact

)
= 1− Φ

(
−tact

)
and we reject H0 if tact < −1.64 / p − value < 0.05
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Hypothesis test with a one-sides alternative
Example: The mean wage of individuals with a master degree

  Thursday January 12 12:17:46 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . ttest wage=60000

One-sample t test

Variable      Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

    wage      250    61977.12    1334.189    21095.37    59349.39    64604.85

    mean = mean( wage)                                             t =   1.4819
Ho: mean = 60000                                 degrees of freedom =      249

  Ha: mean < 60000             Ha: mean != 60000             Ha: mean > 60000
 Pr(T < t) = 0.9302         Pr(|T| > |t|) = 0.1396          Pr(T > t) = 0.0698
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Confidence intervals for the population mean

• Suppose we would do a two-sides hypothesis test for many different
values of µY ,0

• On the basis of this we can construct a set of values which are not
rejected at a 5% significance level

• If we were able to test all possible values of µY ,0 we could construct a
95% confidence interval

A 95% confidence interval is an interval that contains the true value of µY in
95% of all possible random samples.

• Instead of doing infinitely many hypothesis tests we can compute the
95% confidence interval as{

Y − 1.96 · SE
(

Y
)

, Y + 1.96 · SE
(

Y
)}

• Intuition: a value of µY ,0 smaller than Y − 1.96 · SE
(

Y
)

or bigger than

Y − 1.96 · SE
(

Y
)

will be rejected at α = 0.05
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Confidence intervals for the population mean
Example: The mean wage of individuals with a master degree

When the sample size n is large:

95% confidence interval for µY =
{

Y ± 1.96 · SE
(

Y
)}

90% confidence interval for µY =
{

Y ± 1.64 · SE
(

Y
)}

99% confidence interval for µY =
{

Y ± 2.58 · SE
(

Y
)}

Using the sample of 250 individuals with a master degree:

95% conf. int. for µW is
{61977.12± 1.96 · 1334.19} = {59349.39 , 64604.85}

90% conf. int. for µW is
{61977.12± 1.64 · 1334.19} = {59774.38 , 64179.86}

99% conf. int. for µW is
{61977.12± 2.58 · 1334.19} = {58513.94 , 65440.30}

.


