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Lecture outline

• Comparing means from different populations

• Ideal randomized experiment

• Using the t-statistic when n is small

• Relationship between two random variables

• California test score data

• scatter plot

• sample covariance

• sample correlation

• Linear regression with 1 regressor

• derivation of the OLS estimators

• measures of fit (R2 and SER)
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Comparing means from different populations

• Previous lecture we tested the hypothesis that the mean wage of
individuals with a master degree equals 60000

• Suppose we would like to test whether the mean wages of men and
women with a master degree differ by an amount d0

H0 : µwM − µwF = d0 H1 : µwM − µwF 6= d0

• To test the null hypothesis against the two-sided alternative we follow
the 4 steps with some adjustments

Step 1: Estimate (µwM − µwF ) by
(

W M −W F

)

• Because a weighted average of 2 independent normal random variables
is itself normally distributed we have (Cov

(
W M ,W F

)
= 0)

W M −W F ∼ N
(
µwM − µwF ,

σWM

nM
+
σWF

nF

)
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Comparing means from different populations

Step 2: Estimate σWM and σWF to obtain SE
(

W M −W F

)

SE
(

W M −W F

)
=

√
s2

WM

nM
+

s2
WF

nF

Step 3: compute the t-statistic

tact =

(
W M −W F

)
− d0

SE
(

W M −W F

)
Step 4: Reject H0 at a 5% significance level if

• |tact | > 1.96
• or if p − value < 0.05
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Comparing means from different populations

Suppose we have random samples of 500 men and 500 women with a
master degree

and we would like to test that the mean wages are equal:

H0 : µwM − µwF = 0 H1 : µwM − µwF 6= 0

Step 1: W M −W F = 64159.45− 53163.41 = 10996.04

Step 2: SE
(

W M −W F

)
= 1240.709

Step 3: tact =
(W M−W F )−0

SE(W M−W F )
= 10996.04

1240.709 = 8.86

Step 4: Since we use a 5% significance level, we reject H0 because
|tact | = 8.86 > 1.96



6

Comparing means from different populations
Difference in mean wages between men and women with a master degree

This is how to do the test in Stata:

  Thursday January 12 15:47:46 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . ttest wage, by(female)

Two-sample t test with equal variances

   Group      Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

       0      500    64159.45    847.7946    18957.26    62493.76    65825.13
       1      500    53163.41    905.8709    20255.89    51383.62     54943.2

combined    1,000    58661.43    643.9819     20364.5    57397.72    59925.14

    diff             10996.04    1240.709                 8561.34    13430.73

    diff = mean( 0) - mean( 1)                                      t =   8.8627
Ho: diff = 0                                     degrees of freedom =      998

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0
 Pr(T < t) = 1.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 0.0000
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Confidence interval for the difference in population means

• The method for constructing a confidence interval for 1 population mean
can be easily extended to the difference between 2 population means

• A hypothesized value of the difference in means d0 will be rejected if
|t | > 1.96

• and will be in the confidence set if |t | ≤ 1.96

• Thus the 95% confidence interval for (µWM − µWF ) are the values of d0

within ±1.96 standard errors of
(

W M −W F

)

95% confidence interval for µWM − µWF(
W M −W F

)
± 1.96 · SE

(
W M −W F

)
10996.04± 1.96 · 1240.709

{8561.34 , 13430.73}
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Comparing means from different populations
Example: An ideal randomized experiment

In this course we will focus on estimating causal effects:

the expected effect on Y of a change in X

A causal effect can be measured by an ideal randomized experiment:

• Subjects are selected by simple random sampling from the population of
interest

• Subjects are randomly assigned to a treatment or control group

• Treatment group receives treatment of interest (X = 1), control group
receives no treatment (X = 0).

• The mean causal effect is the difference between the mean outcome
when treated and the mean outcome when untreated

Mean causal effect = µX=1 − µX=0
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Comparing means from different populations
Example: An ideal randomized experiment

If we want to know whether the treatment is effective we can test:

H0 : µX=1 − µX=0 = 0 H1 : µX=1 − µX=0 6= 0

Step 1: Estimate (µX=1 − µX=0) by computing the difference in mean
outcomes of individuals in the treatment and control group:

Y Treated − Y Control

Step 2: Compute SE
(

Y Treated − Y Control

)
Step 3: Compute tact =

(Y Treated−Y Control)−0

SE(Y Treated−Y Control)

Step 4: Reject the null hypothesis of no treatment effect at a 5%
significance level if |tact | > 1.96
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Using the t-statistic when n is small

• The test on the previous slide is based on the sample size n being large

• Especially in actual randomized experiments n can be small

• If the hypothesis test concerns 1 population mean, the t-statistic

tact =
Y − µY ,0

SE
(

Y
)

• is not normally distributed for small n!
• has the student-t distribution in the special case that the population

distribution of Y is normal.

• If the hypothesis test concerns the difference in 2 population means, the
t-statistic

tact =

(
Y M − Y F

)
− d0

SE
(

Y M − Y F

)
• is not normally distributed for small n!
• does not have a student-t distribution even if the population

distributions are normal!
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Relationship between two random variables

• In general, questions in econometrics involve a relationship between 2
(or more) random variables:

• What is the relation between education and earnings?

• What is the relation between interest rates and economic growth?

• What is the relation between the beer tax and traffic fatalities?

• What is the relation between class size and student test scores?

• In this and coming lectures we will focus on the last of these questions.
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California test score data

• We will use a data set that contains data on test performance, school
characteristics and student demographic backgrounds.

• The data are from 420 districts in California.

• Data were obtained from the California Department of Education

• Main variables of interest:

• TestScore is the district average of the reading and math scores of
5th grade students

• ClassSize is defined as the number of students divided by the
number of full-time equivalent teachers in the district.
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The relation between class size and test scores

• To examine the relation between class size and test scores we can
make a scatter plot

A scatter plot is a plot of n observations on Xi and Yi in which each
observation is represented by the point (Xi ,Yi)
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Sample covariance

• The covariance is a measure of the extend to which two random
variables X and Y move together,

Cov(X ,Y ) = σXY = E [(X − µX ) · (Y − µY )]

• The population covariance is unobserved but can be estimated by the
sample covariance sXY

sXY =
1

n − 1

n∑
i=1

(
Xi − X

)(
Yi − Y

)
• If (Xi ,Yi)are i.i.d and have finite fourth moments E

(
X 4) <∞ &

E
(
Y 4) <∞

sXY
p−→ σXY

• The sample covariance between class size and test scores sCT =-8.16
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Sample correlation

• What does it mean for the sample covariance between test scores and
class size to equal -8.16?

• The units of the covariance are the units of test scores multiplies by the
units of class size

• The sample correlation rXY measures the strength of the linear
association between X and Y that is unit-free and lies between -1 and 1

rXY =
sXY

sX sY

• The sample correlation between class size and test scores rCT =-0.23
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Sample covariance and correlation in Stata

To compute the sample covariance in Stata:

  Friday January 13 10:48:09 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . corr test_score class_size, covariance
(obs=420)

              test_s~e class_~e

  test_score    363.03
  class_size  -8.15932  3.57895

To compute the sample correlation in Stata:

  Friday January 13 10:48:38 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . corr test_score class_size
(obs=420)

              test_s~e class_~e

  test_score    1.0000
  class_size   -0.2264   1.0000

.



Linear regression with one regressor
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Linear regression with one regressor

Suppose we would like to answer the following question:

What is the effect on district test scores if we would increase district average
class size by 1 student?

We would like to know

βClassSize =
4Test score
4Class size

βClassSize is the definition of the slope of a straight line relating test scores and
class size

Test score = β0 + βClassSize × Class size

where β0 is the intercept of the straight line.
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Linear regression with one regressor

• The average test score in district i does not only depend on the average
class size

• It also depends on factors such as

• Quality of the teachers

• Student background

• quality of text books

• .....

• The equation describing the linear relation between Test score and
Class size is better written as

Test scorei = β0 + βClassSize × Class sizei + ui

where ui lumps together all other district characteristics that affect
average test scores.



20

Terminology for the Linear Regression Model with One Regressor

The linear regression model with one regressor is denoted by

Yi = β0 + β1Xi + ui

where

• Yi is the dependent variable

• Xi is the independent variable or regressor

• β0 + β1Xi is the population regression line

• β0 is the intercept of the population regression line (expected value of Y
when X = 0)

• β1 is the slope of the population regression line

• ui is the error term (all other factors determining Yi )
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Linear regression with one regressor
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Linear regression with one regressor

• In general we don’t know β0 and β1 and we have to estimate them using
a random sample of data.

• How to find the line that fits the data best?
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The Ordinary Least Squares Estimator (OLS)

The OLS estimator chooses the regression coefficients so that the estimated
regression line is as close as possible to the observed data,
where closeness is measured by the sum of the squared
mistakes made in predicting Y given X

• Let b0 and b1 be estimators of β0 and β1

• The predicted value of Yi given Xi using these estimators is b0 + b1Xi

• The prediction mistake is

Yi − (b0 + b1Xi) = Yi − b0 − b1Xi

• The estimators of the slope and intercept that minimize

n∑
i=1

(Yi − b0 − b1Xi)
2

are called the ordinary least squares (OLS) estimators of β0 and β1
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Y is the ordinary least squares estimator of µY

• Suppose there is no X only Y

Yi = µY + ui

• Let m be an estimator of µY

• The least squares estimator minimizes

n∑
i=1

(Yi −m)2

• Taking the derivative w.r.t m and setting it to zero gives

∂
∂m

∑n
i=1 (Yi −m)2 = −2

∑n
i=1 (Yi −m) = 0

−2
∑n

i=1 Yi + 2 · n ·m = 0

1
n

∑n
i=1 Yi −m = 0

• Solving for m gives

m =
1
n

n∑
i=1

Yi = Y
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The Simple Linear Regression Model

Yi = β0 + β1Xi + ui

• OLS minimizes sum of squared prediction mistakes:

n∑
i=1

û2
i =

n∑
i=1

(
Yi − β̂0 − β̂1Xi

)2

• Step 1:
∂

∂β̂0

n∑
i=1

(
Yi − β̂0 − β̂1Xi

)2
= 0

• Step 2:
∂

∂β̂1

n∑
i=1

(
Yi − β̂0 − β̂1Xi

)2
= 0



26

Step 1: OLS estimator of β0

∂

∂β̂0

∑n
i=1 u2

i = −2
∑n

i=1

(
Yi − β̂0 − β̂1Xi

)
= 0

= 1
n

(∑n
i=1 Yi −

∑n
i=1 β̂0 −

∑n
i=1 β̂1Xi

)
= 0

= 1
n

∑n
i=1 Yi − 1

n nβ̂0 − β̂1
1
n

∑n
i=1 Xi = 0

= Yi − β̂0 − β̂1Xi = 0

• This gives

β̂0 = Y − β̂1X
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Step 2: OLS estimator of β1

∂

∂β̂1

∑n
i=1 u2

i = −2 ·
∑n

i=1−Xi

(
Yi − β̂0 − β̂1Xi

)
= 0

Devide by − 2 and substitute for β̂0 :

=
∑n

i=1 Xi

(
Yi −

(
Y − β̂1X

)
− β̂1Xi

)
= 0

rewrite∑n
i=1 Xi

((
Yi − Y

)
−
(
β̂1Xi − β̂1X

))
rewrite

=
∑n

i=1 Xi

(
Yi − Y

)
− β̂1

∑n
i=1 Xi

(
Xi − X

)
= 0

Algebra trick

=
∑n

i=1

(
Xi − X

)(
Yi − Y

)
− β̂1

∑n
i=1

(
Xi − X

)(
Xi − X

)
= 0
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Step 2: OLS estimator of β1

Algebra trick:

∑n
i=1

(
Xi − X

)(
Yi − Y

)
=
∑n

i=1 XiYi −
∑n

i=1 XiY −
∑n

i=1 XYi +
∑n

i=1 XY

=
∑n

i=1 XiYi −
∑n

i=1 XiY − nX
( 1

n

∑n
i=1 Yi

)
+ nXY

=
∑n

i=1 XiYi −
∑n

i=1 XiY−nXY + nXY

=
∑n

i=1 XiYi −
∑n

i=1 XiY

=
∑n

i=1 Xi

(
Yi − Y

)
By a similar reasoning:

∑n
i=1 Xi

(
Xi − X

)
=
∑n

i=1

(
Xi − X

)(
Xi − X

)
.
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Step 2: OLS estimator of β1

∂

∂β̂1

∑n
i=1 u2

i =
∑n

i=1

(
Xi − X

)(
Yi − Y

)
− β̂1

∑n
i=1

(
Xi − X

)(
Xi − X

)
= 0

Solving for β̂1 gives the OLS estimator:

β̂1 =
∑n

i=1(Xi−X)(Yi−Y)∑n
i=1(Xi−X)(Xi−X)

=
1

n−1
∑n

i=1(Xi−X)(Yi−Y)
1

n−1
∑n

i=1(Xi−X)(Xi−X)
=

sxy

s2
x

The OLS predicted values Ŷi and residuals ûi are:

Ŷi = β̂0 + β̂1Xi

ûi = Yi − Ŷi
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The Simple Linear Regression Model
Example: Class size and test scores

TestScore_hat=698.9 - 2.28 * ClassSize
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The Simple Linear Regression Model
Example: Class size and test scores

TestScorei = β0 + β1ClassSizei + ui

.

  Friday January 13 14:48:31 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . regress test_score class_size, robust

Linear regression                               Number of obs     =        420
                                                F(1, 418)         =      19.26
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0512
                                                Root MSE          =     18.581

                            Robust
  test_score       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

  class_size   -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671
       _cons     698.933   10.36436    67.44   0.000     678.5602    719.3057

• β̂1 = −2.27 A reduction in class size by 1 student is associated with an
increase in test scores by 2.27 points

• β̂0 = 698.93 The expected test score when class size is zero equals
698.93 (what does it mean for class size to be zero)?
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Y is the ordinary least squares estimator of µY
Example: test scores

The sample mean of district average test scores TestScore = 654.16

  Friday January 13 15:00:27 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . mean test_score

Mean estimation                   Number of obs   =        420

                    Mean   Std. Err.     [95% Conf. Interval]

  test_score    654.1565   .9297082      652.3291     655.984

As shown on slide 24 we can also obtain the sample mean by OLS

  Friday January 13 15:00:50 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . regress test_score

      Source        SS           df       MS      Number of obs   =        420
   F(0, 419)       =      0.00

       Model            0         0           .   Prob > F        =          .
    Residual   152109.594       419  363.030056   R-squared       =     0.0000

   Adj R-squared   =     0.0000
       Total   152109.594       419  363.030056   Root MSE        =    19.053

  test_score       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       _cons    654.1565   .9297082   703.61   0.000     652.3291     655.984

.
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Measures of fit

How well does the estimated regression line describe the data?

• Does the regressor X account for much or for little variation in Y ?

• Are the observations in the scatter plot clustered closely around the
regression line?

Two measures of how well the OLS line fits the data.

The R2 measures the fraction of the variation in Yi

explained/predicted by Xi

The standard error of the regression SER measures how far Yi typically is
from its predicted value



34

The R2

R2 is the fraction of the sample variance of Yi explained/predicted by Xi

We can write
Yi = Ŷi + ûi

which implies that the R2 is the ratio of the sample variance of Ŷi and the
sample variance of Yi

R2 =
Explained sum of squares

Total sum of squares
=

ESS
TSS

=

∑n
i=1

(
Ŷi − Y

)2

∑n
i=1

(
Yi − Y

)2

The R2 ranges from 0 to 1

• If R2 = 0, Xi explains no none of the variation in Yi

• If R2 = 1, Xi explains all of the variation in Yi (Yi = Ŷi )

• in practice 0 < R2 < 1
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The R2

The total sum of squares TSS can be divided in the explained sum of
squares ESS and the residual sum of squares SSR:

TSS = ESS + SSR

∑n
i=1

(
Yi − Y

)2
=

∑n
i=1

(
Ŷi − Y

)2
+
∑n

i=1

(
Yi − Ŷi

)2

∑n
i=1

(
Yi − Y

)2
=

∑n
i=1

(
Ŷi − Y

)2
+
∑n

i=1 û2
i

This implies that the R2 can also be written as

R2 =
ESS
TSS

=
TSS − SSR

TSS
= 1− SSR

TSS
=

∑n
i=1 û2

i∑n
i=1

(
Yi − Y

)2
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The R2

Example: Class size and test scores  Friday January 13 14:48:31 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . regress test_score class_size, robust

Linear regression                               Number of obs     =        420
                                                F(1, 418)         =      19.26
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0512
                                                Root MSE          =     18.581

                            Robust
  test_score       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

  class_size   -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671
       _cons     698.933   10.36436    67.44   0.000     678.5602    719.3057

R2 = 0.0512

Note: the R2 is uninformative about whether an increase in class size causes
a reduction in test scores!
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The standard error of the regression

• Another measures of fit is the SER.

The standard error of the regression (SER) is an estimator of the standard
deviation of the regression error ui

SER = sû =
√

s2
û =

√√√√ 1
n − 2

n∑
i=1

û2
i

It measures the spread of the observations around the regression line in the
units of the dependent variable

• The divisor n-2 is used because 2 degrees of freedom were lost in
estimating the two regression coefficients β0 and β1.
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The standard error of the regression
Example: Class size and test scores  Friday January 13 14:48:31 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . regress test_score class_size, robust

Linear regression                               Number of obs     =        420
                                                F(1, 418)         =      19.26
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0512
                                                Root MSE          =     18.581

                            Robust
  test_score       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

  class_size   -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671
       _cons     698.933   10.36436    67.44   0.000     678.5602    719.3057

In Stata the SER is denoted as Root MSE.

SER = 18.6


