ECON4150-Introductory Econometrics

Lecture 3: Review of Statistics \& OLS

Monique de Haan

(moniqued@econ.uio.no)

Stock and Watson Chapter 3-4

Lecture outline

- Comparing means from different populations
- Ideal randomized experiment
- Using the t-statistic when n is small
- Relationship between two random variables
- California test score data
- scatter plot
- sample covariance
- sample correlation
- Linear regression with 1 regressor
- derivation of the OLS estimators
- measures of fit (R^{2} and $S E R$)

Comparing means from different populations

- Previous lecture we tested the hypothesis that the mean wage of individuals with a master degree equals 60000
- Suppose we would like to test whether the mean wages of men and women with a master degree differ by an amount d_{0}

$$
H_{0}: \mu_{w^{M}}-\mu_{w^{F}}=d_{0} \quad H_{1}: \mu_{w^{M}}-\mu_{w^{F}} \neq d_{0}
$$

- To test the null hypothesis against the two-sided alternative we follow the 4 steps with some adjustments

$$
\text { Step 1: Estimate }\left(\mu_{w^{M}}-\mu_{w^{F}}\right) \text { by }\left(\bar{W}_{M}-\bar{W}_{F}\right)
$$

- Because a weighted average of 2 independent normal random variables is itself normally distributed we have $\left(\operatorname{Cov}\left(\bar{W}_{M}, \bar{W}_{F}\right)=0\right)$

$$
\bar{W}_{M}-\bar{W}_{F} \sim N\left(\mu_{w^{M}}-\mu_{w^{F}}, \frac{\sigma_{W_{M}}}{n_{M}}+\frac{\sigma_{W_{F}}}{n_{F}}\right)
$$

Comparing means from different populations

Step 2: Estimate $\sigma_{W_{M}}$ and $\sigma_{W_{F}}$ to obtain $S E\left(\bar{W}_{M}-\bar{W}_{F}\right)$

$$
S E\left(\bar{W}_{M}-\bar{W}_{F}\right)=\sqrt{\frac{s_{W_{M}}^{2}}{n_{M}}+\frac{s_{W_{F}}^{2}}{n_{F}}}
$$

Step 3: compute the t-statistic

$$
t^{a c t}=\frac{\left(\bar{W}_{M}-\bar{W}_{F}\right)-d_{0}}{S E\left(\bar{W}_{M}-\bar{W}_{F}\right)}
$$

Step 4: Reject H_{0} at a 5\% significance level if

- $\left|t^{\text {act }}\right|>1.96$
- or if p - value <0.05

Comparing means from different populations

Suppose we have random samples of 500 men and 500 women with a master degree
and we would like to test that the mean wages are equal:

$$
H_{0}: \mu_{w^{M}}-\mu_{w^{F}}=0 \quad H_{1}: \mu_{w^{M}}-\mu_{w^{F}} \neq 0
$$

Step 1: $\bar{W}_{M}-\bar{W}_{F}=64159.45-53163.41=10996.04$
Step 2: $S E\left(\bar{W}_{M}-\bar{W}_{F}\right)=1240.709$
Step 3: $t^{\text {act }}=\frac{\left(\bar{W}_{M}-\bar{W}_{F}\right)-0}{S E\left(\bar{W}_{M}-\bar{W}_{F}\right)}=\frac{10996.04}{1240.709}=8.86$
Step 4: Since we use a 5% significance level, we reject H_{0} because $\left|t^{\text {act }}\right|=8.86>1.96$

Comparing means from different populations

Difference in mean wages between men and women with a master degree

This is how to do the test in Stata:
. ttest wage, by(female)
Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf. I	rval]
0	500	64159.45	847.7946	18957.26	62493.76	65825.13
1	500	53163.41	905.8709	20255.89	51383.62	54943.2
combined	1,000	58661.43	643.9819	20364.5	57397.72	59925.14
diff		10996.04	1240.709		8561.34	13430.73
$\begin{aligned} \text { diff } & =\text { mean }(0)-\operatorname{mean}(\mathbf{1}) \\ \text { Ho: diff } & =0\end{aligned}$			degrees of freedom			8.8627
			998			

```
    Ha: diff != 0 Ha: diff > 0
    Pr(|T| > |t|)= 0.0000 Pr(T > t) = 0.0000
```


Confidence interval for the difference in population means

- The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means
- A hypothesized value of the difference in means d_{0} will be rejected if $|t|>1.96$
- and will be in the confidence set if $|t| \leq 1.96$
- Thus the 95% confidence interval for $\left(\mu_{W_{M}}-\mu_{W_{F}}\right)$ are the values of d_{0} within ± 1.96 standard errors of $\left(\bar{W}_{M}-\bar{W}_{F}\right)$

95\% confidence interval for $\mu w_{M}-\mu w_{F}$

$$
\begin{gathered}
\left(\bar{W}_{M}-\bar{W}_{F}\right) \pm 1.96 \cdot S E\left(\bar{W}_{M}-\bar{W}_{F}\right) \\
10996.04 \pm 1.96 \cdot 1240.709 \\
\{8561.34,13430.73\}
\end{gathered}
$$

Comparing means from different populations
 Example: An ideal randomized experiment

In this course we will focus on estimating causal effects:
the expected effect on Y of a change in X

A causal effect can be measured by an ideal randomized experiment:

- Subjects are selected by simple random sampling from the population of interest
- Subjects are randomly assigned to a treatment or control group
- Treatment group receives treatment of interest ($X=1$), control group receives no treatment ($X=0$).
- The mean causal effect is the difference between the mean outcome when treated and the mean outcome when untreated

$$
\text { Mean causal effect }=\mu_{X=1}-\mu_{X=0}
$$

Comparing means from different populations

Example: An ideal randomized experiment

If we want to know whether the treatment is effective we can test:

$$
H_{0}: \mu_{X=1}-\mu_{X=0}=0 \quad H_{1}: \mu_{X=1}-\mu_{X=0} \neq 0
$$

Step 1: Estimate ($\mu_{X=1}-\mu_{X=0}$) by computing the difference in mean outcomes of individuals in the treatment and control group:

$$
\bar{Y}_{\text {Treated }}-\bar{Y}_{\text {Control }}
$$

Step 2: Compute SE $\left(\bar{Y}_{\text {Treated }}-\bar{Y}_{\text {Control }}\right)$
Step 3: Compute $t^{\text {act }}=\frac{\left(\bar{Y}_{\text {Treated }}-\bar{Y}_{\text {Control }}\right)-0}{S E\left(\bar{Y}_{\text {Treated }}-\bar{Y}_{\text {Control }}\right)}$
Step 4: Reject the null hypothesis of no treatment effect at a 5\% significance level if $\left|t^{a c t}\right|>1.96$

Using the t-statistic when n is small

- The test on the previous slide is based on the sample size n being large
- Especially in actual randomized experiments n can be small
- If the hypothesis test concerns 1 population mean, the t-statistic

$$
t^{a c t}=\frac{\bar{Y}-\mu_{Y, 0}}{S E(\bar{Y})}
$$

- is not normally distributed for small n !
- has the student-t distribution in the special case that the population distribution of Y is normal.
- If the hypothesis test concerns the difference in 2 population means, the t-statistic

$$
t^{a c t}=\frac{\left(\bar{Y}_{M}-\bar{Y}_{F}\right)-d_{0}}{S E\left(\bar{Y}_{M}-\bar{Y}_{F}\right)}
$$

- is not normally distributed for small n !
- does not have a student-t distribution even if the population distributions are normal!

Relationship between two random variables

- In general, questions in econometrics involve a relationship between 2 (or more) random variables:
- What is the relation between education and earnings?
- What is the relation between interest rates and economic growth?
- What is the relation between the beer tax and traffic fatalities?
- What is the relation between class size and student test scores?
- In this and coming lectures we will focus on the last of these questions.

California test score data

- We will use a data set that contains data on test performance, school characteristics and student demographic backgrounds.
- The data are from 420 districts in California.
- Data were obtained from the California Department of Education
- Main variables of interest:
- TestScore is the district average of the reading and math scores of 5 th grade students
- ClassSize is defined as the number of students divided by the number of full-time equivalent teachers in the district.

The relation between class size and test scores

- To examine the relation between class size and test scores we can make a scatter plot

A scatter plot is a plot of n observations on X_{i} and Y_{i} in which each observation is represented by the point $\left(X_{i}, Y_{i}\right)$

Sample covariance

- The covariance is a measure of the extend to which two random variables X and Y move together,

$$
\operatorname{Cov}(X, Y)=\sigma_{X Y}=E\left[\left(X-\mu_{X}\right) \cdot\left(Y-\mu_{Y}\right)\right]
$$

- The population covariance is unobserved but can be estimated by the sample covariance $s_{X Y}$

$$
s_{X Y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)
$$

- If $\left(X_{i}, Y_{i}\right)$ are i.i.d and have finite fourth moments $E\left(X^{4}\right)<\infty$ \& $E\left(Y^{4}\right)<\infty$

$$
s_{X Y} \xrightarrow{p} \sigma_{X Y}
$$

- The sample covariance between class size and test scores $s_{C T}=-8.16$

Sample correlation

- What does it mean for the sample covariance between test scores and class size to equal -8.16 ?
- The units of the covariance are the units of test scores multiplies by the units of class size
- The sample correlation $r_{X Y}$ measures the strength of the linear association between X and Y that is unit-free and lies between -1 and 1

$$
r_{X Y}=\frac{s_{X Y}}{s_{X} s_{Y}}
$$

- The sample correlation between class size and test scores $r_{C T}=-0.23$

Sample covariance and correlation in Stata

To compute the sample covariance in Stata:
. corr test_score class_size, covariance
(obs=420)

	test_s~e class_~e	
test_score	$\mathbf{3 6 3 . 0 3}$	
class_size	$\mathbf{- 8 . 1 5 9 3 2}$	$\mathbf{3 . 5 7 8 9 5}$

To compute the sample correlation in Stata:
. corr test_score class_size
(obs=420)

	test_s~e	class_~e
test_score	$\mathbf{1 . 0 0 0 0}$	
class_size	$\mathbf{- 0 . 2 2 6 4}$	$\mathbf{1 . 0 0 0 0}$

Linear regression with one regressor

Linear regression with one regressor

Suppose we would like to answer the following question:

What is the effect on district test scores if we would increase district average class size by 1 student?

We would like to know

$$
\beta_{\text {ClassSize }}=\frac{\triangle \text { Test score }}{\triangle \text { Class size }}
$$

$\beta_{\text {ClassSize }}$ is the definition of the slope of a straight line relating test scores and class size

$$
\text { Test score }=\beta_{0}+\beta_{\text {ClassSize }} \times \text { Class size }
$$

where β_{0} is the intercept of the straight line.

Linear regression with one regressor

- The average test score in district i does not only depend on the average class size
- It also depends on factors such as
- Quality of the teachers
- Student background
- quality of text books
-
- The equation describing the linear relation between Test score and Class size is better written as

$$
\text { Test score }_{i}=\beta_{0}+\beta_{\text {ClassSize } \times \text { Class size }_{i}+u_{i},}
$$

where u_{i} lumps together all other district characteristics that affect average test scores.

Terminology for the Linear Regression Model with One Regressor

The linear regression model with one regressor is denoted by

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

where

- Y_{i} is the dependent variable
- X_{i} is the independent variable or regressor
- $\beta_{0}+\beta_{1} X_{i}$ is the population regression line
- β_{0} is the intercept of the population regression line (expected value of Y when $X=0$)
- β_{1} is the slope of the population regression line
- u_{i} is the error term (all other factors determining Y_{i})

Linear regression with one regressor

Linear regression with one regressor

- In general we don't know β_{0} and β_{1} and we have to estimate them using a random sample of data.
- How to find the line that fits the data best?

The Ordinary Least Squares Estimator (OLS)

The OLS estimator chooses the regression coefficients so that the estimated regression line is as close as possible to the observed data, where closeness is measured by the sum of the squared mistakes made in predicting Y given X

- Let b_{0} and b_{1} be estimators of β_{0} and β_{1}
- The predicted value of Y_{i} given X_{i} using these estimators is $b_{0}+b_{1} X_{i}$
- The prediction mistake is

$$
Y_{i}-\left(b_{0}+b_{1} X_{i}\right)=Y_{i}-b_{0}-b_{1} X_{i}
$$

- The estimators of the slope and intercept that minimize

$$
\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

are called the ordinary least squares (OLS) estimators of β_{0} and β_{1}

\bar{Y} is the ordinary least squares estimator of μ_{Y}

- Suppose there is no X only Y

$$
Y_{i}=\mu_{Y}+u_{i}
$$

- Let m be an estimator of μ_{Y}
- The least squares estimator minimizes

$$
\sum_{i=1}^{n}\left(Y_{i}-m\right)^{2}
$$

- Taking the derivative w.r.t m and setting it to zero gives

$$
\begin{aligned}
\frac{\partial}{\partial m} \sum_{i=1}^{n}\left(Y_{i}-m\right)^{2}=-2 \sum_{i=1}^{n}\left(Y_{i}-m\right) & =0 \\
-2 \sum_{i=1}^{n} Y_{i}+2 \cdot n \cdot m & =0 \\
\frac{1}{n} \sum_{i=1}^{n} Y_{i}-m & =0
\end{aligned}
$$

- Solving for m gives

$$
m=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\bar{Y}
$$

The Simple Linear Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- OLS minimizes sum of squared prediction mistakes:

$$
\sum_{i=1}^{n} \widehat{u}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} X_{i}\right)^{2}
$$

- Step 1:

$$
\frac{\partial}{\partial \widehat{\beta}_{0}} \sum_{i=1}^{n}\left(Y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} X_{i}\right)^{2}=0
$$

- Step 2:

$$
\frac{\partial}{\partial \widehat{\beta}_{1}} \sum_{i=1}^{n}\left(Y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} X_{i}\right)^{2}=0
$$

Step 1: OLS estimator of β_{0}

$$
\begin{array}{rlrl}
\frac{\partial}{\partial \widehat{\beta}_{0}} \sum_{i=1}^{n} u_{i}^{2} & =-2 \sum_{i=1}^{n}\left(Y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} X_{i}\right) & =0 \\
& =\frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} \widehat{\beta}_{0}-\sum_{i=1}^{n} \widehat{\beta}_{1} X_{i}\right) & =0 \\
& =\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\frac{1}{n} n \widehat{\beta}_{0}-\widehat{\beta}_{1} \frac{1}{n} \sum_{i=1}^{n} X_{i} & & =0 \\
& =\overline{Y_{i}}-\widehat{\beta}_{0}-\widehat{\beta}_{1} \overline{X_{i}} & & =0
\end{array}
$$

- This gives

$$
\widehat{\beta_{0}}=\bar{Y}-\widehat{\beta}_{1} \bar{X}
$$

Step 2: OLS estimator of β_{1}

$$
\frac{\partial}{\partial \widehat{\beta}_{1}} \sum_{i=1}^{n} u_{i}^{2}=\quad-2 \cdot \sum_{i=1}^{n}-X_{i}\left(Y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} X_{i}\right) \quad=0
$$

Devide by -2 and substitute for $\widehat{\beta}_{0}$:

$$
=\quad \sum_{i=1}^{n} X_{i}\left(Y_{i}-\left(\bar{Y}-\widehat{\beta}_{1} \bar{X}\right)-\widehat{\beta}_{1} X_{i}\right) \quad=0
$$

rewrite

$$
\sum_{i=1}^{n} X_{i}\left(\left(Y_{i}-\bar{Y}\right)-\left(\widehat{\beta}_{1} X_{i}-\widehat{\beta}_{1} \bar{X}\right)\right)
$$

rewrite

$$
=\quad \sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}\right)-\widehat{\beta}_{1} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right) \quad=0
$$

Algebra trick

$$
=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)-\widehat{\beta}_{1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)=0
$$

Step 2: OLS estimator of β_{1}

Algebra trick:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) & =\sum_{i=1}^{n} X_{i} Y_{i}-\sum_{i=1}^{n} x_{i} \bar{Y}-\sum_{i=1}^{n} \bar{X} Y_{i}+\sum_{i=1}^{n} \overline{X Y} \\
& =\sum_{i=1}^{n} X_{i} Y_{i}-\sum_{i=1}^{n} x_{i} \bar{Y}-n \bar{X}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)+n \overline{X Y} \\
& =\sum_{i=1}^{n} X_{i} Y_{i}-\sum_{i=1}^{n} X_{i} \bar{Y}-n \overline{X Y}+\overline{n X Y} \\
& =\sum_{i=1}^{n} X_{i} Y_{i}-\sum_{i=1}^{n} X_{i} \bar{Y} \\
& =\sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}\right)
\end{aligned}
$$

By a similar reasoning:
$\sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)$.

Step 2: OLS estimator of β_{1}

$$
\frac{\partial}{\partial \bar{\beta}_{1}} \sum_{i=1}^{n} u_{i}^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)-\widehat{\beta}_{1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{x}\right)=0
$$

Solving for $\widehat{\beta}_{1}$ gives the OLS estimator:

$$
\widehat{\beta_{1}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-X\right)\left(X_{i}-X\right)}=\frac{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}=\frac{s_{x y}}{s_{x}^{2}}
$$

The OLS predicted values \widehat{Y}_{i} and residuals \widehat{u}_{i} are:

$$
\begin{gathered}
\widehat{Y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{i} \\
\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}
\end{gathered}
$$

The Simple Linear Regression Model

Example: Class size and test scores

The Simple Linear Regression Model

Example: Class size and test scores

TestScore $_{i}=\beta_{0}+\beta_{1}$ ClassSize $_{i}+u_{i}$

- $\widehat{\beta}_{1}=-2.27$ A reduction in class size by 1 student is associated with an increase in test scores by 2.27 points
- $\widehat{\beta}_{0}=698.93$ The expected test score when class size is zero equals 698.93 (what does it mean for class size to be zero)?

\bar{Y} is the ordinary least squares estimator of μ_{Y}

Example: test scores

The sample mean of district average test scores $\overline{\text { TestScore }}=654.16$
. mean test_score

Mean estimation	Number of obs $=$			
test_score	Mean	Std. Err.	[95\% Conf. Interval]	

As shown on slide 24 we can also obtain the sample mean by OLS

Measures of fit

How well does the estimated regression line describe the data?

- Does the regressor X account for much or for little variation in Y ?
- Are the observations in the scatter plot clustered closely around the regression line?

Two measures of how well the OLS line fits the data.

The R^{2} measures the fraction of the variation in Y_{i} explained/predicted by X_{i}

The standard error of the regression SER measures how far Y_{i} typically is from its predicted value
R^{2} is the fraction of the sample variance of Y_{i} explained/predicted by X_{i} We can write

$$
Y_{i}=\widehat{Y}_{i}+\widehat{u}_{i}
$$

which implies that the R^{2} is the ratio of the sample variance of \widehat{Y}_{i} and the sample variance of Y_{i}

$$
R^{2}=\frac{\text { Explained sum of squares }}{\text { Total sum of squares }}=\frac{E S S}{T S S}=\frac{\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}
$$

The R^{2} ranges from 0 to 1

- If $R^{2}=0, X_{i}$ explains no none of the variation in Y_{i}
- If $R^{2}=1, X_{i}$ explains all of the variation in $Y_{i}\left(Y_{i}=\widehat{Y}_{i}\right)$
- in practice $0<R^{2}<1$

The total sum of squares TSS can be divided in the explained sum of squares $E S S$ and the residual sum of squares $S S R$:

$$
\begin{array}{ccc}
\text { TSS } & = & E S S+S S R \\
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & = & \sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2} \\
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & = & \sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i=1}^{n} \widehat{u}_{i}^{2}
\end{array}
$$

This implies that the R^{2} can also be written as

$$
R^{2}=\frac{E S S}{T S S}=\frac{T S S-S S R}{T S S}=1-\frac{S S R}{T S S}=\frac{\sum_{i=1}^{n} \widehat{u}_{i}^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}
$$

. regress test_score class_size, robust

$R^{2}=0.0512$
Note: the R^{2} is uninformative about whether an increase in class size causes a reduction in test scores!

The standard error of the regression

- Another measures of fit is the SER.

The standard error of the regression (SER) is an estimator of the standard deviation of the regression error u_{i}

$$
S E R=s_{\widehat{u}}=\sqrt{s_{\widehat{u}}^{2}}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \widehat{u}_{i}^{2}}
$$

It measures the spread of the observations around the regression line in the units of the dependent variable

- The divisor $n-2$ is used because 2 degrees of freedom were lost in estimating the two regression coefficients β_{0} and β_{1}.

The standard error of the regression

Example: Class size and test scores

. regress test_score class_size, robust
Linear regression

In Stata the SER is denoted as Root MSE.
$S E R=18.6$

