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Lecture outline

• The OLS estimators

• The effect of class size on test scores

• The Least Squares Assumptions

• E (ui |Xi) = 0

• (Xi ,Yi) are i.i.d

• Large outliers are unlikely

• Properties of the OLS estimators

• unbiasedness

• consistency

• large sample distribution

• The compulsory term paper
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The OLS estimators

Question of interest: What is the effect of a change in Xi on Yi?

Yi = β0 + β1Xi + ui

Last week we derived the OLS estimators of β0 and β1:

β̂0 = Y − β̂1X

β̂1 =
1

n−1
∑n

i=1(Xi−X)(Yi−Y)
1

n−1
∑n

i=1(Xi−X)(Xi−X)
=

sxy

s2
x

,
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OLS estimates: The effect of class size on test scores

Question of interest: What is the effect of a change in class size on test
scores?

TestScorei = β0 + β1ClassSizei + ui

  Friday January 13 14:48:31 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . regress test_score class_size, robust

Linear regression                               Number of obs     =        420
                                                F(1, 418)         =      19.26
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0512
                                                Root MSE          =     18.581

                            Robust
  test_score       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

  class_size   -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671
       _cons     698.933   10.36436    67.44   0.000     678.5602    719.3057

̂TestScorei = 698.93− 2.28 · ClassSizei
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The Least Squares assumptions

Yi = β0 + β1Xi + ui

Under what assumptions does the method of ordinary least squares provide
appropriate estimators of β0 and β0?

Under what assumptions does the method of ordinary least squares provide
an appropriate estimator of the effect of class size on test scores?

The Least Squares assumptions:

Assumption 1: The conditional mean of ui given Xi is zero

E (ui |Xi) = 0

Assumption 2: (Yi ,Xi) for i = 1, ..., n are independently and
identically distributed (i.i.d)

Assumption 3: Large outliers are unlikely

0 < E
(

X 4
i

)
<∞ & 0 < E

(
Y 4

i

)
<∞
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The Least Squares assumptions: Assumption 1

E (ui |Xi) = 0

The first OLS assumption states that:

All other factors that affect the dependent variable Yi (contained in ui ) are
unrelated to Xi in the sense that, given a value of Xi , the mean of these other

factors equals zero.

In the class size example:

All the other factors affecting test scores should be unrelated to class size in
the sense that, given a value of class size, the mean of these other factors

equals zero.
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The Least Squares assumptions: Assumption 1

The first OLS assumption can also be written as:

E (Yi |Xi) = E (β0 + β1Xi + ui |Xi)

Expectation rules

= β0 + β1E (Xi |Xi) + E (ui |Xi)

ASS#1 : E (ui |Xi) = 0

= β0 + β1Xi
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The Least Squares assumptions: Assumption 1

E (Yi |Xi) = β0 + β1
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The Least Squares assumptions: Assumption 1

Example of a violation of assumption 1:

Suppose that

• districts which wealthy inhabitants have small classes and good
teachers

• these districts have a lot of money which they can use to hire more
and better teachers

• districts with poor inhabitants have large classes and bad teachers.
• These districts have little money and can hire only few and not very

good teachers

In this case class size is related to teacher quality.

Since teacher quality likely affects test scores it is contained in ui .

This implies a violation of assumption 1:

E (ui |ClassSizei = small) 6= E (ui |ClassSizei = large) 6= 0
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The Least Squares assumptions: Assumption 2

(Yi ,Xi) for i = 1, ..., n are i.i.d

• If the sample is drawn by simple random sampling assumption 2 will hold

Example: What is effect of mother’s education (Xi ) on child’s education (Yi )

Example of simple random sampling:

• randomly draw sample of mother’s with information on her education
and the education of one randomly selected child

• (Yi ,Xi) for i = 1, ..., n are i.i.d

Example of a violation of simple random sampling

• randomly draw sample of mothers with information on her education and
the education of all of her children.

• (Yi ,Xi) for i = 1, ..., n are NOT i.i.d
• Observations on children from the same mother are not independent!
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The Least Squares assumptions: Assumption 3

Large outliers are unlikely

0 < E
(

X 4
i

)
<∞ & 0 < E

(
Y 4

i

)
<∞

• Outliers are observations that have values far outside the usual range of
the data

• Large outliers can make OLS regression results misleading

• Another way to state assumption is that X and Y have finite kurtosis.

• Assumption is necessary to justify the large sample approximation to the
sampling distribution of the OLS estimators



12

The Least Squares assumptions: Assumption 3
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Use of the Least Squares assumptions

Yi = β0 + β1Xi + ui

Assumption 1: E (ui |Xi) = 0

Assumption 2: (Yi ,Xi) for i = 1, ..., n are i.i.d

Assumption 3: Large outliers are unlikely

If the 3 least squares assumptions hold the OLS estimators β̂0 and β̂1

• Are unbiased estimators of β0 and β1

• Are consistent estimators of β0 and β1

• Have a jointly normal sampling distribution
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Properties of the OLS estimator: unbiasedness

Yi = β0 + β1Xi + ui Y = β0 + β1Xi + u

E
[
β̂1

]
= E

[∑n
i=1(Xi−X)(Yi−Y)∑n
i=1(Xi−X)(Xi−X)

]
substitute for Yi ,Y

= E
[∑n

i=1(Xi−X)(β0+β1Xi+ui−(β0+β1X+u))∑n
i=1(Xi−X)(Xi−X)

]
rewrite (β0 drops out)

= E
[∑n

i=1(Xi−X)(β1(Xi−X)+(ui−u))∑n
i=1(Xi−X)(Xi−X)

]
rewrite & use expectation rules

= E
[
β1

∑n
i=1(Xi−X)(Xi−X)∑n

i=1(Xi−X)(Xi−X)

]
+ E

[ ∑n
i=1(Xi−X)(ui−u)∑n

i=1(Xi−X)(Xi−X)

]
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Properties of the OLS estimator: unbiasedness

.

E
[
β̂1

]
= E

[
β1

∑n
i=1(Xi−X)(Xi−X)∑n

i=1(Xi−X)(Xi−X)

]
+ E

[ ∑n
i=1(Xi−X)(ui−u)∑n

i=1(Xi−X)(Xi−X)

]
take β1 out of 1st expectation

Algebra trick

= β1 + E
[ ∑n

i=1(Xi−X)ui∑n
i=1(Xi−X)(Xi−X)

]
Law of iterated expectations

= β1 + E
[∑n

i=1(Xi−X)E [ui |Xi ]∑n
i=1(Xi−X)(Xi−X)

]

E
[
β̂1

]
= β1 if E [ui |Xi ] = 0
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Algebra trick

∑n
i=1

(
Xi − X

)
(ui − u) =

∑n
i=1 Xiui −

∑n
i=1 Xiu −

∑n
i=1 Xui +

∑n
i=1 Xu

=
∑n

i=1 Xiui − n ·
( 1

n

∑n
i=1 Xi

)
u −

∑n
i=1 Xui + nXu

=
∑n

i=1 Xiui − nXu +
∑n

i=1 Xui+nXu

=
∑n

i=1 Xiui −
∑n

i=1 Xui

=
∑n

i=1

(
Xi − X

)
ui
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Consistency

Consistency:β̂1
p−→ β1 or plim β̂1 = β1

Plim β̂1 = plim
(∑n

i=1(Xi−X)(Yi−Y)∑n
i=1(Xi−X)(Xi−X)

)

=
Plim 1

n−1
∑n

i=1(Xi−X)(Yi−Y)
Plim 1

n−1
∑n

i=1(Xi−X)(Xi−X)
= sXY

s2
X

law of large numbers
OLS assumptions 2 and 3

= Cov(Xi ,Yi )
Var(Xi )

substitute for Yi

= Cov(Xi ,β0+β1Xi+ui )
Var(Xi )

see Key Concept 2.3

= β1Var(Xi )+Cov(Xi ,ui )
Var(Xi )
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Consistency

Plim β̂1 = β1Var(Xi )+Cov(Xi ,ui )
Var(Xi )

= β1
Var(Xi )
Var(Xi )

+ Cov(Xi ,ui )
Var(Xi )

substitute covariance expression

= β1 +
E [(Xi−µx )(ui−µu)]

Var(Xi )

algebra trick

= β1 +
E [(Xi−µx )ui ]

Var(Xi )

Law of iterated expectations

= β1 +
E [(Xi−µx )E [ui |Xi ]]

Var(Xi )

so
Plim β̂1 = β1 if E [ui |Xi ] = 0



19

Unbiasedness vs Consistency

• Unbiasedness & consistency both rely on E [ui |Xi ] = 0

• Unbiasedness implies that E
[
β̂1

]
= β1 for a given sample size n

• Consistency implies that the sampling distribution becomes more and
more tightly distributed around β1 if the sample size n becomes larger
and larger.
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Consistency: A simulation example

• Lets create a data set with 100 observations

• Xi ∼ N(0, 1)

• ui ∼ N(0, 1)

• We define Y to depend on X as: Yi = 1 + 2Xi + ui

set obs 1000
gen x=invnorm(uniform())
gen y=1+2*x+invnorm(uniform())

  Thursday January 19 12:00:40 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . sum y x

    Variable        Obs        Mean    Std. Dev.       Min        Max

           y        100    .6123606    2.211365   -5.05828   5.462746
           x        100   -.1479108    .9928607  -2.633841    1.80305
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A simulation example

-5

0

5

Y

-3 -2 -1 0 1 2
X

  Thursday January 19 12:01:25 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . regress y x

      Source        SS       df       MS              Number of obs =      100
           F(  1,    98) =   385.45

       Model   385.987671     1  385.987671           Prob > F      =  0.0000
    Residual   98.1357149    98  1.00138485           R-squared     =  0.7973

           Adj R-squared =  0.7952
       Total   484.123386    99  4.89013521           Root MSE      =  1.0007

           y       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

           x    1.988753   .1012965    19.63   0.000     1.787733    2.189772
       _cons    .9065187   .1011847     8.96   0.000      .705721    1.107316
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A simulation example n=100

We can create 999 of these data sets with 100 observations and use OLS to
estimate

Yi = β0 + β1 + ui

  Monday February 16 16:57:38 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . program define ols, rclass
  1.  drop _all
  2.  set obs 100
  3.  gen x=invnorm(uniform())
  4.  gen y=1+2*x+invnorm(uniform())
  5.  regress y x 
  6. end

2 .  
3 . simulate _b, reps(999)  nodots : ols

      command:  ols

4 . sum

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x        999    1.997521    .1018595    1.67569   2.308795
     _b_cons        999    1.003246    .1019056   .6844429   1.285363
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A simulation example n=100

0

1

2

3

4

1.6 1.8 2 2.2 2.4
OLS estimates of  B1

OLS estimates of B1  in 999 samples with  n=100
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A simulation example n=1000  Tuesday February 17 13:03:15 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . program define ols, rclass
  1.  drop _all
  2.  set obs 1000
  3.  gen x=invnorm(uniform())
  4.  gen y=1+2*x+invnorm(uniform())
  5.  regress y x 
  6. end

2 .  
3 . simulate _b, reps(999)  nodots : ols

      command:  ols

4 . sum

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x        999    2.000035     .030417   1.908725   2.112585
     _b_cons        999    1.000791    .0311526   .8970624   1.088724
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A simulation example n=1000
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1.6 1.8 2 2.2 2.4
OLS estimates of  B1

OLS estimates of B1  in 999 samples with  n=1000
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A simulation example n=10000  Friday January 20 12:01:22 2017   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . program define ols, rclass
  1.  drop _all
  2.  set obs 10000
  3.  gen x=invnorm(uniform())
  4.  gen y=1+2*x+invnorm(uniform())
  5.  regress y x 
  6. end

2 .  
3 . simulate _b, reps(999) nodots: ols

      command:  ols

4 . sum

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x        999    1.999748    .0099715   1.969678   2.034566
     _b_cons        999    1.000391    .0100135   .9699681   1.033458
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A simulation example n=10000
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Consistency of the OLS estimator of β̂1

True model : Yi = 1 + 2Xi + ui , Estimated model : Yi = β0 + β1Xi + ui
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.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
OLS estimates of B1

n=100
n=1000
n=10000

with n=100; n=1000 and n=10000
OLS estimates of B1 in 999 samples
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Sampling distribution of β̂0 and β̂1

We discussed the sampling distribution of the sample average Y :

• sampling distribution is complicated for small n, but if Y1, ...,Yn are i.i.d.
we know that

E
(

Y
)
= µY

• By the Central Limit theorem the large sample distribution can be
approximated by the normal distribution:

Y ∼ N
(
µY ,

σ2
Y

n

)

If the 3 least squares assumptions hold we can make similar statements
about the OLS estimators β̂0 and β̂1
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Large-sample distribution of β̂0 and β̂1

• Technically the Central Limit theorem concerns the large sample
distribution of averages (like Y )

• Examining the formulas of the OLS estimators shows that these are
functions of sample averages:

β̂0 = Y − β̂1X

β̂1 =
1
n
∑n

i=1(Xi−X)(Yi−Y)
1
n
∑n

i=1(Xi−X)(Xi−X)

• It turns out that the Central Limit theorem also applies to these functions
of sample averages.
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Sampling distribution of β̂0 and β̂1

If the first least squares assumption holds:

• The OLS estimators are unbiased which implies that (for any sample
size n)

E
(
β̂0

)
= β0 and E

(
β̂1

)
= β1

In addition, if all 3 least squares assumptions hold

• The Central Limit theorem implies that β̂0 and β̂1 are approximately
jointly normally distributed in large samples:

β̂0 ∼ N
(
β0, σ

2
β̂0

)
β̂1 ∼ N

(
β1, σ

2
β̂1

)
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Large-sample distribution of β̂0 and β̂1

In large samples
β̂0 ∼ N

(
β0, σ

2
β̂0

)
β̂1 ∼ N

(
β1, σ

2
β̂1

)
where it can be shown that

σ2
β̂0

= 1
n

Var(Hi ui )

[E(H2
i )]

2 with Hi = 1−
[

µX
E(X2

i )

]
Xi

σ2
β̂1

= 1
n

Var [(Xi−µX )ui ]

[Var(Xi )]
2

Expression for σ2
β̂1

shows that the larger the variation in the regressor Xi the

smaller the variance of β̂1



33

Large-sample distribution of β̂0 and β̂1

• When Var(Xi ) is low, it is difficult to obtain an accurate estimate of the
effect of X on Y which implies that Var

(
β̂1

)
= σ2

β̂1
is high.

• If there is more variation in X, then there is more information in the data
that you can use to fit the regression line.
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Compulsory term paper

• Traffic fatalities are the leading cause of death for Americans between
the ages of 5 and 32.

• The government wants to decrease the number of traffic fatalities by
increasing seat belt usage.

• If many people wear seat belts the chance that people die in a car crash
is likely smaller.

• People who wear seat belts might however be more careful drivers.

• Regions with many seat belt users might have fewer traffic fatalities not
because of the seat belt usage but because the drivers are more careful.
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Compulsory term paper

• In the term paper you are going to investigate the following research
question.

What is the causal effect of seat belt usage on traffic fatalities?

• This research question can be addressed by using the data set
seatbelts.dta.

• Data consists of a panel of 50 U.S. States, plus the District of Columbia,
for the years 1983-1997.

• The data sets can be downloaded from the course website site.

• In analyzing this data you may consider the use of panel data methods
on top of a pure cross-section analysis.



36

Compulsory term paper

The term paper should consist of the following sections:

• Introduction
• Empirical approach
• Data
• Results
• Conclusion
• References
• Appendix with Stata code & output

The term paper should be at most 10 pages including tables and figures (but
excluding the stata code and output).

The quality (and not the quantity) of the content of the term paper will
determine your grade.
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Compulsory term paper

You are expected to work in a group of two students.

• You can form a group of two students yourself

• Register this group before 29 January 2017 00:00, by using link in email
you will receive today.

• If you are unable to form a group, please let me know before 29 January
2017.

• you will be randomly assigned to another student.

Important dates:

• 25 January 2017– Hand-out of term paper
• 22 March 2017 – Hand-in of term paper on Fronter
• 11 April 2017 – Notification of grade (pass/fail)
• 21 April 2017 – Hand-in of improved term paper for those who failed
• 4 May 2017– Everyone is informed about final grade for term paper


