ECON4150 - Introductory Econometrics

Lecture 5: OLS with One Regressor: Hypothesis Tests

Monique de Haan (moniqued@econ.uio.no)

Stock and Watson Chapter 5

- Testing Hypotheses about one of the regression coefficients
 - Repetition: Testing a hypothesis concerning a population mean
 - Testing a 2-sided hypothesis concerning β₁
 - Testing a 1-sided hypothesis concerning β_1
- Confidence interval for a regression coefficient
- Efficiency of the OLS estimator
 - Best Linear Unbiased Estimator (BLUE)
 - Gauss-Markov Theorem
 - Heteroskedasticity & homoskedasticity
- Regression when X_i is a binary variable
 - Interpretation of β_0 and β_1
 - Hypothesis tests concerning β_1

Repetition: Testing a hypothesis concerning a population mean

$$H_0: E(Y) = \mu_{Y,0}$$
 $H_1: E(Y) \neq \mu_{Y,0}$

- Step 1: Compute the sample average \overline{Y}
- Step 2: Compute the standard error of \overline{Y}

$$SE\left(\overline{Y}\right) = \frac{s_Y}{\sqrt{n}}$$

Step 3: Compute the t-statistic

$$t^{act} = rac{\overline{Y} - \mu_{Y,0}}{SE\left(\overline{Y}
ight)}$$

- Step 4: Reject the null hypothesis at a 5% significance level if
 - $|t^{act}| > 1.96$
 - or if *p* − *value* < 0.05

Repetition: Testing a hypothesis concerning a population mean Example: California test score data; mean test scores

Suppose we would like to test

$$H_0$$
: E (TestScore) = 650 H_1 : E (TestScore) \neq 650

using the sample of 420 California districts

Step 1:
$$\overline{TestScore} = 654.16$$

Step 2:
$$SE\left(\overline{TestScore}\right) = 0.93$$

Step 3:
$$t^{act} = \frac{TestScore - 650}{SE(TestScore)} = \frac{654.16 - 650}{0.93} = 4.47$$

Step 4: If we use a 5% significance level, we reject
$$H_0$$
 because $|t^{act}| = 4.47 > 1.96$

Repetition: Testing a hypothesis concerning a population mean Example: California test score data; mean test scores

. ttest test score=650

One-sample t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf. Inte	erval]
test_s~e	420	654.1565	.9297082	19.05335	652.3291	655.984
mean =	mean(test	_score)		degree	t =	4.4708

Testing a 2-sided hypothesis concerning β_1

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0, 1) distribution in large samples
- Central Limit Theorem also states that
 - $\widehat{\beta}_0$ & $\widehat{\beta}_1$ have an approximate normal distribution in large samples
 - and the standardized regression coefficients have approximate $N\left(0,1\right)$ distribution in large samples
- We can therefore use same general approach to test hypotheses about β_0 and β_1 .
- · We assume that the Least Squares assumptions hold!

$$H_0: \beta_1 = \beta_{1,0}$$
 $H_1: \beta_1 \neq \beta_{1,0}$

- Step 1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\widehat{\beta}_1$
- Step 2: Compute the standard error of $\widehat{\beta}_1$
- Step 3: Compute the t-statistic

$$t^{act} = \frac{\widehat{\beta}_1 - \beta_{1,0}}{SE\left(\widehat{\beta}_1\right)}$$

- Step 4: Reject the null hypothesis if
 - |t^{act}| > critical value
 - or if *p value* < *significance level*

The standard error of $\widehat{\beta}_1$ is an estimate of the standard deviation of the sampling distribution $\sigma_{\widehat{\beta}_1}$

Recall from previous lecture:

$$\sigma_{\widehat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)u_i]}{[Var(X_i)]^2}}$$

8

It can be shown that

$$SE\left(\widehat{\beta}_{1}\right) = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2} \widehat{u}_{i}^{2}}{\left[\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}\right]^{2}}}$$

$$TestScore_i = \beta_0 + \beta_1 ClassSize_i + u_i$$

9

. regress test_score class_size, robust

Robust test score Coef. Std. Err. P>|t| [95% Conf. Interval] class size -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671 698.933 10.36436 67.44 0.000 678.5602 _cons 719.3057

Suppose we would like to test the hypothesis that class size does not affect test scores ($\beta_1=0$)

Testing a 2-sided hypothesis concerning β_1 5% significance level

$$H_0: \beta_1 = 0$$
 $H_1: \beta_1 \neq 0$

Step 1: $\hat{\beta}_1 = -2.28$

Step 2: $SE(\widehat{\beta}_1) = 0.52$

Step 3: Compute the t-statistic

$$t^{act} = \frac{-2.28 - 0}{0.52} = -4.39$$

Step 4: We reject the null hypothesis at a 5% significance level because

- |-4.39| > 1.96
- p value = 0.000 < 0.05

Testing a 2-sided hypothesis concerning β_1 Critical value of the *t*-statistic

The critical value of t-statistic depends on significance level α

Testing a 2-sided hypothesis concerning β_1 1% and 10% significance levels

Step 1: $\hat{\beta}_1 = -2.28$

Step 2: $SE(\widehat{\beta}_1) = 0.52$

Step 3: Compute the t-statistic

$$t^{act} = \frac{-2.28 - 0}{0.52} = -4.39$$

Step 4: We reject the null hypothesis at a 10% significance level because

- |-4.39| > 1.64
- p value = 0.000 < 0.1

Step 4: We reject the null hypothesis at a 1% significance level because

- |-4.39| > 2.58
- p value = 0.000 < 0.01

Testing a 2-sided hypothesis concerning β_1 5% significance level

$$H_0: \beta_1 = -2$$
 $H_1: \beta_1 \neq -2$

Step 1: $\hat{\beta}_1 = -2.28$

Step 2: $SE(\widehat{\beta}_1) = 0.52$

Step 3: Compute the t-statistic

$$t^{act} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

Step 4: We don't reject the null hypothesis at a 5% significance level because

•
$$|-0.54| < 1.96$$

Testing a 2-sided hypothesis concerning β_1 5% significance level

. regress test score class size, robust

Linear regression

Number of obs	=	420
F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.5194892	-4.39	0.000	-3.300945	-1.258671
_cons	698.933	10.36436	67.44		678.5602	719.3057

$$H_0: \beta_1 = -2 \longrightarrow H_0: \beta_1 - (-2) = 0$$

. lincom class_size-(-2)

(1) class_size = -2

test_score	Coef.	Std. Err.	t	P> t	[95% Conf. I	nterval]
(1)	2798083	.5194892	-0.54	0.590	-1.300945	.7413286

.

Testing a 1-sided hypothesis concerning β_1 5% significance level

$$H_0: \beta_1 = -2$$
 $H_1: \beta_1 < -2$

Step 1: $\hat{\beta}_1 = -2.28$

Step 2: $SE(\widehat{\beta}_1) = 0.52$

Step 3: Compute the t-statistic

$$t^{act} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

Step 4: We don't reject the null hypothesis at a 5% significance level because

•
$$-0.54 > -1.64$$

Confidence interval for a regression coefficient

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if |t| > 1.96
- and will be in the confidence set if $|t| \le 1.96$
- Thus the 95% confidence interval for β_1 are the values of $\beta_{1,0}$ within ± 1.96 standard errors of $\widehat{\beta}_1$

95% confidence interval for β_1

$$\widehat{\beta}_1 \pm 1.96 \cdot SE\left(\widehat{\beta}_1\right)$$

18.581

Confidence interval for $\beta_{ClassSize}$

. regress test_score class_size, robust

Root, MSE

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.5194892	-4.39	0.000	-3.300945	-1.258671
_cons	698.933	10.36436	67.44		678.5602	719.3057

• 95% confidence interval for β_1 (shown in output)

$$(-3.30, -1.26)$$

• 90% confidence interval for β_1 (not shown in output)

$$\widehat{\beta}_1 \pm 1.64 \cdot SE(\widehat{\beta}_1)$$
 $-2.27 \pm 1.64 \cdot 0.52$
 $(-3.12, -1.42)$

Properties of the OLS estimator of β_1

Recall the 3 least squares assumptions:

Assumption 1: $E(u_i|X_i) = 0$

Assumption 2: (Y_i, X_i) for i = 1, ..., n are i.i.d

Assumption 3: Large outliers are unlikely

If the 3 least squares assumptions hold the OLS estimator $\widehat{\beta}_1$

- Is an unbiased estimator of β₁
- Is a consistent estimator β₁
- Has an approximate normal sampling distribution for large n

Properties of \overline{Y} as estimator of μ_Y

In lecture 2 we discussed that:

- \overline{Y} is an unbiased estimator of μ_Y
- Υ
 a consistent estimator of μ_Y
- \overline{Y} has an approximate normal sampling distribution for large n

AND

 \overline{Y} is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators that are weighted averages of $Y_1, ..., Y_n$

Let $\hat{\mu}_Y$ be an unbiased estimator of μ_Y

$$\hat{\mu}_Y = \frac{1}{n} \sum_{i=1}^n a_i Y_i$$
 with $a_1, ... a_n$ nonrandom constants

then \overline{Y} is more efficient than $\hat{\mu}_Y$, that is

$$Var\left(\overline{Y}\right) < Var\left(\hat{\mu}_{Y}\right)$$

Best Linear Unbiased Estimator (BLUE)

If we add a fourth OLS assumption:

Assumption 4: The error terms are homoskedastic

$$Var(u_i|X_i) = \sigma_u^2$$

 $\widehat{\beta}_1^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, ..., Y_n$

Let $\widetilde{\beta}_1$ be an unbiased estimator of β_1

$$\widetilde{\beta}_1 = \sum_{i=1}^n a_i Y_i$$

where $a_1, ..., a_n$ can depend on $X_1, ..., X_n$ (but not on $Y_1, ..., Y_n$)

then $\widehat{\beta}_1^{OLS}$ is more efficient than $\widetilde{\beta}_1$, that is

$$Var\left(\widehat{\beta}_{1}^{OLS}|X_{1},...,X_{n}\right) < Var\left(\widetilde{\beta}_{1}|X_{1},...,X_{n}\right)$$

Gauss-Markov theorem for $\widehat{\beta}_1$

The Gauss-Markov theorem states that if the following 3 Gauss-Markov conditions hold

- 1 $E(u_i|X_1,...,X_n)=0$
- 2 $Var(u_i|X_1,...,X_n) = \sigma_u^2, \quad 0 < \sigma_u^2 < \infty$
- **3** $E(u_iu_j|X_1,...,X_n)=0, i\neq j$

The OLS estimator of β_1 is BLUE

It is shown in S&W appendix 5.2 that the following 4 Least Squares assumptions imply the Gauss-Markov conditions

Assumption 1: $E(u_i|X_i) = 0$

Assumption 2: (Y_i, X_i) for i = 1, ..., n are i.i.d

Assumption 3: Large outliers are unlikely

Assumption 4: The error terms are homoskedastic: $Var(u_i|X_i) = \sigma_u^2$

The fourth least Squares assumption

$$Var\left(u_i|X_i\right)=\sigma_u^2$$

states that the conditional variance of the error term does not depend on the regressor \boldsymbol{X}

Under this assumption the variance of the OLS estimators simplify to

$$\sigma_{\widehat{\beta}_0}^2 = \frac{E(X_i^2)\sigma_u^2}{n\sigma_X^2}$$

$$\sigma_{\widehat{\beta}_1}^2 = \frac{\sigma_u^2}{n\sigma_\chi^2}$$

Is homoskedasticity a plausible assumption?

Example of **homoskedasticity** $Var(u_i|X_i) = \sigma_u^2$:

Example of **heteroskedasticity** $Var(u_i|X_i) \neq \sigma_u^2$

Example: The returns to education

- The spread of the dots around the line is clearly increasing with years of education (X_i)
- · Variation in (log) wages is higher at higher levels of education.
- This implies that $Var(u_i|X_i) \neq \sigma_u^2$.

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\widehat{\beta}_{1}\right) = \frac{s_{\widehat{u}}^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$
$$SE\left(\widehat{\beta}_{0}\right) = \frac{\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right) s_{\widehat{u}}^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

- In many applications homoskedasticity is not a plausible assumption
- If the error terms are heteroskedastic, that is $Var(u_i|X_i) \neq \sigma_u^2$ and the above formulas are used to compute the standard errors of $\widehat{\beta}_0$ and $\widehat{\beta}_1$
 - The standard errors are wrong (often too small)
 - The t-statistic does not have a N(0,1) distribution (also not in large samples)
 - The probability that a 95% confidence interval contains true value is not 95% (also not in large samples)

 If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors:

$$SE\left(\widehat{\beta}_{1}\right) = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2} \widehat{u}_{i}^{2}}{\left[\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}\right]^{2}}}$$

$$SE\left(\widehat{\beta}_{0}\right) = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^{n} \widehat{H}_{i}^{2} \widehat{u}_{i}^{2}}{\left[\frac{1}{n} \sum_{i=1}^{n} \widehat{H}_{i}^{2}\right]^{2}}}$$

$$with \qquad \widehat{H}_{i} = 1 - \left(\overline{X} / \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right) X_{i}$$

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above se's are valid both in case of homoskedasticity and heteroskedasticity.

- In Stata the default option is to assume homoskedasticity
- Since in many applications homoskedasticity is not a plausible assumption
- It is best to use heteroskedasticity robust standard errors
- To obtain heteroskedasticity robust standard errors use the option "robust":

Regress y x , robust

. regress test_score class_size

Source	SS	df	MS	Number of obs	=	420
				F(1, 418)	=	22.58
Model	7794.11004	1	7794.11004	Prob > F	=	0.0000
Residual	144315.484	418	345.252353	R-squared	=	0.0512
				Adj R-squared	=	0.0490
Total	152109.594	419	363.030056	Root MSE	=	18.581

test_score	Coef.	Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.4798256	-4.75	0.000	-3.22298	-1.336637
_cons	698.933	9.467491	73.82		680.3231	717.5428

. regress test_score class_size, robust

Linear regression	Number of obs	=	420
19 1111	F(1, 418)	=	19.26
	Prob > F	=	0.0000
	R-squared	=	0.0512
	Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf.]	Interval]
class_size	-2.279808	.5194892	-4.39	0.000	-3.300945	-1.258671
_cons	698.933	10.36436	67.44		678.5602	719.3057

If the error terms are heteroskedastic

- The fourth OLS assumption: $Var(u_i|X_i) = \sigma_u^2$ is violated
- The Gauss-Markov conditions do not hold
- The OLS estimator is not BLUE (not efficient)

but (given that the other OLS assumptions hold)

- The OLS estimators are unbiased
- · The OLS estimators are consistent
- The OLS estimators are normally distributed in large samples

Regression when X_i is a binary variable

Sometimes a regressor is binary:

- X = 1 if small class size, = 0 if not
- X = 1 if female, = 0 if male
- X = 1 if treated (experimental drug), = 0 if not

Binary regressors are sometimes called "dummy" variables.

So far, β_1 has been called a "slope," but that doesn't make sense if X is binary.

How do we interpret regression with a binary regressor?

Regression when X_i is a binary variable

Interpreting regressions with a binary regressor

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• When $X_i = 0$,

$$E(Y_i|X_i = 0) = E(\beta_0 + \beta_1 \cdot 0 + u_i|X_i = 0)$$

$$= \beta_0 + E(u_i|X_i = 0)$$

$$= \beta_0$$

• When $X_i = 1$.

$$E(Y_{i}|X_{i} = 1) = E(\beta_{0} + \beta_{1} \cdot 1 + u_{i}|X_{i} = 1)$$

$$= \beta_{0} + \beta_{1} + E(u_{i}|X_{i} = 0)$$

$$= \beta_{0} + \beta_{1}$$

 This implies that β₁ = E(Y_i|X_i = 1)-E(Y_i|X_i = 0) is the population difference in group means

Regression when X_i is a binary variable Example: The effect of being in a small class on test scores

$$TestScore_i = \beta_0 + \beta_1 SmallClass_i + u_i$$

Let *SmallClass*_i be a binary variable:

$$SmallClass_i \left\{ egin{array}{l} = 1 \ \emph{if Class size} < 20 \ \\ = 0 \ \emph{if Class size} \geq 20 \end{array} \right.$$

Interpretation of β_0 : population mean test scores in districts where class size is large (not small)

$$\beta_0 = E (\textit{TestScore}_i | \textit{SmallClass}_i = 0)$$

Interpretation of β_1 : the difference in population mean test scores between districts with small and districts with larger classes (not small).

$$\beta_1 = E (\textit{TestScore}_i | \textit{SmallClass}_i = 1) - E (\textit{TestScore}_i | \textit{SmallClass}_i = 0)$$

Regression when X_i is a binary variable Example: The effect of being in a small class on test scores

. tab small_class

small_class	Freq.	Percent	Cum.
0 1	182 238	43.33 56.67	43.33 100.00
Total	420	100.00	

. bys small_class: sum class_size

-> small_class = 0					
Variable	Obs	Mean	Std. Dev.	Min	Max
class_size	182	21.28359	1.155685	20	25.8
-> small_class = 1					
Variable	Obs	Mean	Std. Dev.	Min	Max
class_size	238	18.38389	1.283886	14	19.96154

Regression when X_i is a binary variable Example: The effect of being in a small class on test scores

. regress test_score small_class, robust

Linear regression Number of obs = 420 F(1, 418) = 16.34 Prob > F = 0.0001 R-squared = 0.0369 Root MSE = 18.721

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
small_class	7.37241	1.823578	4.04	0.000	3.787884	10.95694
_cons	649.9788	1.322892	491.33		647.3785	652.5792

- $\widehat{\beta}_0 = 649.98$ is the sample average of test scores in districts with an average class size ≥ 20 .
- $\widehat{\beta}_1 = 7.37$ is the difference in the sample average of test scores in districts with class size < 20 and districts with average class size \ge 20

Regression when X_i is a binary variable

Example: The effect of being in a small class on test scores

. ttest test_score, by(small_class) unequal

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	182 238	649.9788 657.3513	1.323379 1.254794	17.85336 19.35801	647.3676 654.8793	
combined	420	654.1565	.9297082	19.05335	652.3291	655.984
diff		-7.37241	1.823689		-10.95752	-3.787296

 $\label{eq:diff} \mbox{diff = mean(0) - mean(1)} \qquad \qquad \mbox{t =} \qquad \mbox{-4.0426} \\ \mbox{Ho: diff = 0} \qquad \qquad \mbox{Satterthwaite's degrees of freedom =} \qquad \mbox{403.607}$

Regression when X_i is a binary variable Testing a 2-sided hypothesis concerning β_1 , 1% significance level

$$H_0: \beta_1 = 0 \qquad H_1: \beta_1 \neq 0$$

Step 1: $\hat{\beta}_1 = 7.37$

Step 2: $SE(\widehat{\beta}_1) = 1.82$

Step 3: Compute the t-statistic

$$t^{act} = \frac{7.37 - 0}{1.82} = 4.04$$

Step 4: We reject the null hypothesis at a 1% significance level because

- |4.04| > 2.58
- p value = 0.000 < 0.01

Regression when X_i is a binary variable

Example: The effect of high per student expenditure on test scores

$$TestScore_i = \beta_0 + \beta_1 HighExpenditure_i + u_i$$

Let *HighExpenditure*; be a binary variable:

$$\label{eq:highExpenditure} \textit{HighExpenditure}; \left\{ \begin{array}{l} = 1 \; \textit{if per student expenditure} > \$6000 \\ \\ = 0 \; \textit{if per student expenditure} \leq \$6000 \end{array} \right.$$

Interpretation of β_0 : population mean test scores in districts with low per student expenditure

$$\beta_0 = E (TestScore_i | HighExpenditure_i = 0)$$

Interpretation of β_1 : the difference in population mean test scores between districts with high and districts with low per student expenditures.

$$\beta_1 = E (\textit{TestScore}_i | \textit{HighExpenditure}_i = 1) - E (\textit{TestScore}_i | \textit{HighExpenditure}_i = 0)$$

Regression when X_i is a binary variable

Example: The effect of high per student expenditure on test scores

. regress test_score high_expenditure, robust

Linear regression Number of obs = 420
F(1, 418) = 8.02
Prob > F = 0.0048
R-squared = 0.0295
Root MSE = 18.792

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
high_expenditure	10.01216	3.535408	2.83	0.005	3.062764	16.96155
_cons	652.9408	.9311991	701.18	0.000	651.1104	654.7712

- $\widehat{\beta}_0 = 652.94$ is the sample average of test scores in districts with low per student expenditures.
- $\widehat{\beta}_1 = 10.01$ is the difference in the sample average of test scores in districts with high and districts with low per student expenditures.

Regression when X_i is a binary variable Testing a 2-sided hypothesis concerning β_1 , 10% significance level

$$H_0: \beta_1 = 0$$
 $H_1: \beta_1 \neq 0$

Step 1: $\hat{\beta}_1 = 10.01$

Step 2: $SE(\widehat{\beta}_1) = 3.54$

Step 3: Compute the t-statistic

$$t^{act} = \frac{10.01 - 0}{3.54} = 2.83$$

Step 4: We reject the null hypothesis at a 10% significance level because

- |2.83| > 1.64
- p value = 0.005 < 0.10