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Lecture outline

e Testing Hypotheses about one of the regression coefficients

o Repetition: Testing a hypothesis concerning a population mean
e Testing a 2-sided hypothesis concerning 34

e Testing a 1-sided hypothesis concerning 34
e Confidence interval for a regression coefficient
o Efficiency of the OLS estimator

e Best Linear Unbiased Estimator (BLUE)
e Gauss-Markov Theorem

e Heteroskedasticity & homoskedasticity
e Regression when X; is a binary variable

¢ Interpretation of 8y and g

e Hypothesis tests concerning S
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Repetition: Testing a hypothesis concerning a population mean

HoZE(Y):,LLyyo H12E(Y)7£p,y’0
Step 1: Compute the sample average Y

Step 2: Compute the standard error of Y

SE (Y) = —ﬁ
Step 3: Compute the t-statistic

et — Y- Hy,0

SE (?)
Step 4: Reject the null hypothesis at a 5% significance level if
o |t%° > 1.96

e orif p— value < 0.05
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Repetition: Testing a hypothesis concerning a population mean

Example: California test score data; mean test scores

Suppose we would like to test
Ho : E (TestScore) = 650 Hi : E (TestScore) #+ 650

using the sample of 420 California districts

Step 1: TestScore = 654.16

Step 2: SE (TestScore) =0.93

. jact __ TestScore—650 __ 654.16—650 __
Step 3: ' = SE(TestScore) 0.93 = 4.47

Step 4: If we use a 5% significance level, we reject Hy because
|13 = 4.47 > 1.96
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Repetition: Testing a hypothesis concerning a population mean

Example: California test score data; mean test scores

. ttest test_score=650

One-sample t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

test_s-~e 420 654.1565 .9297082 19.05335 652.3291 655.984
mean = mean( test_score) t = 4.4708

Ho: mean = 650 degrees of freedom = 419
Ha: mean < 650 Ha: mean != 650 Ha: mean > 650

Pr(T < t) = 1.0000 Pr(ITI > It]) = 0.0000 Pr(T > t) = 0.0000



Testing a 2-sided hypothesis concerning 4

e Testing procedure for the population mean is justified by the Central
Limit theorem.

e Central Limit theorem states that the t-statistic (standardized sample
average) has an approximate N (0, 1) distribution in large samples

e Central Limit Theorem also states that

e Bo & B1 have an approximate normal distribution in large samples

¢ and the standardized regression coefficients have approximate
N (0, 1) distribution in large samples

o We can therefore use same general approach to test hypotheses about
Bo and fi.

e We assume that the Least Squares assumptions hold!



Testing a 2-sided hypothesis concerning 4

Ho : B1 = B0 Hy = B1 # Bio

Step 1: Estimate Y; = By + 81 X; + u; by OLS to obtain 3
Step 2: Compute the standard error of 31
Step 3: Compute the t-statistic

et _ B — Bro
s (1)
Step 4: Reject the null hypothesis if

e |t*| > critical value
e orif p— value < significance level



Testing a 2-sided hypothesis concerning 4

The standard error of 3

The standard error of 31 is an estimate of the standard deviation of the
sampling distribution o3,

Recall from previous lecture:

I 1 Var[(Xi—px)ui]
95, n [Var(X)2
It can be shown that
1 % ; 1 (X' - 7)232
~ n— 1= 1
SE (ﬁ1) n x 2712
1y (X. —Y) ]
n i=1 !



Testing a 2-sided hypothesis concerning 4

TestScore; = 3y + 1 ClassSize; + u;

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>|t] [95% Conf. Interval]
class_size -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057

Suppose we would like to test the hypothesis that class size does not affect
test scores (31 = 0)



Testing a 2-sided hypothesis concerning

5% significance level

H():B1:0 H1:ﬂ1750

Step 1: By = —2.28
Step 2: SE(f;) = 0.52
Step 3: Compute the t-statistic

' = % = -4.39

Step 4: We reject the null hypothesis at a 5% significance level
because

e | —4.39 > 1.96
e p— value = 0.000 < 0.05



Testing a 2-sided hypothesis concerning (

Critical value of the t-statistic

The critical value of t-statistic depends on significance level a

0.005 0.005 0.025 0.025
-2.58 0 2.58 -1.96 0 1.9
Large sample distribution of t-statistic Large sample distribution of t-statistic
0.05 0.05
164 0 164

Large sample distribution of t-statistic



Testing a 2-sided hypothesis concerning 4

1% and 10% significance levels

Step 1: By = —2.28
Step 2: SE(f;) = 0.52
Step 3: Compute the t-statistic

e = 7_26222_ 0_ 439

Step 4: We reject the null hypothesis at a 10% significance level
because

e | —4.39 > 1.64
e p— value =0.000 < 0.1

Step 4: We reject the null hypothesis at a 1% significance level
because

e | —4.39 >258
e p— value = 0.000 < 0.01



Testing a 2-sided hypothesis concerning

5% significance level

Hy: 31 =-2 Hy: B1 # -2

~

Step 1: gy =—-2.28
Step 2: SE(f;) = 0.52
Step 3: Compute the t-statistic

ot _ —2.28—(-2)
0.52

Step 4: We don't reject the null hypothesis at a 5% significance level
because

= —0.54

e |— 054 <1.96



Testing a 2-sided hypothesis concerning
5% significance level

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust
test_score Coef. Std. Err. t P>]t] [95% Conf. Interval]
class_size -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44  0.000 678.5602 719.3057
H02ﬁ1:—2 — H0:,81—(—2):0
. lincom class_size-(-2)
(1) class_size = -2
test_score Coef. Std. Err. t P>|t] [95% Conf. Interval]
@ -.2798083 .5194892 -0.54 0.590 -1.300945 .7413286




Testing a 1-sided hypothesis concerning

5% significance level

Ho:51=—2 H1:ﬁ1<—2
Step 1: By =—2.28
Step 2: SE(f;) = 0.52
Step 3: Compute the t-statistic
ol _ —2.28—(-2)
0.52

Step 4: We don't reject the null hypothesis at a 5% significance level
because

t = —0.54

e —054>—-164



Confidence interval for a regression coefficient

e Method for constructing a confidence interval for a population mean can
be easily extended to constructing a confidence interval for a regression
coefficient

e Using a two-sided test, a hypothesized value for 8y will be rejected at
5% significance level if |t| > 1.96

e and will be in the confidence set if || < 1.96

e Thus the 95% confidence interval for 81 are the values of §1,o within
+1.96 standard errors of 34

95% confidence interval for g4

By +£1.96-SE (31)



Confidence interval for 5¢jasssize

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>|t] [95% Conf. Interval]
class_size -2.279808 .5194892 -4.39  0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057

e 95% confidence interval for 8y (shown in output)
(=330 , —1.26)

e 90% confidence interval for 3 (not shown in output)
Bi+1.64-SE (B
—227+1.64-0.52
(-3.12 |, —1.42)



Properties of the OLS estimator of f;

Recall the 3 least squares assumptions:

Assumption 1: E (ui|X;) =0
Assumption 2: (Y;, X;) fori=1,...,narei.id

Assumption 3: Large outliers are unlikely
If the 3 least squares assumptions hold the OLS estimator B

e |s an unbiased estimator of 34
e |s a consistent estimator S

e Has an approximate normal sampling distribution for large n



Properties of Y as estimator of jiy

In lecture 2 we discussed that:

e Y is an unbiased estimator of uy

¢ Y a consistent estimator of ;v

¢ Y has an approximate normal sampling distribution for large n
AND

Y is the Best Linear Unbiased Estimator (BLUE): it is the most efficient
estimator of 1y among all unbiased estimators that are
weighted averages of Yi,...., Y
Let /iy be an unbiased estimator of uy
1 n
fiy = 21: aY;  with a,...a, nonrandom constants
=
then Y is more efficient than [y, that is

Var (7) < Var (fiy)
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Best Linear Unbiased Estimator (BLUE)

If we add a fourth OLS assumption:
Assumption 4: The error terms are homoskedastic
Var (ui| X)) = o4
BOLS is the Best Linear Unbiased Estimator (BLUE): it is the most efficient

estimator of 81 among all conditional unbiased estimators that
are a linear function of Y, ...., Ys

Let 3; be an unbiased estimator of 3;

n
B = Za/Yi
i=1
where ay, ..., a; can depend on Xi, ..., X (but noton Yj, ..., Ys)

then 39S is more efficient than i, that is

Var (BPL5|X1,...,Xn) < Var (B1|x17...,xn)
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Gauss-Markov theorem for 3

The Gauss-Markov theorem states that if the following 3 Gauss-Markov
conditions hold

o E(U,'|X1,..‘,Xn) =0
O Var (uilXi, ... Xs) =02, 0<o2<o0
9 E(U,'U1‘|X1,...,Xn)=0, I;éj

The OLS estimator of 81 is BLUE

It is shown in S&W appendix 5.2 that the following 4 Least Squares
assumptions imply the Gauss-Markov conditions

Assumption 1: E (uj|X;) =0
Assumption 2: (Y;, Xj)fori=1,..,narei.id
Assumption 3: Large outliers are unlikely

Assumption 4: The error terms are homoskedastic: Var (u;|X;) = o2



Heteroskedasticity & homoskedasticity

The fourth least Squares assumption
Var (ui|X;) = o5

states that the conditional variance of the error term does not depend on the
regressor X

Under this assumption the variance of the OLS estimators simplify to

2\ 2
0_2 _ E(X/ )Uu
3. = 2
Bo no%
2 = 9
ﬁ1 naX

Is homoskedasticity a plausible assumption?



Example of homoskedasticity Var (uj| X)) = o2:

Test score
720 -

700 - Distribution of ¥ when X = 15
Distribution of ¥ when X = 20

680 -
Distribution of ¥ when X = 25
660 -
E(Y|X=15)

640 | E(Y[X = 20)

E(Y|X = 25)
620}

600 1 1 I ]
10

Student—teacher ratio

Example of heteroskedasticity Var (u;| X;) # o2

Test score
720 -

700 L Distribution of ¥ when X = 15

Distribution of ¥ when X = 20

Distribution of ¥ when X = 25

680 |-
660
640

+/X
&0l Bo +By

600 - L - !
10 15! 20 25 30

Student-teacher ratio .




Heteroskedasticity & homoskedasticity

Example: The returns to education

8,
° (]
Pty
7,
m
oy
29
=
L] [ ] !
51 s °
L )
L]
47 T T
0 5 10 15 20

years of education
e The spread of the dots around the line is clearly increasing with years of
education (X;)
e Variation in (log) wages is higher at higher levels of education.

e This implies that Var (u;| X;) # o2.



Heteroskedasticity & homoskedasticity

o |f we assume that the error terms are homoskedastic the standard
errors of the OLS estimators simplify to

SE(B) = sy
se() = G

e In many applications homoskedasticity is not a plausible assumption

o If the error terms are heteroskedastic, that is Var (u;|X;) # o2 and the
above formulas are used to compute the standard errors of 8, and f;
e The standard errors are wrong (often too small)

e The t-statistic does not have a N (0, 1) distribution (also not in large
samples)

o The probability that a 95% confidence interval contains true value
is not 95% (also not in large samples)



Heteroskedasticity & homoskedasticity

o |If the error terms are heteroskedastic we should use the following
heteroskedasticity robust standard errors:

a _ 1 e (X,,_y)ngz
SE(B) = \/ T
a n% 2L Flizﬁiz
SE (BO) = 122’.7711.‘7,'2]2
i H—1_(x/157 2 g
with Ai=1 (X/n 7L X ) X

e Since homoskedasticity is a special case of heteroskedasticity, these
heteroskedasticity robust formulas are also valid if the error terms are
homoskedastic.

e Hypothesis tests and confidence intervals based on above se’s are valid
both in case of homoskedasticity and heteroskedasticity.



Heteroskedasticity & homoskedasticity

In Stata the default option is to assume homoskedasticity

e Since in many applications homoskedasticity is not a plausible
assumption

It is best to use heteroskedasticity robust standard errors

To obtain heteroskedasticity robust standard errors use the option
“robust”:

Regress y x , robust



Heteroskedasticity & homoskedasticity

. regress test_score class_size

Source SS df MS Number of obs = 420
F(1, 418) = 22.58
Model 7794.11004 1 7794.11004 Prob > F = 0.0000
Residual 144315.484 418 345.252353 R-squared = 0.0512
Adj R-squared = 0.0490
Total 152109.594 419 363.030056 Root MSE = 18.581

test_score Coef. Std. Err. t P>|t] [95% Conf. Interval]
class_size -2.279808 .4798256 -4.75 0.000 -3.22298 -1.336637
_cons 698.933 9.467491 73.82 0.000 680.3231 717.5428

. regress test_score class_size, robust
Linear regression Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef.  Std. Err. t P> t] [95% Conf. Interval]
class_size -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44  0.000 678.5602 719.3057




Heteroskedasticity & homoskedasticity

If the error terms are heteroskedastic

o The fourth OLS assumption: Var (u;|X;) = o2 is violated
e The Gauss-Markov conditions do not hold

e The OLS estimator is not BLUE (not efficient)
but (given that the other OLS assumptions hold)

e The OLS estimators are unbiased
e The OLS estimators are consistent

e The OLS estimators are normally distributed in large samples
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Regression when X; is a binary variable

Sometimes a regressor is binary:

e X =1 if small class size, = 0 if not
e X =1 if female, = 0 if male

e X = 1if treated (experimental drug), = 0 if not

Binary regressors are sometimes called “dummy” variables.

So far, 84 has been called a “slope,” but that doesn’t make sense if X is
binary.

How do we interpret regression with a binary regressor?
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Regression when X; is a binary variable

Interpreting regressions with a binary regressor

Yi = Bo+ B Xi + U

e When X; =0,
E(Yi|Xi=0) = E(Bo+ -0+ ul|X;=0)
= Bo + E (ui|X; = 0)
= Bo
e When X; =1,
E(YilXi=1) = E(Bo+pB1-1+ulX=1)
= Bo+p1+ E(ui|Xi=0)
= Bo + Bi

e This implies that 51 = E(Y;|X; = 1)-E(Yi|X; = 0) is the population
difference in group means



Regression when X; is a binary variable

Example: The effect of being in a small class on test scores

TestScore; = (o + f1SmallClass; + u;
Let SmallClass; be a binary variable:

= 1if Class size < 20
SmallClass;
= 0 if Class size > 20

Interpretation of 8y: population mean test scores in districts where class size
is large (not small)

Bo = E (TestScore;j|SmallClass; = 0)

Interpretation of 3;: the difference in population mean test scores between
districts with small and districts with larger classes (not small).

B1 = E (TestScorej|SmallClass; = 1) — E (TestScorej|SmallClass; = 0)



Regression when X; is a binary variable

Example: The effect of being in a small class on test scores

. tab small_class

small_class Freq. Percent Cum.
0 182 43.33 43.33
1 238 56.67 100.00
Total 420 100.00
. bys small_class: sum class_size
-> small_class = 0
Variable Obs Mean Std. Dev. Min Max
class_size 182 21.28359 1.155685 20 25.8
-> small_class =
Variable Obs Mean Std. Dev. Min Max
class_size 238 18.38389 1.283886 14 19.96154




Regression when X; is a binary variable

Example: The effect of being in a small class on test scores

. regress test_score small_class, robust

Linear regression Number of obs = 420
F(1, 418) = 16.34

Prob > F = 0.0001

R-squared = 0.0369

Root MSE = 18.721

Robust
test_score Coef. Std. Err. t P>]t| [95% Conf. Interval]

small_class 7.37241 1.823578 4.04 0.000 3.787884 10.95694
_cons 649.9788 1.322892 491.33 0.000 647 _.3785 652.5792

° Bo = 649.98 is the sample average of test scores in districts with an
average class size > 20.

° 31 = 7.37 is the difference in the sample average of test scores in
districts with class size < 20 and districts with average class size> 20



Regression when X; is a binary variable

Example: The effect of being in a small class on test scores

. ttest test_score, by(small_class) unequal

Two-sample t test with unequal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
0 182 649.9788 1.323379 17.85336 647.3676 652.5901
1 238 657.3513 1.254794 19.35801 654.8793 659.8232
combined 420 654.1565 .9297082 19.05335 652.3291 655.984
diff -7.37241 1.823689 -10.95752  -3.787296
diff = mean( 0) - mean( 1) t = -4.0426
Ho: diff = 0 Satterthwaite®s degrees of freedom = 403.607

Ha: diff < 0 Ha: diff 1= 0 Ha: diff > 0

Pr(T < t) = 0.0000 Pr(ITl > |t]) = 0.0001 Pr(T > t) = 1.0000



Regression when X; is a binary variable

Testing a 2-sided hypothesis concerning 31, 1% significance level

H():B1:0 H1:ﬂ1750

Step 1: By =7.37
Step 2: SE(fB;) = 1.82
Step 3: Compute the t-statistic

et _ 7:37 -0

Tas = 4.04
Step 4: We reject the null hypothesis at a 1% significance level
because
® |4.04| > 2.58

e p— value = 0.000 < 0.01



Regression when X; is a binary variable

Example: The effect of high per student expenditure on test scores

TestScore; = o + B1HighExpenditure; + u;
Let HighExpenditure; be a binary variable:

= 1 if per student expenditure > $6000

HighExpenditure;
= 0 if per student expenditure < $6000

Interpretation of 8y: population mean test scores in districts with low per
student expenditure

Bo = E (TestScore;|HighExpenditure; = 0)
Interpretation of 3;: the difference in population mean test scores between
districts with high and districts with low per student expenditures.

B1 = E (TestScorej|HighExpenditure; = 1)—E ( TestScore;|HighExpenditure; = 0)



Regression when X; is a binary variable

Example: The effect of high per student expenditure on test scores

. regress test_score high_expenditure, robust

Linear regression Number of obs = 420

F(1, 418) = 8.02

Prob > F = 0.0048

R-squared = 0.0295

Root MSE = 18.792

Robust

test_score Coef. Std. Err. t P>]t] [95% Conf. Interval]
high_expenditure 10.01216 3.535408 2.83 0.005 3.062764 16.96155
_cons 652.9408 .9311991 701.18 0.000 651.1104 654.7712

° Eo = 652.94 is the sample average of test scores in districts with low per
student expenditures.

e By = 10.01 is the difference in the sample average of test scores in
districts with high and districts with low per student expenditures.



Regression when X; is a binary variable

Testing a 2-sided hypothesis concerning 34, 10% significance level

H():B1:0 H1:ﬂ1750

Step 1: B = 10.01
Step 2: SE(B:) = 3.54
Step 3: Compute the t-statistic

jact_ 10.01 -0

=355 28
Step 4: We reject the null hypothesis at a 10% significance level
because
e |2.83] > 1.64

e p— value =0.005 < 0.10



