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Violation of first Least Squares assumption

Yi=Bo+ 51X+ Ui
Assumption 1: The conditional mean of u; given X; is zero
E(ui|X)=0

The first OLS assumption states that:

All other factors that affect the dependent variable Y; (contained in u;) are
unrelated to X; in the sense that, given a value of X;, the mean of these other
factors equals zero.

In the class size example:

All the other factors affecting test scores should be unrelated to class size in
the sense that, given a value of class size, the mean of these other factors
equals zero.



Violation of first Least Squares assumption

Suppose that

e districts with small classes have few immigrants (few English learners)

o districts with large classes have many immigrants (many English
learners)

In this case class size is related to percentage of English learners
Students who are still learning English likely have lower test scores
Which implies that percentage of English learners is contained in u;.

This implies a violation of assumption 1:

E (uj|ClassSize; = small) # E (u;|ClassSize; = large) # 0



Omitted variable bias

e The variable measuring the percentage of English learners in a district
(el pct;) is omitted from the simple regression model

TestScore; = By + 1 ClassSize; + u;

e Omitting a variable from a regression analysis will lead to omitted
variable bias if:

© The omitted variable is correlated to the included regressor of interest.

@ The omitted variable is a determinant of the dependent variable.



Omitted variable bias

. corr class_size el_pct . corr test_score el_pct
(obs=420) (obs=420)
‘ class_~e el_pct ‘ test_s~e el _pct
class_size 1.0000 test_score 1.0000
el_pct 0.1876 1.0000 el_pct -0.6441 1.0000

Both conditions for omitted variable bias seem to be met

© The percentage of English learners is correlated with class size
@ The percentage of English learners is correlated with test scores

OLS will not

o |If we omit percentage of English learners from regression, g
only estimate effect of class size on district average test scores

e but it will also “pick up” the effect of the percentage of English learners
in the district on district average test scores

° A1OLS

is biased and inconsistent.



Omitted variable bias: violation of unbiasedness

True model : Yi = Bo+ BiXi+ B Wi+ u; E(ui|X;, W;) =0
Estimated model : Yi= 0o+ 51X+ v

E[p] =£|ERf=ate

substitute for Y;, Y (true model!)

=E

[ o0 (X=X) (Bo-+ 1 Xiot B2 Wirkti— (Bo+: X+ 2 W--0)
> (Xf—X)(X"_X)

rewrite (3o drops out)

=E 27:1 (XI_Y)(’B1 (Xi_y)j‘,@z(W,:W)+(u,_ﬂ))
Z:1,'7:1 (Xi*X)(X,‘fX)



Omitted variable bias: violation of unbiasedness

E [31} - E [ 71(Xi—X)(Eﬁ;(1)?;X15[Z;€W;(—)W)+(u,-—u)):|

rewrite & use expectation rules

- B[ AEHEE B | S

put 5 in front of expectation & use” algebra trick”

= b1 + oE [@,((x I ;v))} ‘E [(X(X)&)}

law of iterated expectations

— By + BE {Z/ (X=X) (Wi W)} LE [z%(fo)E(uf)o,m)]

S (Xi=X)(Xi—X)  (6=X) (X=X)



Omitted variable bias: violation of unbiasedness

ZL&M*YXMqu E{zg(m—?ﬁwwmmq
S (%=X (X%—X) 7y (% =X) (% -X)

e[

B +525[

by assumption E (u;| X;, W;) =0

b+ ok [l )

L (i=X)(%-X)

; (e [Em =0 m-M] _ oY s imoli
If W; is unrelated to X; (E [W = 0 ) this implies that
E [31] = B

If W, is no determinant of Y; (82 = 0) this implies that E [31] = B4

The second term is only nonzero if both conditions for omitted variable
bias are met

o |f the second term is nonzero 31 is biased!



Omitted variable bias: violation of consistency

True model : Yi=Bo+ 81 Xi+ B Wi+ u E (u|X;, W) =0
Estimated model : Yi= o+ B1Xi+vi
L~ Pim S (X -X) (YY) _ Plims
PIm (1 = B S G0 ) = ms
_ Cov(X;,Y))
Var(X;)

substitute true model for Y;

_ Cov(X;,Bo+B1 Xi+B8s Witu;)
- Var(X;)

Covariance rules Key concept 2.3

_ Cov(X;,1Xj)+Cov(Xi,Bp Wi)+Cov(X;,u;)
- Var(X;)




Omitted variable bias: violation of consistency

Plim j3;

— Cov(X;,1X)+Cov(Xi, B Wj)+Cov(X;,u;)

Cov (X, uj) =

Var(X))

_ﬂ Cov(X;, X))
VarX)

Cov (X, X;) =

Cov(X W
+ 6 Var(X;

Var (Xi)

C
=B+ B2 O\'//a,xxv)v)

0 because E (uj| Xi, W) =

0



Omitted variable bias: violation of consistency

2 P i VVi
B1 —>51+ﬂ2%@(x‘/)

e If W is unrelated to X; (Cov (X;, W;) = 0) this implies that 31 — 8
e If W is no determinant of Y; (82 = 0) this implies that 31 LN Bi

e |f both omitted variable bias conditions are met 31 is inconsistent!



Omitted variable bias: violation of consistency

From the omitted variable bias formula

Cov (X;, W)

S~ p
Br — b1+ B2 Var (X))

we can infer the direction of the bias of 3; that persists in large samples
e Suppose W; has a positive effect on Y}, then 3, > 0

e Suppose X; and W; are positively correlated, then Cov (X;, W;) > 0

e This implies that 31 is upward biased, it converges in probability to a
larger number than the true value of 534
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Omitted variable bias: a simulation example

o Lets create a data set with 100 observations

e W ~ N(0,1)

o Welet Xidependon W;: Xi= W, +¢ ¢ ~N(0,1)

e u; ~ N(0,1)

o We define the true population model as:
Yi=1+2Xi+Wi+u p1=2 & p=1

set obs 100
gen w = rnormal()
gen x = w + rnormal()
=1+ 2*x + w + rnormal()

gen y
. sumy X w
Variable ‘ Obs Mean Std. Dev. Min Max
y 100 1.501122 3.629103 -7.468484 10.27467
X 100 .164158 1.310894 -3.099808 3.644282
w 100 .1819518 1.081655 -2.565364 2.845132



Omitted variable bias: a simulation example

True model : Yi=1+2Xi+ Wi+u  E(ulX;, W) =0
Estimated model : Yi = o+ B1Xi+ Vi

. regress y X

Source SS df MS Number of obs = 100
FC 1, 98) =  878.49
Model 1173.01332 1 1173.01332 Prob > F = 0.0000
Residual 130.855339 98 1.33525856 R-squared = 0.8996
Adj R-squared = 0.8986
Total 1303.86866 99 13.1703905 Root MSE = 1.1555

y Coef. Std. Err. t P>|t] [95% Conf. Interval]
X 2.625828 .0885926 29.64 0.000 2.450019 2.801637
_cons 1.070071 -116465 9.19 0.000 .83895 1.301192




Omitted variable bias: a simulation example

We can create 999 of these data sets with 100 observations and use OLS to
estimate

wnN

Yi = Bo+ B1Xi+ vi

. program define ols, rclass

drop _all

set obs 100

gen w=rnormal )

gen x=w+rnormal ()

gen y=1+2*x+w+rnormal ()
regress y X
end

NO A WNER

: simulate _b, reps(999) nodots : ols

command: ols

. sum
Variable ‘ Obs Mean Std. Dev. Min Max

_b_x 999 2.49988 .0897328 2.245482 2.757368

_b_cons 999 1.001677 .121082 .6290014 1.383819



Omitted variable bias: a simulation example
n=100

True model : Yi=1+2X+ W +u E (ui|Xi, W) =0
Estimated model : Yi=00o+ 5 Xi+vi

OLS estimates of B; in 999 samples with n=100

44 RN

1.8 1.9 2 21 22 23 24 25 26 27 28
OLS estimates of B;



Omitted variable bias: a simulation example
n=1000

True model : Yi=1+2X+ W +u E (ui|Xi, W) =0
Estimated model : Yi=00o+ 5 Xi+vi

OLS estimates of B; in 999 samples with n=1000

154

10+

1.8 19 2 21 22 23 24 25 26 27 28
OLS estimates of B;



Omitted variable bias: a simulation example
n=10000

True model : Yi=1+2X+ W +u E (ui|Xi, W) =0
Estimated model : Yi=00o+ 5 Xi+vi

OLS estimates of B; in 999 samples with n=1000

50+

40

30+

20+

10+

O,
1.8 19 2 21 22 23 24 25 26 27 28
OLS estimates of B;




Omitted variable bias: a simulation example
n=100, n=1000, n=10000

True model : Yi=1+2X+ Wi+ u E(uilX;, W) =0
Estimated model : Yi=Bo+ B1Xi+ vi

OLS estimates of B, in 999 samples
with n=100; n=1000 and n=10000

50+ n=100
— — = n=1000
404 | [ n=10000
30
20 :
101 I?‘
ol ——/’:’?’2\\\“

1.8 1.9 2 2122 23 24 25 26 2.7 2.8
OLS estimates of B,



Including the omitted variable: a simulation example

o Natural solution to omitted variable bias is to include the variable and to

estimate a multiple regression model.
True model : Yi=1+2X + W+ u

Estimated model : Y; = Bo + B1X; + B W, +

. regress y X w

E (ul X:, W) = 0

Vi

Source SS df MS Number of obs = 100
FC 2, 97) = 852.99
Model 1531.63416 2 765.817078 Prob > F = 0.0000
Residual 87.0866036 97 .897800037 R-squared = 0.9462
Adj R-squared = 0.9451
Total 1618.72076 99 16.3507147 Root MSE = .94752

y Coef. Std. Err. t P>|t] [95% Conf. Interval]
X 1.968079 .0888201 22.16 0.000 1.791795 2.144362
w .9801195 .1214549 8.07 0.000 .7390651 1.221174
_cons 1.032288 .095095 10.86 0.000 .8435512 1.221026




Including the omitted variable: a simulation example

We can create 999 of these data sets with 100 observations and use OLS to
estimate

w N

Yi = Bo+ B1Xi + Wi+ vi

. program define ols, rclass

drop _all

set obs 100

gen w=rnormal()

gen x=w+rnormal ()

gen y=1+2*x+w+rnormal ()
regress y x w

. end

NoOoObhWNE

. simulate _b, reps(999) nodots : ols

command: ols

. sum
Variable ‘ Obs Mean Std. Dev. Min Max

_b_x 999 1.997546 .1077047 1.640418 2.342614

_bw 999 .9944234 .1485172 .5168402 1.455485

_b_cons 999 .9994964 .0988118 .7383428 1.301634



Including the omitted variable: a simulation example
n=100

True model : Yi=1+2X+ W+ u E(u]X;,W;))=0
Estimated model :  Y; = Bo + B1Xi + B W; + v;

OLS estimates of B; in 999 samples with n=100
4 T

A\

1.8 1.9 2 21 22 23 24 25 2.6 2.7 2.8
OLS estimates of B;



Including the omitted variable: a simulation example
n=1000

True model : Yi=1+2X+ W+ u E(u]X;,W;))=0
Estimated model :  Y; = Bo + B1Xi + B W; + v;

OLS estimates of B; in 999 samples with n=1000

15+

10+

1.8 19 2 21 22 23 24 25 26 27 28
OLS estimates of B;



Including the omitted variable: a simulation example
n=10000

True model : Yi=1+2X+ W+ u E(u]X;,W;))=0
Estimated model :  Y; = Bo + B1Xi + B W; + v;

OLS estimates of B; in 999 samples with n=1000

40+

30+

20+

10+

0,
1.8 19 2 21 22 23 24 25 26 27 28
OLS estimates of B;




Including the omitted variable: a simulation example

n=100, n=1000, n=10000

True model : Yi=1+2X+ W+ u E(u]X;,W;))=0
Estimated model :  Y; = Bo + B1Xi + B W; + v;

OLS estimates of B; in 999 samples
with n=100; n=1000 and n=10000

40+ n=100
— = N=1000
I n=10000
20+
10
0- XN

1.81.9 2 2122232425262728
OLS estimates of B,
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Multiple regression model with 2 regressors

Yi = Bo + B1X4i + B2 Xai + U
Interpretation of 3;:

e Suppose we would increase Xj to X; + AX; while keeping X> constant.

E[Y|X1, X] = Bo + B1 X1 + B2 Xe
E[Y[(Xi +AX1),Xe] = Bo+ B (X +AX1)+ BXe
define AY as
AY = E[Y|(X+AX), Xe] — E[Y|X1, Xe]
= B1 A X

this implies that 3 is the expected change in Y due to unit change in X;
while keeping X> constant!



Multiple regression model with 2 regressors

Example: The effect of class size on test scores

1 . regress test_score class_size, robust

Linear regression Number of obs = 420
F( 1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P> t] [95% Conf. Interval]
class_size -2.279808 -5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057

2 . regress test_score class_size el_pct, robust
Linear regression Number of obs = 420
F( 2, 417) = 223.82
Prob > F = 0.0000
R-squared = 0.4264
Root MSE = 14.464
Robust

test_score Coef. Std. Err. t P> t] [95% Conf. Interval]
class_size -1.101296 .4328472 -2.54 0.011 -1.95213 -.2504616
el_pct -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786
_cons 686.0322 8.728224 78.60 0.000 668.8754 703.189




Multiple regression model with 2 regressors

Example: The effect of class size on test scores

test score; = 686.03 — 1.10 - class size; — 0.65 - el pct;

e The expected effect on test scores of increasing class size by 1, while
keeping the percentage of English learners constant, equals -1.1 points

o This is about half the size of coefficient estimate when el pct; is omitted
from the regression

o Estimated effect of class size in the simple regression model suffers
from omitted variable bias

o Omitted variable bias formula already predicted a negative bias.

Cov (class size;, el pct;)

a2 P
b= b+l Var (class size;)
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Multiple regression model with k regressors

General notation for multiple regression model with k regressors:
Yi = Bo+ B1Xii + BeXoi + ... + B Xii + Uj

where

e Y;is the i" observation on the dependent variable

e Xij, ..., X are i observations on the k independent variables or
regressors

e [ is the intercept of the population regression line (expected value of Y
when X1,', ceny Xk,‘ = 0)

e (3 is the slope coefficient on Xj; the expected change in Y due to a unit
increase in Xi; while holding Xa;, ..., Xk constant.

e y; is the error term (all other factors, besides Xij, ..., X, determining Yj)
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Multiple regression model with k regressors

The OLS estimators Bo, 31 s e Ek are obtained by minimizing the sum of
squared prediction mistakes:

z”: (Yi — Bo— Bi X — ... — B\kxkl)z

i=1

Similar to the linear regression model with 1 regressor this implies

o taking derivatives w.r.t Bo, Bt .., B

e setting these to zero and solving for Bo, Bt .., Br

Formulas for OLS estimators in multiple regression model are best expressed
using matrix algebra.
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Multiple regression model with k regressors

Least squares assumption for multiple regression model:

Assumption 1: The conditional distribution of u; given X, ..., Xxi has mean
zero, that is
E(U/|)(1,‘7 ceey Xk,') =0

Assumption 2: (Y;, X, ..., X«i) for i =1, ..., n are independently and
identically distributed (i.i.d)

Assumption 3: Large outliers are unlikely

o<E(x;‘,)<oo,...,0<E(x;‘,)<oo & o<E(\/,4)<oo

Assumption 4: No perfect multicollinearity
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Perfect multicollinearity

Perfect multicollinearity arises when one of the regressors is a perfect linear
combination of the other regressors

e The other regressors include the regressor on the constant term
Xoi=1 fori=1,...n

Yi = BoXoi + B1Xti + BaXoi 4 ... + Bk Xui + U

o |f the regressors exhibit perfect multicollinearity, the OLS estimators
cannot be computed

o Perfect multicollinearity produces division by zero in the OLS formulas

o Intuitively: you estimate effect of a change in one regressor on Y while
holding another regressor, which is a perfect linear combination of the
first regressor, constant: This does not make sense!



Perfect multicollinearity

What happens when we include both the percentage of English learners and

the share of English learners?

. gen el_share=el_pct/100

. regress test_score class_size el_pct el_share, robust

note: el_share omitted because of collinearity

Linear regression Number of obs = 420
FC 2, 417) = 223.82
Prob > F = 0.0000
R-squared = 0.4264
Root MSE = 14.464
Robust

test_score Coef. Std. Err. t P>]t] [95% Conf. Interval]
class_size -1.101296 .4328472 -2.54 0.011 -1.95213 -.2504616
el_pct -.6497768 .0310318 -20.94  0.000 -.710775 -.5887786

el_share 0 (omitted)

_cons 686.0322  8.728224 78.60  0.000 668.8754 703.189

el pct; and el share; are perfectly multicollinear



Perfect multicollinearity: Dummy variable trap

What happens when we include both a dummy SmallClass; (=1 if class size
< 20) and a dummy BigClass; (=1 if class size > 20) and the constant term?

. regress test_score SmallClass BigClass, robust
note: BigClass omitted because of collinearity

Linear regression Number of obs = 420
F(1, 418) = 16.34
Prob > F = 0.0001
R-squared = 0.0369
Root MSE = 18.721
Robust

test_score Coef. Std. Err. t P>]t] [95% Conf. Interval]

SmallIClass 7.37241 1.823578 4.04 0.000 3.787884 10.95694
BigClass 0 (omitted)

_cons 649.9788  1.322892 491.33  0.000 647.3785 652.5792

BigClass; = 1 — SmallClass; = Xoi — SmallClass;



(Imperfect) multicollinearity
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(Imperfect) multicollinearity means that two or more regressors are highly

correlated, but one regressor is NOT a perfect linear function
of one or more of the other regressors

(imperfect) multicollinearity is not a violation of the least squares
assumptions

It does not impose theoretical problem for the calculation of OLS
estimators

If two regressors are highly correlated the the coefficient on at least one
of the regressors is imprecisely estimated (high variance)

With two regressors and homoskedastic errors we have that

5 1 1 o’
Var (B1) = - | ——— | =
( ) n<1—p§(1xz>0'§(1
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Properties OLS estimators in multiple regression model

If the four least squares assumptions in the multiple regression model hold:

e The OLS estimators Bo, 31 ey Bk are unbiased

E(/?,-) =B for j=0,..k

e The OLS estimators 30, 31 ey Bk are consistent

B 28 for j=0,...k

e The OLS estimators ,30, 31 S Bk are normally distributed in large
samples

EINN(ﬂj,U%j) for j=0,..,k



Multiple regression model: class size example

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>|t] [95% Conf. Interval]
class_size -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44  0.000 678.5602 719.3057

e |s the average causal effect of class size on test scores equal to -2.27?

e |s there omitted variable bias?



Multiple regression model: class size example

If we add the percentage of English learners as regressor in the regression
model we get:

. regress test_score class_size el_pct, robust

Linear regression Number of obs = 420
F(2, 417) = 223.82
Prob > F = 0.0000
R-squared = 0.4264
Root MSE = 14.464
Robust

test_score Coef. Std. Err. t P>]t] [95% Conf. Interval]
class_size -1.101296 .4328472 -2.54 0.011 -1.95213 -.2504616
el_pct -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786
_cons 686.0322 8.728224 78.60 0.000 668.8754 703.189

e Is the average causal effect of class size on test scores equal to -1.10?

e |s there omitted variable bias?



Multiple regression model: class size example

If we add the percentage of students eligible for a free lunch as regressor in
the regression model we get:

. regress test_score class_size el_pct meal_pct, robust

Linear regression Number of obs = 420
F(3, 416) = 453.48
Prob > F = 0.0000
R-squared = 0.7745
Root MSE = 9.0801
Robust

test_score Coef. Std. Err. t P>|t] [95% Conf. Interval]
class_size -.9983092 .2700799 -3.70 0.000 -1.529201 -.4674178
el_pct -.1215733 .0328317 -3.70 0.000 -.18611 -.0570366
meal_pct -.5473456 .0241072 -22.70 0.000 -.5947328 -.4999583
_cons 700.15 5.56845 125.74  0.000 689.2042 711.0958

e |s the average causal effect of class size on test scores equal to -0.997?

e |s there omitted variable bias?



Multiple regression model: class size example

If we add district average income as regressor in the regression model we
get:

. regress test_score class_size el_pct meal_pct avginc, robust

Linear regression Number of obs = 420
F(4, 415) = 467.42
Prob > F = 0.0000
R-squared = 0.8053
Root MSE = 8.4477
Robust

test_score Coef. Std. Err. t P>]t] [95% Conf. Interval]
class_size -.5603892 .2550641 -2.20 0.029 -1.061768 -.0590105
el_pct -.1943282 .0332445 -5.85 0.000 -.2596768 -.1289795
meal_pct -.3963661 .0302302 -13.11 0.000 -.4557895 -.3369427
avginc .674984 .0837161 8.06 0.000 -5104236 -8395444
_cons 675.6082 6.201865 108.94 0.000 663.4172 687.7992

e |s the average causal effect of class size on test scores equal to -0.567

e |s there omitted variable bias?



Multiple regression model: class size example

42

Dependent variable: district average test scores

1 2 3 4

Class size -2.280*** -1.101* -0.998*** -0.560**
(0.519) (0.433) (0.270) (0.255)

Percentage of English learners -0.650*** -0.122*** -0.194***
(0.031) (0.033) (0.033)

Percentage with free lunch -0.547*** -0.396***
(0.024) (0.030)

Average district income 0.675**
(0.084)

N 420 420 420 420




