ECON4150 - Introductory Econometrics

Lecture 8: Nonlinear Regression Functions

Monique de Haan
(moniqued@econ.uio.no)

Stock and Watson Chapter 8

Lecture outline

- What are nonlinear regression functions?
- Data set used during lecture.
- The effect of change in X_{1} on Y depends on X_{1}
- The effect of change in X_{1} on Y depends on another variable X_{2}

What are nonlinear regression functions?

So far you have seen the linear multiple regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}+u_{i}
$$

- The effect of a change in X_{j} by 1 is constant and equals β_{j}.

There are 2 types of nonlinear regression models
(1) Regression model that is a nonlinear function of the independent variables $X_{1 i}, \ldots . ., X_{k i}$

- Version of multiple regression model, can be estimated by OLS.
(2) Regression model that is a nonlinear function of the unknown coefficients $\beta_{0}, \beta_{1}, \ldots ., \beta_{k}$
- Can't be estimated by OLS, requires different estimation method.

This lecture we will only consider first type of nonlinear regression models.

What are nonlinear regression functions?

General formula for a nonlinear population regression model:

$$
Y_{i}=f\left(X_{1 i}, X_{2 i}, \ldots ., X_{k i}\right)+u_{i}
$$

Assumptions:
(1) $E\left(u i \mid X_{1 i}, X_{2 i}, \ldots, X_{k i}\right)=0$ (same); implies that f is the conditional expectation of Y given the X 's.
(2) $\left(X_{1 i}, \ldots, X_{k i}, Y_{i}\right)$ are i.i.d. (same).
(3) Big outliers are rare (same idea; the precise mathematical condition depends on the specific f).
(4) No perfect multicollinearity (same idea; the precise statement depends on the specific f).

What are nonlinear regression functions?

Two cases:
(1) The effect of change in X_{1} on Y depends on X_{1}

- for example: the effect of a change in class size is bigger when initial class size is small
(2) The effect of change in X_{1} on Y depends on another variable X_{2}
- For example: the effect of class size depends on the percentage of disadvantaged pupils in the class

We start with case 1 using a regression model with only 1 independent variable

$$
Y_{i}=f\left(X_{1 i}\right)+u_{i}
$$

What are nonlinear regression functions?

1. Linear model: constant slope

2. Nonlinear model: slope

3. Nonlinear model: slope

Data

Examples in this lecture are based on data from the CPS March 2009.

- Current Population Survey" (CPS) collects information on (among others) education, employment and earnings.
- Approximately 65,000 households are surveyed each month.
- We use a 1% sample which gives a data set with 602 observations .

Summary Statistics						
	Mean	SD	Min	Max	Nobs	
Average hourly earnings	21.65	12.63	2.77	86.54	602	
Years of education	13.88	2.43	6.00	20.00	602	
Age	42.91	11.19	21.00	64.00	602	
Gender (female=1)	0.39	0.49	0.00	1.00	602	

We will investigate the association between years of education and hourly earnings.

. regress hourlyearnings education, robust
Linear regression

$$
\begin{array}{rlr}
\text { Number of obs }= & 602 \\
\text { F }(1, ~ 600) & =108.34 \\
\text { Prob }>\text { F } & =0.0000 \\
\text { R-squared } & = & \mathbf{0 . 1 6 7 4} \\
\text { Root MSE } & =11.53
\end{array}
$$

| hourlyearn~s | Coef. | Std.Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] | |
| ---: | ---: | :---: | :---: | :---: | ---: | ---: | ---: |
| | $\mathbf{2 . 1 2 3 5 9}$ | $\mathbf{. 2 0 4 0 1 9 7}$ | $\mathbf{1 0 . 4 1}$ | $\mathbf{0 . 0 0 0}$ | $\mathbf{1 . 7 2 2 9 1 1}$ | $\mathbf{2 . 5 2 4 2 7}$ |
| _cons | $\mathbf{- 7 . 8 3 4 3 4 7}$ | $\mathbf{2 . 7 2 8 8 0 5}$ | $\mathbf{- 2 . 8 7}$ | $\mathbf{0 . 0 0 4}$ | $\mathbf{- 1 3 . 1 9 3 5 2}$ | $\mathbf{- 2 . 4 7 5 1 7 8}$ |

Linear model: interpretation

What is the effect of a change in education on average hourly earnings?

- When $E\left[u_{i} \mid X_{1 i}\right]=0 \longrightarrow E\left[Y_{i} \mid X_{1 i}\right]=\beta_{0}+\beta_{1} X_{1 i}$
- Taking the derivative of the conditional expectation w.r.t $X_{1 i}$ gives

$$
\frac{\partial E\left[Y_{i} \mid X_{1 i}\right]}{\partial X_{1 i}}=\beta_{1}
$$

- $\Delta \widehat{Y}=\left(\widehat{\beta}_{0}+\widehat{\beta}_{1}\left(X_{1}+\Delta X_{1}\right)\right)-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{1}\right)$

$$
=\widehat{\beta}_{1} \cdot \Delta X_{1}
$$

- An increase in years of education by 1 is expected to increase average hourly earnings by 2.12 dollars.

Polynomials

- If actual relationship is nonlinear with $f\left(X_{1 i}\right) \neq \beta_{0}+\beta_{1} X_{1 i}$ the linear model is misspecified and $E\left(u_{i} \mid X_{1 i}\right) \neq 0$.
- One way to specify a nonlinear regression is to use a polynomial in X.
- The polynomial regression model of degree r is

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{1 i}^{2}+\ldots+\beta_{r} X_{1 i}^{r}+u_{i}
$$

- A quadratic regression is a polynomial regression with $r=2$

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{1 i}^{2}+u_{i}
$$

- This is a multiple regression model with two regressors: $X_{1 i}$ and $X_{1 i}^{2}$

Linear regres					ber of obs = F(2, 599) Prob > F R-squared Root MSE		$\begin{array}{r} 602 \\ 62.56 \\ 0.0000 \\ 0.1837 \\ 11.426 \end{array}$
hourlyearn~s	Coef.	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf. I		val]
education	-3.004498	1.26951	-2.37	0.018	-5.49773		. 5112657
education2	. 1831323	. 0485472	3.77	0.000	. 0877889		. 2784757
_cons	26.98042	8.128804	3.32	0.001	11.01599		42.94484

Polynomials: interpretation

- When $E\left[u_{i} \mid X_{1 i}\right]=0 \longrightarrow E\left[Y_{i} \mid X_{1 i}\right]=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{1 i}^{2}+\ldots+\beta_{r} X_{1 i}^{r}$
- Taking the derivative of the conditional expectation w.r.t $X_{1 i}$ gives

$$
\frac{\partial E\left[Y_{i} \mid X_{1 i}\right]}{\partial X_{1 i}}=\beta_{1}+2 \beta_{2} X_{1 i}+\ldots+r \beta_{r} X_{1 i}^{r-1}
$$

- The predicted change in Y that is associated with a change in X_{1} :

$$
\begin{aligned}
\Delta \hat{Y} & =\widehat{f}\left(X_{1}+\Delta X_{1}\right)-\widehat{f}\left(X_{1}\right) \\
& =\left(\widehat{\beta}_{1}\left(X_{1}+\Delta X_{1}\right)+\ldots+\widehat{\beta}_{r}\left(X_{1}+\Delta X_{1}\right)^{r}\right)-\left(\widehat{\beta}_{1} X_{1}+\ldots+\widehat{\beta}_{r} X_{1}^{r}\right)
\end{aligned}
$$

Polynomials: interpretation

Linear regression

Number of obs $=$	$\mathbf{6 0 2}$	
F $(2, \quad 599)$	$=\mathbf{6 2 . 5 6}$	
Prob $>$ F	$=$	$\mathbf{0 . 0 0 0 0}$
R-squared	$=$	$\mathbf{0 . 1 8 3 7}$
Root MSE	$=$	$\mathbf{1 1 . 4 2 6}$

hourlyearn~s	Coef.	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
education	-3.004498	1.26951	-2.37	0.018	-5.49773	-. 5112657
education2	. 1831323	. 0485472	3.77	0.000	. 0877889	. 2784757
_cons	26.98042	8.128804	3.32	0.001	11.01599	42.94484

In the quadratic model the predicted change in hourly earnings when education increase from

10 to 11:
$\widehat{\triangle Y}=\left(26.98-3.00 \cdot 11+0.18 \cdot 11^{2}\right)-\left(26.98-3.00 \cdot 10+0.18 \cdot 10^{2}\right)=0.78$

15 to 16:

$\widehat{\triangle Y}=\left(26.98-3.00 \cdot 16+0.18 \cdot 16^{2}\right)-\left(26.98-3.00 \cdot 15+0.18 \cdot 15^{2}\right)=2.58$

Polynomials

- Is the quadratic model better than the linear model?
- We can test the null hypothesis that the regression function is linear against the alternative hypothesis that it is quadratic:

$$
H_{0}: \beta_{2}=0 \text { vs } H_{1}: \beta_{2} \neq 0
$$

- Obtain the t -statistic:

$$
t=\frac{\widehat{\beta}_{2}-0}{\widehat{S E}\left(\widehat{\beta}_{2}\right)}=\frac{0.183}{0.049}=3.77
$$

- Since $t=3.77>2.58$ we reject the null hypothesis (the linear model) at a 1% significance level
- We can include higher powers of $X_{1 i}$ in the regression model
- should we estimate a cubic regression model?

Polynomials

Linear regres			Number of obs $=$ F(3, 598 Prob > F R-squared Root MSE			$\begin{aligned} & = \\ & = \end{aligned}$	$\begin{array}{r} 602 \\ 55.01 \\ 0.0000 \\ 0.1933 \\ 11.368 \end{array}$
hourlyearn~s	Coef.	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]		
education	14.20664	5.252381	2.70	0.007	3.89128		24.52199
education2	-1.165764	. 437365	-2.67	0.008	-2.024722		. 3068056
education3	. 0338681	. 0115973	2.92	0.004	. 0110918		. 0566444
_cons	-43.01427	19.90841	-2.16	0.031	-82.11317		3.915365

Cubic versus quadratic model: $H_{0}: \beta_{3}=0$ vs $H_{1}: \beta_{3} \neq 0$

- $t=2.92>2.58 \longrightarrow H_{0}$ rejected at 1% significance level

Polynomials

Cubic versus linear model:

$$
H_{0}: \beta_{2}=0, \beta_{3}=0 \quad \text { vs } H_{1}: \beta_{2} \neq 0 \text { and } / \text { or } \beta_{2} \neq 0
$$

```
. test education2=education3=0
    ( 1) education2 - education3 = 0
    ( 2) education2 = 0
\[
\begin{aligned}
\text { F( } 2,598) & = \\
\text { Prob } \gg & =0.39 \\
& 0.0003
\end{aligned}
\]
```

- $F=8.39>4.61\left(F_{2, \infty}\right) \longrightarrow H_{0}$ rejected at 1% significance level

Logarithms

- Another way to specify a nonlinear regression model is to use the natural logarithm of Y and/or X.
- Using logarithms allows changes in variables to be interpreted in terms of percentages

$$
\ln (x+\Delta x)-\ln (x) \approx \frac{\Delta x}{x} \quad\left(\text { when } \frac{\Delta x}{x} \text { is small }\right)
$$

- We will consider 3 types of logarithmic regression models:
(1) The linear-log model

$$
Y_{i}=\beta_{0}+\beta_{1} \ln \left(X_{1 i}\right)+u_{i}
$$

(2) The log-linear model

$$
\ln \left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{1 i}+u_{i}
$$

(3) The log-log model

$$
\ln \left(Y_{i}\right)=\beta_{0}+\beta_{1} \ln \left(X_{1 i}\right)+u_{i}
$$

The linear-log model

		Robust				
hourlyearn~s	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
ln_education	$\mathbf{2 6 . 7 2 0 2 3}$	$\mathbf{2 . 7 0 1 8 4 4}$	$\mathbf{9 . 8 9}$	$\mathbf{0 . 0 0 0}$	$\mathbf{2 1 . 4 1 4 0 1}$	$\mathbf{3 2 . 0 2 6 4 5}$
_cons	$\mathbf{- 4 8 . 2 1 5 1}$	$\mathbf{6 . 9 4 2 6 8 3}$	$\mathbf{- 6 . 9 4}$	$\mathbf{0 . 0 0 0}$	$\mathbf{- 6 1 . 8 5 0 0 2}$	$\mathbf{- 3 4 . 5 8 0 1 9}$

The linear-log model: interpretation

- When $E\left[u_{i} \mid X_{1 i}\right]=0 \longrightarrow E\left[Y_{i} \mid X_{1 i}\right]=\beta_{0}+\beta_{1} \ln \left(X_{1 i}\right)$
- Taking the derivative of the conditional expectation w.r.t $X_{1 i}$ gives

$$
\frac{\partial E\left[Y_{i} \mid X_{1 i}\right]}{\partial X_{1 i}}=\beta_{1} \cdot \frac{1}{X_{1 i}}
$$

- Using that $\frac{\partial E\left[Y_{i} \mid X_{1 i}\right]}{\partial X_{1 i}} \approx \frac{\Delta E\left[Y_{i} \mid X_{1]}\right]}{\Delta X_{1 i}}$ for small changes in X_{1} and rewriting gives

$$
\Delta E\left[Y_{i} \mid X_{1 i}\right] \approx \beta_{1} \cdot \frac{\Delta X_{1 i}}{X_{1 i}}
$$

- Interpretation of β_{1} : A 1% change in $X_{1}\left(\frac{\Delta X_{1 i}}{X_{1 i}}=0.01\right)$ is associated with a change in Y of $0.01 \beta_{1}$
- A 1% increase in years of education is expected to increase average hourly earnings by 0.27 dollars

The log-linear model

The log-linear model: interpretation

$$
\ln \left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{1 i}+u_{i}
$$

- Suppose we have the following equation

$$
\ln (y)=a+b \cdot x
$$

- Taking the derivative of both sides of the equation (using the chain rule) gives

$$
\frac{1}{y} d y=b \cdot d x \quad \longrightarrow \quad 100 \cdot \frac{\Delta y}{y} \approx 100 \cdot b \cdot \Delta x
$$

- Interpretation of β_{1} : A change in X_{1} by one unit is associated with a $100 \cdot \beta_{1}$ percent change in Y
- An increase in years of education by 1 is expected to increase average hourly earnings by 9.3 percent.

The log-log model

Linear regres					$\begin{aligned} & \text { ber of obs = } \\ & \text { F(} 1,600) \\ & \text { Prob }>\text { F } \\ & \text { R-squared } \\ & \text { Root MSE } \end{aligned}$	$\begin{array}{r} = \\ = \\ = \\ = \end{array}$	$\begin{array}{r} 602 \\ 120.63 \\ 0.0000 \\ 0.1447 \\ .52989 \end{array}$
ln_hourlye~s	Coef.	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf. I	Inter	rval]
ln_education	1.190072	. 1083532	10.98	0.000	. 9772749		1.40287
_cons	-. 194417	. 2832781	-0.69	0.493	-. 7507542		. 3619202

The log-log model: interpretation

$$
\ln \left(Y_{i}\right)=\beta_{0}+\beta_{1} \ln \left(X_{1 i}\right)+u_{i}
$$

- Suppose we have the following equation

$$
\ln (y)=a+b \cdot \ln (x)
$$

- Taking the derivative of both sides of the equation (using the chain rule) gives

$$
\frac{1}{y} d y=b \cdot \frac{1}{x} d x \quad \longrightarrow \quad 100 \cdot \frac{\Delta y}{y} \approx 100 \cdot b \cdot \frac{\Delta x}{x}
$$

- Interpretation of β_{1} : A change in X_{1} by one percent is associated with a β_{1} percent change in Y
- An increase in years of education by 1 percent is expected to increase average hourly earnings by 1.2 percent.

Logarithms: which model fits the data best?

Difficult to decide which model fits data best.

- Sometimes you can compare the R^{2} (don't rely too much on this!)
- Linear-log model vs linear model:

$$
R_{\text {linear-log }}^{2}=0.1499<0.1674=R_{\text {linear }}^{2}
$$

- Log-linear model vs log-log model:

$$
R_{l o g-l i n e a r}^{2}=0.1571>0.1477=R_{l o g-l o g}^{2}
$$

- R^{2} can never be compared when dependent variables differ
- Look at scatter plots and compare graphs
- Use economic theory or expert knowledge
- Labor economist typically model earnings in logarithms and education in years
- Wage comparisons most often discussed in percentage terms.

Interactions

- So far we discussed nonlinear models with 1 independent variable $X_{1 i}$
- We now turn to models whereby the effect of $X_{1 i}$ depends on another variable $X_{2 i}$
- We discuss 3 cases:
(1) Interactions between two binary variables
(2) Interactions between a binary and a continuous variable
(3) Interactions between two continuous variables

Interpretation of a coefficient on a binary variable

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+u_{i}
$$

- Let $D_{1 i}$ equal 1 if an individual has more than a high school degree (years of education >12) and zero otherwise.

Linear regression			$\begin{aligned} & \text { Number of obs }= \\ & \text { F }(1, ~ 600)= \\ & \text { Prob F }= \\ & \text { R-squared }= \\ & \text { Root MSE }= \end{aligned}$			$\begin{array}{r} 602 \\ 58.09 \\ 0.0000 \\ 0.0723 \\ 12.171 \end{array}$
hourlyearnings	Coef.	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf.	erval]
more_highschool	7.172748	. 941093	7.62	0.000	5.324511	9.020984
_cons	16.89143	. 6626943	25.49	0.000	15.58995	18.19291

- $\widehat{\beta}_{0}=16.89$ is the average hourly earnings for individuals with a high school degree or less.
- $\widehat{\beta}_{0}+\widehat{\beta}_{1}=16.89+7.17=24.06$ is the average hourly earnings for individuals with more than a high school degree.

Interactions between two binary variables

- Effect of having more than a high school degree on earnings might differ between men and women
. regress hourlyearnings more_highschool if female==1, robust

. regress hourlyearnings more_highschool if female==0, robust

hourlyearnings	Coef.	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf. I	Interval]
more_highschool	9.671839	1.162783	8.32	0.000	7.385202	11.95848
_cons	18.01175	. 7031579	25.62	0.000	16.62898	19.39453

Interactions between two binary variables

- We can extend the model by including gender as an additional explanatory variable
- Let $D_{2 i}$ equal 1 for women and zero for men

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+u_{i}
$$

- This model allows the intercept to depend on gender
- intercept for men: β_{0}
- intercept for women: $\beta_{0}+\beta_{2}$

Interactions between two binary variables

Linear regression

Number of obs $=$	$\mathbf{6 0 2}$	
F $(2, ~ 599)$	$=44.33$	
Prob $>$ F	$=0.0000$	
R-squared	$=$	$\mathbf{0 . 1 4 1 3}$
Root MSE	$=11.719$	

hourlyearnings	Coef.	Robust	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]
	$\mathbf{8 . 1 3 6 0 4 7}$	$\mathbf{. 9 5 8 5 5 9 2}$	$\mathbf{8 . 4 9}$	$\mathbf{0 . 0 0 0}$	$\mathbf{6 . 2 5 3 5 0 1}$	$\mathbf{1 0 . 0 1 8 5 9}$
	$\mathbf{- 6 . 8 5 0 8 5}$	$\mathbf{1 . 0 0 1 3 3 5}$	$\mathbf{- 6 . 8 4}$	$\mathbf{0 . 0 0 0}$	$\mathbf{- 8 . 8 1 7 4 0 5}$	$\mathbf{- 4 . 8 8 4 2 9 6}$
_cons	$\mathbf{1 8 . 9 5 0 0 6}$	$\mathbf{. 6 8 8 7 3 7 6}$	$\mathbf{2 7 . 5 1}$	$\mathbf{0 . 0 0 0}$	$\mathbf{1 7 . 5 9 7 4 2}$	$\mathbf{2 0 . 3 0 2 6 9}$

- The above regression model assumes that the effect of $D_{1 i}$ is the same for men and women
- We can extend the model by allowing the effect $D_{1 i}$ to depend on gender by including the interaction between $D_{1 i}$ and $D_{2 i}$

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)+u_{i}
$$

Interactions between two binary variables

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)+u_{i}
$$

Linear regression

Number of obs =		$\mathbf{6 0 2}$
F $(3$,	$398)$	$=$
Prob F >0.93		
R-squared	$=0.0000$	
Root MSE	$=0.1476$	
	$=11.686$	

hourlyearnings	Coef.	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
more_highschool	9.671839	1.163464	8.31	0.000	7.386866	11.95681
female	-3.728292	1.591217	-2.34	0.019	-6.853346	-. 603238
interaction	-4.477087	2.024681	-2.21	0.027	-8.453438	-. 5007365
_cons	18.01175	. 7035701	25.60	0.000	16.62998	19.39352

- $\widehat{\beta}_{0}=18.01$ is average hourly earnings for men with a high school degree or less
- $\widehat{\beta}_{0}+\widehat{\beta}_{1}=18.01+9.67=27.68$ is average hourly earnings for men with more than a high school degree
- $\widehat{\beta}_{0}+\widehat{\beta}_{2}=18.01-3.72=14.29$ is average hourly earnings for women with a high school degree or less
- $\widehat{\beta}_{0}+\widehat{\beta}_{1}+\widehat{\beta}_{2}+\widehat{\beta}_{3}=18.01+9.67-3.72-4.48=19.48$ is average hourly earnings for women with more than a high school degree

Interaction between a continuous and a binary variable

- Consider the model $Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+u_{i}$ with $X_{1 i}$ the continuous variable years of education.
- The association between years of education and earnings might differ between men and women

Interaction between a continuous and a binary variable

(a) Different intercepts, same slope

(c) Same intercept, different slopes

(b) Different intercepts, different slopes

Interaction between a continuous and a binary variable

- Consider the following regression model with

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(X_{1 i} \times D_{2 i}\right)+u_{i}
$$

with $X_{1 i}$ years of education and $D_{2 i}$ the binary variable that equals 1 for women and 0 for men.

Linear regres			Number of obs $=$ F(3, 598 Prob > F R-squared Root MSE			$\begin{aligned} & = \\ & = \\ & = \end{aligned}$	$\begin{array}{r} 602 \\ 49.24 \\ 0.0000 \\ 0.2305 \\ 11.103 \end{array}$
hourlyearn~s	Coef.	Robust Std. Err.	t	$P>\|t\|$	\% Conf. Interval]		
education	2.307982	. 232958	9.91	0.000	1.850467		2.765498
female	-1.961744	6.225225	-0.32	0.753	-14.18771		10.26422
interaction	-. 3215831	. 45654	-0.70	0.481	-1.2182		. 5750335
_cons	-7.840784	3.038343	-2.58	0.010	-13.8079		1.873664

Interaction between a continuous and a binary variable

- Is the effect of education on earnings significantly different between men and women?

$$
H_{0}: \beta_{3}=0 \quad \text { vs } H_{1}: \beta_{3} \neq 0
$$

- Compute the t -statistic:

$$
t=\frac{-0.322}{0.457}=-0.70
$$

- $|t|=0.70<1.96 \longrightarrow H_{0}$ not rejected at 5% significance level
- Does gender matter?
. test female=interaction=0
(1) female - interaction $=0$
(2) female $=0$

$$
\begin{array}{rlrl}
F(\quad 2, & 598) & = & 25.23 \\
\text { Prob }>F & = & 0.0000
\end{array}
$$

Interaction between 2 continuous variables

- Multiple regression model with two continuous variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+u_{i}
$$

with $X_{1 i}$ years of education and $X_{2 i}$ age (in years).

Linear regression

| Number of obs $=$ | $\mathbf{6 0 2}$ |
| :---: | ---: | ---: |
| F $(2,599)$ | $=56.78$ |
| Prob F | $=0.0000$ |
| R-squared | $=0.1757$ |
| Root MSE | $=11.483$ |

- Earnings increase with age, estimated coefficient on age is significantly different from zero at 5\% level
- Does the effect of education on earnings depend on age?

Interaction between 2 continuous variables

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3}\left(X_{1 i} \times X_{2 i}\right)+u_{i}
$$

- Does the effect of education on earnings depend on age?
- $\widehat{\beta}_{3}=0.021$
- Compute the t-statistic:

$$
t=\frac{0.021}{0.016}=1.30
$$

- The coefficient on the interaction term between education and age is not significantly different from zero (at a $1 \%, 5 \%$ and 10% significance level)

Concluding remarks

- We discussed nonlinear regression models

$$
Y_{i}=f\left(X_{1 i}, X_{2 i}, \ldots ., X_{k i}\right)+u_{i}
$$

- Models that are nonlinear in the independent variables are variants of the multiple regression model
- and can therefore be estimated by OLS,
- t - and F-tests can be used to test hypothesis about the values of the coefficients,
- provided that the OLS assumptions hold (topic of next week)
- Often difficult to decide which (non)linear model best fits the data
- Make a scatter plot
- Use t- and F-tests
- Use economic knowledge and intuition.

