ECON4150 - Introductory Econometrics

Lecture 8: Nonlinear Regression Functions

Monique de Haan (moniqued@econ.uio.no)

Stock and Watson Chapter 8

- What are nonlinear regression functions?
- Data set used during lecture.
- The effect of change in X₁ on Y depends on X₁
- The effect of change in X₁ on Y depends on another variable X₂

What are nonlinear regression functions?

So far you have seen the linear multiple regression model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$$

• The effect of a change in X_j by 1 is constant and equals β_j .

There are 2 types of **nonlinear** regression models

- Regression model that is a nonlinear function of the independent variables X_{1i},, X_{ki}
 - Version of multiple regression model, can be estimated by OLS.
- 2 Regression model that is a nonlinear function of the unknown coefficients β₀, β₁,, β_k
 - Can't be estimated by OLS, requires different estimation method.

This lecture we will only consider first type of nonlinear regression models.

General formula for a nonlinear population regression model:

$$Y_i = f(X_{1i}, X_{2i},, X_{ki}) + u_i$$

Assumptions:

- E(ui|X_{1i}, X_{2i},..., X_{ki}) = 0 (same); implies that f is the conditional expectation of Y given the X's.
- **2** $(X_{1i}, \ldots, X_{ki}, Y_i)$ are i.i.d. (same).
- **3** Big outliers are rare (same idea; the precise mathematical condition depends on the specific *f*).
- On the specific f.

Two cases:

- **1** The effect of change in X_1 on Y depends on X_1
 - for example: the effect of a change in class size is bigger when initial class size is small
- 2 The effect of change in X_1 on Y depends on another variable X_2
 - For example: the effect of class size depends on the percentage of disadvantaged pupils in the class

We start with case 1 using a regression model with only 1 independent variable

$$Y_i = f(X_{1i}) + u_i$$

What are nonlinear regression functions?

6

Examples in this lecture are based on data from the CPS March 2009.

- Current Population Survey" (CPS) collects information on (among others) education, employment and earnings.
- Approximately 65,000 households are surveyed each month.
- We use a 1% sample which gives a data set with 602 observations .

C	buiiiiiaiy	Statistics	5		
	Mean	SD	Min	Max	Nobs
Average hourly earnings Years of education Age Gender (female=1)	21.65 13.88 42.91 0.39	12.63 2.43 11.19 0.49	2.77 6.00 21.00 0.00	86.54 20.00 64.00 1.00	602 602 602 602

Summary Statistics

We will investigate the association between years of education and hourly earnings.

. regress hourlyearnings education, robust

Linear regression

Number of obs =		602
F(1, 600)	=	108.34
Prob > F	=	0.0000
R-squared	=	0.1674
Root MSE	=	11.53

hourlyearn~s	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
education	2.12359	.2040197	10.41	0.000	1.722911	2.52427
_cons	-7.834347	2.728805	-2.87	0.004	-13.19352	-2.475178

What is the effect of a change in education on average hourly earnings?

- When $E[u_i|X_{1i}] = 0 \longrightarrow E[Y_i|X_{1i}] = \beta_0 + \beta_1 X_{1i}$
- Taking the derivative of the conditional expectation w.r.t X_{1i} gives

$$\frac{\partial E\left[Y_i|X_{1i}\right]}{\partial X_{1i}} = \beta_1$$

•
$$\Delta \widehat{Y} = (\widehat{\beta}_0 + \widehat{\beta}_1(X_1 + \triangle X_1)) - (\widehat{\beta}_0 + \widehat{\beta}_1 X_1)$$

= $\widehat{\beta}_1 \cdot \triangle X_1$

 An increase in years of education by 1 is expected to increase average hourly earnings by 2.12 dollars.

- If actual relationship is nonlinear with f(X_{1i}) ≠ β₀ + β₁X_{1i} the linear model is misspecified and E(u_i|X_{1i}) ≠ 0.
- One way to specify a nonlinear regression is to use a polynomial in X.
- The polynomial regression model of degree r is

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{1i}^{2} + \dots + \beta_{r}X_{1i}^{r} + u_{i}$$

• A quadratic regression is a polynomial regression with *r* = 2

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{1i}^{2} + u_{i}$$

This is a multiple regression model with two regressors: X_{1i} and X²_{1i}

regression

umber of obs =		602
F(2, 599)	=	62.56
Prob > F	=	0.0000
R-squared	=	0.1837
Root MSE	=	11.426

hourlyearn~s	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	terval]
education	-3.004498	1.26951	-2.37	0.018	-5.49773	5112657
education2	.1831323	.0485472	3.77	0.000	.0877889	.2784757
_cons	26.98042	8.128804	3.32	0.001	11.01599	42.94484

Polynomials: interpretation

- When $E[u_i|X_{1i}] = 0 \longrightarrow E[Y_i|X_{1i}] = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{1i}^2 + ... + \beta_r X_{1i}^r$
- Taking the derivative of the conditional expectation w.r.t X_{1i} gives

$$\frac{\partial E\left[Y_{i}|X_{1i}\right]}{\partial X_{1i}} = \beta_{1} + 2\beta_{2}X_{1i} + \dots + r\beta_{r}X_{1i}^{r-1}$$

• The predicted change in *Y* that is associated with a change in *X*₁:

$$\Delta \hat{Y} = \hat{f}(X_1 + \Delta X_1) - \hat{f}(X_1)$$

$$= \left(\hat{\beta}_1 \left(X_1 + \Delta X_1 \right) + \dots + \hat{\beta}_r \left(X_1 + \Delta X_1 \right)^r \right) - \left(\hat{\beta}_1 X_1 + \dots + \hat{\beta}_r X_1^r \right)$$

Linear regress	ion			Nu	mber of obs = F(2, 599) Prob > F R-squared Root MSE	= = =	602 62.56 0.0000 0.1837 11.426
hourlyearn~s	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nter	val]
education education2 _cons	-3.004498 .1831323 26.98042	1.26951 .0485472 8.128804	-2.37 3.77 3.32	0.018 0.000 0.001	-5.49773 .0877889 11.01599		.5112657 .2784757 42.94484

In the quadratic model the predicted change in hourly earnings when education increase from

10 to 11:

$$\widehat{\bigtriangleup Y} = \left(26.98 - 3.00 \cdot 11 + 0.18 \cdot 11^2\right) - \left(26.98 - 3.00 \cdot 10 + 0.18 \cdot 10^2\right) = 0.78$$

15 to 16:

$$\widehat{\bigtriangleup Y} = \left(26.98 - 3.00 \cdot 16 + 0.18 \cdot 16^2\right) - \left(26.98 - 3.00 \cdot 15 + 0.18 \cdot 15^2\right) = 2.58$$

- Is the quadratic model better than the linear model?
- We can test the null hypothesis that the regression function is linear against the alternative hypothesis that it is quadratic:

$$H_o: \beta_2 = 0 \quad vs \quad H_1: \beta_2 \neq 0$$

Obtain the t-statistic:

$$t = \frac{\widehat{\beta}_2 - 0}{\widehat{SE}(\widehat{\beta}_2)} = \frac{0.183}{0.049} = 3.77$$

- Since t = 3.77 > 2.58 we reject the null hypothesis (the linear model) at a 1% significance level
- We can include higher powers of X_{1i} in the regression model
 - should we estimate a cubic regression model?

Linear regress	ion			Nu	mber of obs = F(3, 598 Prob > F R-squared Root MSE) = = =	602 55.01 0.0000 0.1933 11.368
hourlyearn~s	Coef.	Robust Std. Err.	t	P> t	[95% Conf. 3	Inter	val]
education education2 education3 _cons	14.20664 -1.165764 .0338681 -43.01427	5.252381 .437365 .0115973 19.90841	2.70 -2.67 2.92 -2.16	0.007 0.008 0.004 0.031	3.89128 -2.024722 .0110918 -82.11317	-	24.52199 3068056 0566444 9.915365

Cubic versus quadratic model: H_o : $\beta_3 = 0$ vs H_1 : $\beta_3 \neq 0$

• $t = 2.92 > 2.58 \longrightarrow H_0$ rejected at 1% significance level

Cubic versus linear model:

 $H_o: \beta_2 = 0, \beta_3 = 0$ vs $H_1: \beta_2 \neq 0$ and/or $\beta_2 \neq 0$

```
. test education2=education3=0
( 1) education2 - education3 = 0
( 2) education2 = 0
F( 2, 598) = 8.39
Prob > F = 0.0003
```

• $F = 8.39 > 4.61(F_{2,\infty}) \longrightarrow H_0$ rejected at 1% significance level

- Another way to specify a nonlinear regression model is to use the natural logarithm of Y and/or X.
- Using logarithms allows changes in variables to be interpreted in terms of percentages

$$ln(x + \triangle x) - ln(x) \approx \frac{\triangle x}{x}$$
 (when $\frac{\triangle x}{x}$ is small)

• We will consider 3 types of logarithmic regression models:

1 The linear-log model

$$Y_i = \beta_0 + \beta_1 \ln(X_{1i}) + u_i$$

2 The log-linear model

$$ln(Y_i) = \beta_0 + \beta_1 X_{1i} + u_i$$

3 The log-log model

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_{1i}) + u_i$$

The linear-log model

Linear	regression
--------	------------

uncer	OT	008 =		002
F(1,	600)	=	97.80
Pro	b >	F	=	0.0000
R-s	qua	red	=	0.1499
Roo	t M	SE	=	11.651

hourlyearn~s	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
ln_education	26.72023	2.701844	9.89	0.000	21.41401	32.02645
_cons	-48.2151	6.942683	-6.94		-61.85002	-34.58019

The linear-log model: interpretation

- When $E[u_i|X_{1i}] = 0 \longrightarrow E[Y_i|X_{1i}] = \beta_0 + \beta_1 \ln(X_{1i})$
- Taking the derivative of the conditional expectation w.r.t X_{1i} gives

$$\frac{\partial E\left[Y_i|X_{1i}\right]}{\partial X_{1i}} = \beta_1 \cdot \frac{1}{X_{1i}}$$

- Using that $\frac{\partial E[Y_i|X_{1i}]}{\partial X_{1i}} \approx \frac{\Delta E[Y_i|X_{1i}]}{\Delta X_{1i}}$ for small changes in X_1 and rewriting gives $\Delta E[Y_i|X_{1i}] \approx \beta_1 \cdot \frac{\Delta X_{1i}}{X_{1i}}$
- Interpretation of β₁: A 1% change in X₁ (^{ΔX_{1j}}/_{X_{1j}} = 0.01) is associated with a change in Y of 0.01β₁
- A 1 % increase in years of education is expected to increase average hourly earnings by 0.27 dollars

The log-linear model

Number of obs	3 =	602
F(1,	600) =	139.52
Prob > F	=	0.0000
R-squared	=	0.1571
Root MSE	=	.52602

ln_hourlye~s	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
education	.0932827	.0078974	11.81	0.000	.0777728	.1087927
_cons	1.622094	.1112224	14.58		1.403662	1.840527

The log-linear model: interpretation

$$ln(Y_i) = \beta_0 + \beta_1 X_{1i} + u_i$$

Suppose we have the following equation

$$ln(y) = a + b \cdot x$$

 Taking the derivative of both sides of the equation (using the chain rule) gives

$$\frac{1}{y}dy = b \cdot dx \quad \longrightarrow \quad 100 \cdot \frac{\triangle y}{y} \approx 100 \cdot b \cdot \triangle x$$

- Interpretation of β₁: A change in X₁ by one unit is associated with a 100 · β₁ percent change in Y
- An increase in years of education by 1 is expected to increase average hourly earnings by 9.3 percent.

The log-log model

regression

umber of obs =		602
F(1, 600)	=	120.63
Prob > F	=	0.0000
R-squared	=	0.1447
Root MSE	=	.52989

ln_hourlye~s	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
ln_education	1.190072	.1083532	10.98	0.000	.9772749	1.40287
_cons	194417	.2832781	-0.69	0.493	7507542	.3619202

The log-log model: interpretation

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_{1i}) + u_i$$

Suppose we have the following equation

$$ln(y) = a + b \cdot ln(x)$$

 Taking the derivative of both sides of the equation (using the chain rule) gives

$$\frac{1}{y}dy = b \cdot \frac{1}{x}dx \quad \longrightarrow \quad 100 \cdot \frac{\triangle y}{y} \approx 100 \cdot b \cdot \frac{\triangle x}{x}$$

- Interpretation of β₁: A change in X₁ by one percent is associated with a β₁ percent change in Y
- An increase in years of education by 1 percent is expected to increase average hourly earnings by 1.2 percent.

Logarithms: which model fits the data best?

Difficult to decide which model fits data best.

- Sometimes you can compare the R² (don't rely too much on this!)
 - Linear-log model vs linear model:

$$R^2_{\mathit{linear-log}} = 0.1499 < 0.1674 = R^2_{\mathit{linear}}$$

• Log-linear model vs log-log model:

$$\textit{R}^2_{\textit{log-linear}} = 0.1571 > 0.1477 = \textit{R}^2_{\textit{log-log}}$$

- R² can never be compared when dependent variables differ
- Look at scatter plots and compare graphs
- Use economic theory or expert knowledge
 - Labor economist typically model earnings in logarithms and education in years
 - Wage comparisons most often discussed in percentage terms.

- So far we discussed nonlinear models with 1 independent variable X_{1i}
- We now turn to models whereby the effect of *X*_{1*i*} depends on another variable *X*_{2*i*}
- We discuss 3 cases:
- 1 Interactions between two binary variables
- Interactions between a binary and a continuous variable
- 3 Interactions between two continuous variables

Interpretation of a coefficient on a binary variable

 $Y_i = \beta_0 + \beta_1 D_{1i} + u_i$

• Let *D*_{1*i*} equal 1 if an individual has more than a high school degree (*years of education* > 12) and zero otherwise.

Linear regression				Number	of obs =		602
				F (1, 600)	=	58.09
				Pro	ob > F	=	0.0000
				R-s	squared	=	0.0723
				Roo	ot MSE	=	12.171
hourlyearnings	Coef.	Robust Std. Err.	t	P> t	[95% Conf		Interval]
more_highschool _cons	7.172748 16.89143	.941093 .6626943	7.62 25.49	0.000	5.3245 15.589		

- $\widehat{\beta}_0 = 16.89$ is the average hourly earnings for individuals with a high school degree or less.
- *β*₀ + *β*₁ = 16.89 + 7.17 = 24.06 is the average hourly earnings for individuals with more than a high school degree.

 Effect of having more than a high school degree on earnings might differ between men and women

. regress hourlyearnings more_highschool if female==1, robust

Linear regression

of	obs	=	237
1,	23	35) =	9.81
b >	F	=	0.0020
quar	ed	=	0.0400
t MS	Е	=	11.173
	l, b > quar		quared =

hourlyearnings	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
more_highschool	5.194752	1.658509	3.13	0.002	1.927306	8.462198
_cons	14.28346	1.428513	10.00		11.46913	17.09779

. regress hourlyearnings more_highschool if female==0, robust

Linear regression

Number of obs =		365
F(1, 363)	=	69.19
Prob > F	=	0.0000
R-squared	=	0.1343
Root MSE	=	12.007

hourlyearnings	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
more_highschool	9.671839	1.162783	8.32	0.000	7.385202	11.95848
_cons	18.01175	.7031579	25.62		16.62898	19.39453

- We can extend the model by including gender as an additional explanatory variable
- Let D_{2i} equal 1 for women and zero for men

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i$$

- · This model allows the intercept to depend on gender
 - intercept for men: β_0
 - intercept for women: $\beta_0 + \beta_2$

Linear regression				F(Pro R-s	ob > F squared	602 = 44.33 = 0.0000 = 0.1413 = 11.719
hourlyearnings	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
more_highschool female _cons	8.136047 -6.85085 18.95006	.9585592 1.001335 .6887376	8.49 -6.84 27.51	0.000 0.000 0.000	6.253503 -8.817403 17.59742	5 -4.884296

- The above regression model assumes that the effect of *D*_{1*i*} is the same for men and women
- We can extend the model by allowing the effect *D*_{1*i*} to depend on gender by including the interaction between *D*_{1*i*} and *D*_{2*i*}

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i$$

 $Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i$

Linear regression				F(Pro R-:	f of obs = 3, 598) = ob > F = squared = ot MSE =	602 30.93 0.0000 0.1476 11.686
hourlyearnings	Coef.	Robust Std. Err.	t	P> t	[95% Conf. 1	interval]
more_highschool female interaction _cons	9.671839 -3.728292 -4.477087 18.01175	1.163464 1.591217 2.024681 .7035701	8.31 -2.34 -2.21 25.60	0.000 0.019 0.027 0.000	7.386866 -6.853346 -8.453438 16.62998	11.95681 603238 5007365 19.39352

- $\hat{\beta}_0 = 18.01$ is average hourly earnings for men with a high school degree or less
- $\hat{\beta}_0 + \hat{\beta}_1 = 18.01 + 9.67 = 27.68$ is average hourly earnings for men with more than a high school degree
- $\hat{\beta}_0 + \hat{\beta}_2 = 18.01 3.72 = 14.29$ is average hourly earnings for women with a high school degree or less
- $\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3 = 18.01 + 9.67 3.72 4.48 = 19.48$ is average hourly earnings for women with more than a high school degree

- Consider the model $Y_i = \beta_0 + \beta_1 X_{1i} + u_i$ with X_{1i} the continuous variable years of education.
- The association between years of education and earnings might differ between men and women

X

(a) Different intercepts, same slope

(c) Same intercept, different slopes

Consider the following regression model with

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}D_{2i} + \beta_{3}(X_{1i} \times D_{2i}) + u_{i}$$

with X_{1i} years of education and D_{2i} the binary variable that equals 1 for women and 0 for men.

Linear regression

Number of obs =		602
F(3, 598)	=	49.24
Prob > F	=	0.0000
R-squared	=	0.2305
Root MSE	=	11.103

hourlyearn~s	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
education	2.307982	.232958	9.91	0.000	1.850467	2.765498
female	-1.961744	6.225225	-0.32	0.753	-14.18771	10.26422
interaction	3215831	.45654	-0.70	0.481	-1.2182	.5750335
_cons	-7.840784	3.038343	-2.58	0.010	-13.8079	-1.873664

 Is the effect of education on earnings significantly different between men and women?

$$H_0$$
: $\beta_3 = 0$ vs H_1 : $\beta_3 \neq 0$

Compute the t-statistic:

$$t = \frac{-0.322}{0.457} = -0.70$$

- $|t| = 0.70 < 1.96 \longrightarrow H_0$ not rejected at 5% significance level
- Does gender matter?

. test female=interaction=0

```
( 1) female - interaction = 0
( 2) female = 0
```

F(2, 598) = 25.23 Prob > F = 0.0000

Interaction between 2 continuous variables

• Multiple regression model with two continuous variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

with X_{1i} years of education and X_{2i} age (in years).

Linear regress	ion			Nu	mber of obs = F(2, 599) Prob > F R-squared Root MSE	$ \begin{array}{rcl} 602 \\ = & 56.78 \\ = & 0.0000 \\ = & 0.1757 \\ = & 11.483 \end{array} $
hourlyearn~s	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	iterval]
education age _cons	2.1041 .1024648 -11.96041	.2036148 .040181 3.22028	10.33 2.55 -3.71	0.000 0.011 0.000	1.704214 .0235521 -18.28482	2.503986 .1813776 -5.636

- Earnings increase with age, estimated coefficient on age is significantly different from zero at 5% level
- Does the effect of education on earnings depend on age?

Interaction between 2 continuous variables

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}(X_{1i} \times X_{2i}) + u_{i}$$

Linear regress	ion			Number of obs = F(3, 598) Prob > F R-squared Root MSE	602 = 38.28 = 0.0000 = 0.1777 = 11.478
hourlyearn~s	Coef.	Robust Std. Err.	t P>	t [95% Conf. In	nterval]
education age interaction _cons	1.195204 1857963 .0210578 .4588621	.7259149 .2091314 .0161605 9.413582	-0.89 0 1.30 0	0.1002304487 0.3755965175 0.1930106804 0.961 -18.02884	2.620856 .2249249 .052796 18.94656

Does the effect of education on earnings depend on age?

• $\hat{\beta}_3 = 0.021$

Compute the t-statistic:

$$t = \frac{0.021}{0.016} = 1.30$$

 The coefficient on the interaction term between education and age is not significantly different from zero (at a 1%, 5% and 10% significance level)

Concluding remarks

· We discussed nonlinear regression models

$$Y_i = f(X_{1i}, X_{2i}, ..., X_{ki}) + u_i$$

- Models that are nonlinear in the independent variables are variants of the multiple regression model
 - and can therefore be estimated by OLS,
 - t- and F-tests can be used to test hypothesis about the values of the coefficients,
 - provided that the OLS assumptions hold (topic of next week)
- Often difficult to decide which (non)linear model best fits the data
 - Make a scatter plot
 - Use t- and F-tests
 - Use economic knowledge and intuition.