Jo Thori Lind Fall 2009

Some exercises for ECON4160

- 1. Consider the simple linear regression $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - (a) Obtain formulae for $\hat{\beta}_0$ and $\hat{\beta}_1$ from the general expression $\hat{\beta} = (X'X)^{-1}X'y$
 - (b) Obtain formulae for $var\left(\hat{\beta}_{0}\right)$, $var\left(\hat{\beta}_{1}\right)$, and $cov\left(\hat{\beta}_{0},\hat{\beta}_{1}\right)$
- 2. In the regression model $y = X\beta + \varepsilon$, where X in a $N \times K$ matrix, what is the effect on the OLS estimates if
 - (a) explanatory variable k is multiplied by a constant λ . What does this tell us of the effect of measuring a variable in NOK or 1000 NOK.
 - (b) a constant α is added to explanatory variable k.
- 3. Consider the formulation $y_t = \beta_0 + \beta_1 x_{1t} + \ldots + \beta_k x_{Kt} + \varepsilon_t = \beta' x_t + \varepsilon_t$ where x_t is a $K \times 1$ vector for each time period t.
 - (a) Show that the first difference formulation $\Delta y_t = \Delta \beta_1 x_{1t} + \ldots + \Delta \beta_k x_{Kt} + \Delta \varepsilon_t = \beta' \Delta x_t + \Delta \varepsilon_t$ where $\Delta y_t = y_t y_{t-1}$ and so on, can be written in the form $Ay = AX\beta + A\varepsilon$ where A is a $(T-1) \times T$ matrix (i.e. find A). Show that Ai = 0 where i is a vector of ones.
 - (b) Show using the Gauss-Markov theorem that estimation based on $Ay = AX\beta + A\varepsilon$ is less efficient than extimation based on $y = X\beta + \varepsilon$. Find the variance of the estimated parameters using the two approaches and compare.
- 4. [†] Consider the regression mode $y = S\beta_1 + X_2\beta_2 + \varepsilon$ with T quarterly observations (so T is a multiple of 4) and S a $T \times 4$ matrix of quarterly dummies $(d_{1t}, d_{2t}, d_{3t}, d_{4t})$ where d_{1t} is 1 in quarter 1 and zero otherwise and so on.

(a) Show that S can be written as

$$S = \begin{pmatrix} I_4 \\ I_4 \\ \vdots \\ I_4 \end{pmatrix}$$

where I_4 is the 4 × 4 identity matrix. (Extremists can also try to show that $S = i_{T/4} \otimes I_4$ where \otimes is the Kronecker product and $i_{T/4}$ is a T/4 vector of ones¹, but this is very optional). Hence show that

$$S'S = \frac{T}{4}I_4$$

(b) Consider a (not related) $T \times 1$ vector z. Define $z_1^* = (z_1 \ z_2 \ x_3 \ z_4)', \ z_2^* = (z_5 \ z_6 \ z_7 \ z_8)',$ and so on. Show that

$$S'z = z_1^* + z_2^* + \ldots + x_{T/4}^* = \frac{T}{4} \begin{pmatrix} \bar{z}_1 \\ \bar{z}_2 \\ \bar{z}_3 \\ \bar{z}_4 \end{pmatrix}$$

where \bar{z}_i is the average for the *i*'th quarter

- (c) Construct the "deseasonalizing" transformation $M_S = I_T S (S'S)^{-1} S'$, and show that the effect of pre-multiplying a vector z is to change z into a vector where each element is the deviation from the quarterly average \bar{z}_i .
- (d) Use this result to show that the vector β_2 can equivalently be estimated from a regression of quarterly deseasonalized y on quarterly deseasonalized X (Hint: Frisch-Waugh)

In Greene:

Ch. 3, Ex. 3, 4, 10;
Ch 4, Ex. 1, 7, 12[†], 14[†];
Ch. 5, Ex. 1, 2;
Ch. 8, Ex. 1, 9, 10, 12
[†] denotes more difficult exercises

¹Notice that there was a typo here in an earlier version