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Contents and Notation 
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In the solutions, we denote: 
 
 •  scalar values with italic, lower case letters, as in a,  
 •  column vectors with boldface lower case letters, as in b, 
 •  row vectors as transposed column vectors, as in b′, 
 • matrices with boldface upper case letters, as in M or Σ, 
 • single population parameters with Greek letters, as in θ, 
 • sample estimates of parameters with Roman letters, as in b as an estimate of β, 
 • sample estimates of population parameters with a caret, as in ˆˆ or α β , 
 • cross section observations with subscript i, as in yi, 
    time series observations with subscript t, as in zt and  
    panel data observations with xit or xi,t-1 when the comma is needed to remove ambiguity.  
    Observations that are vectors are denoted likewise, for example, xit to denote a column vector of  
    observations. 
 
These are consistent with the notation used in the text. 
 
 



Chapter 1 
 

Introduction 
 
 
There are no exercises or applications in Chapter 1. 
 



Chapter 2 
 

The Classical Multiple Linear 
Regression Model 
 
 
There are no exercises or applications in Chapter 2. 
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Chapter 3 
 

Least Squares 
 

Exercises 
 

1. Let 
11

... ...
1 n

x

x

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

X .  

(a) The normal equations are given by (3-12), =X'e 0 (we drop the minus sign), hence for each of the 
columns of X, xk, we know that xk′e = 0. This implies that 1 0n

i ie=Σ = and 1 0n
i i ix e=Σ = .  

(b) Use  to conclude from the first normal equation that 1
n
i ie=Σ a y bx= − . 

(c) We know that  and 1 0n
i ie=Σ = 1 0n

i i ix e=Σ = . It follows then that 1( )n
i i ix x e= 0Σ − = because 

1 1 0n n
i i i ixe x e= =Σ = Σ = . Substitute ei to obtain  

1( )( )n
i i i ix x y a bx=Σ − − − = 0  or 1( )( ( ))n

i i i ix x y y b x x=Σ − − − − = 0  

Then, 1
1 1 2

1

( )(
( )( ) ( )( )) so 

( )

n
n n i i i
i i i i i i n

i i

)
.

x x y y
x x y y b x x x x b

x x
=

= =
=

Σ − −
Σ − − = Σ − − =

Σ −
 

(d) The first derivative vector of e′e is -2X′e.  (The normal equations.)  The second derivative matrix is 
∂2(e′e)/∂b∂b′ = 2X′X.  We need to show that this matrix is positive definite.  The diagonal elements are 2n 
and 2 2

1
n
i ix=Σ which are clearly both positive.  The determinant is (2n)( 2

12 n
i ix=Σ )-( 12 n

i ix=Σ )2  
= -4(2

14 n
i in x=Σ nx )2 = 2 2

1 1
2( ) ] 4 [( ( ) ]n n

i i i in x nx n x x= =Σ − = Σ −4 [ .  Note that a much simpler proof appears after 
(3-6). 
 
2.  Write c as b + (c - b).  Then, the sum of squared residuals based on c is 
(y - Xc)′(y - Xc) = [y - X(b + (c - b))] ′[y - X(b + (c - b))] = [(y - Xb) + X(c - b)] ′[(y - Xb) + X(c - b)] 
   =  (y - Xb) ′(y - Xb) + (c - b) ′X′X(c - b) +  2(c - b) ′X′(y - Xb). 
But, the third term is zero, as  2(c - b) ′X′(y - Xb) =  2(c - b)X′e  =  0.  Therefore,  
   (y - Xc) ′(y - Xc) = e′e + (c - b) ′X′X(c - b) 
or         (y - Xc) ′(y - Xc) - e′e  =  (c - b) ′X′X(c - b). 
The right hand side can be written as d′d where d = X(c - b), so it is necessarily positive.  This confirms what 
we knew at the outset, least squares is least squares.  
 
3. The residual vector in the regression of y on X is MXy  =  [I - X(X′X)-1X′]y.  The residual vector in the 
regression of y on Z is 
  MZy   =  [I - Z(Z′Z)-1Z′]y      
   =  [I - XP((XP)′(XP))-1(XP)′)y  
         =  [I - XPP-1(X′X)-1(P′)-1P′X′)y   
   =  MXy 
Since the residual vectors are identical, the fits must be as well.  Changing the units of measurement of the 
regressors is equivalent to postmultiplying by a diagonal P matrix whose kth diagonal element is the scale 
factor to be applied to the kth variable (1 if it is to be unchanged).  It follows from the result above that this 
will not change the fit of the regression.  
 
4.  In the regression of y on i and X, the coefficients on X are  b  =  (X′M0X)-1X′M0y.  M0  =  I - i(i′i)-1i′ is the 
matrix which transforms observations into deviations from their column means. Since M0 is idempotent and 
symmetric we may also write the preceding as  [(X′M0′)(M0X)]-1(X′M0′)(M0y) which implies that the 
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regression of M0y on M0X produces the least squares slopes.  If only X is transformed to deviations, we 
would compute [(X′M0′)(M0X)]-1(X′M0′)y  but, of course, this is identical.  However, if only y is transformed, 
the result is (X′X)-1X′M0y which is likely to be quite different.    
 
5. What is the result of the matrix product M1M where M1 is defined in (3-19) and M is defined in (3-14)? 
  M1M = (I - X1(X1′X1)-1X1′)(I - X(X′X)-1X′)  =  M - X1(X1′X1)-1X1′M 
There is no need to multiply out the second term.  Each column of MX1 is the vector of residuals in the 
regression of the corresponding column of X1 on all of the columns in X.  Since that x is one of the columns in 
X, this regression provides a perfect fit, so the residuals are zero.  Thus, MX1 is a matrix of zeroes which 
implies that M1M = M.  
 
6.  The original X matrix has n rows.  We add an additional row, xs′.  The new y vector likewise has an 

additional element.  Thus, , , and .n
n s n s

s sy
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

X ny
X y

x
  The new coefficient vector is 

 bn,s = (Xn,s′ Xn,s)-1(Xn,s′yn,s).  The matrix is Xn,s′Xn,s = Xn′Xn + xsxs′.  To invert this, use (A -66); 

 1 1 1
, , 1

1( ) ( ) ( ) ( )
1 ( )n s n s n n n n s s n n

s n n s

− − −
−

′ ′ ′ ′ ′= −
′ ′+

X X X X X X x x X X
x X X x

1− .  The vector is 

 (Xn,s′yn,s) = (Xn′yn) + xsys.  Multiply out the four terms to get 
 
 (Xn,s′ Xn,s)-1(Xn,s′yn,s) =  

   bn – 1
1

1 ( )
1 ( ) n n s s n

s n n s

−
−

′ ′
′ ′+

X X x x b
x X X x

+ 1( )n n
−′X X  xsys 1 1

1

1 ( ) ( )
1 ( ) n n s s n n

s n n s

− −
−

′ ′ ′−
′ ′+

X X x x X X
x X X x

 xsys  

=  

   bn +  xsys –  1( )n n
−′X X

1
1

1

( )
( )

1 ( )
s n n s

n n s s
s n n s

y
−

−
−

′ ′
′

′ ′+
x X X x

X X x
x X X x

– 1
1

1 ( )
1 ( ) n n s s n

s n n s

−
−

′ ′
′ ′+

X X x x b
x X X x
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1
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−
−

′ ′
′−
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x X X x
X X x

x X X x
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1 ( ) n n s s s n
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−

′ ′−
′ ′+

X X x x b
x X X x

)  

 

7. Define the data matrix as follows:    (The subscripts 

on the parts of y refer to the “observed” and “missing” rows of X.  We will use Frish-Waugh to obtain the first 
two columns of the least squares coefficient vector.  b =(X ′M X )-1(X ′M y).  Multiplying it out, we find that  

[ ]1 1 2,  and .
1 0 1 1

o

my
⎡ ⎤⎡ ⎤ ⎡ ⎤

= = = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

yi x 0 0
X X X X y

1 1 2 1 1 2
M2 = an identity matrix save for the last diagonal element that is equal to 0. 

X1′M2X1 = .  This just drops the last observation.  X1′M2y is computed likewise.  Thus, 

the coeffients on the first two columns are the same as if y0 had been linearly regressed on X1.  The 
denomonator of R2 is different for the two cases (drop the observation or keep it with zero fill and the dummy 
variable).  For the first strategy, the mean of the n-1 observations should be different from the mean of the full 
n unless the last observation happens to equal the mean of the first n-1. 

1 1 1 11
⎡ ⎤′ ′− ⎢ ⎥′⎣ ⎦

0 0
X X X X

0

    For the second strategy, replacing the missing value with the mean of the other n-1 observations, we can 
deduce the new slope vector logically.  Using Frisch-Waugh, we can replace the column of x’s with deviations 
from the means, which then turns the last observation to zero.  Thus, once again, the coefficient on the x 
equals what it is using the earlier strategy.  The constant term will be the same as well. 
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8.  For convenience, reorder the variables so that X  =  [i, Pd, Pn, Ps, Y].  The three dependent variables are Ed, 
En, and Es, and Y  = Ed + En + Es.  The coefficient vectors are 
  bd  =  (X′X)-1X′Ed,    
  bn  =  (X′X)-1X′En, and   
  bs  =  (X′X)-1X′Es. 
The sum of the three vectors is 
  b   =  (X′X)-1X′[Ed + En + Es]  =  (X′X)-1X′Y. 
Now, Y is the last column of X, so the preceding sum is the vector of least squares coefficients in the 
regression of the last column of X on all of the columns of X, including the last.  Of course, we get a perfect 
fit.  In addition, X′[Ed + En + Es] is the last column of X′X, so the matrix product is equal to the last column of 
an identity matrix. Thus, the sum of the coefficients on all variables except income is 0, while that on income 
is 1.  
 
9.  Let RK

2  denote the adjusted R2 in the full regression on K variables including xk, and let R1
2 denote the 

adjusted R2 in the short regression on K-1 variables when xk is omitted.  Let and denote their 
unadjusted counterparts.  Then, 

RK
2 R1

2

   =  1  -  e′e/y′M0y RK
2

   =  1  -  e1′e1/y′M0y R1
2

where e′e is the sum of squared residuals in the full regression, e1′e1 is the (larger) sum of squared residuals in 
the regression which omits xk, and y′M0y = Σi (yi - y )2 

Then,   RK
2 =  1  -  [(n-1)/(n-K)](1 - ) RK

2

and   R1
2 =  1  -  [(n-1)/(n-(K-1))](1 - ). R1

2

The difference is the change in the adjusted R2 when xk is added to the regression, 
   RK

2 -  R1
2 =  [(n-1)/(n-K+1)][e1′e1/y′M0y] - [(n-1)/(n-K)][e′e/y′M0y]. 

The difference is positive if and only if the ratio is greater than 1.  After cancelling terms, we require for the 
adjusted R2 to increase that e1′e1/(n-K+1)]/[(n-K)/e′e]  >  1.  From the previous problem, we have that e1′e1  =  
e′e  +  bK

2(xk′M1xk), where M1 is defined above and bk is the least squares coefficient in the full regression of y 
on X1 and xk. Making the substitution, we require [(e′e  +  bK

2(xk′M1xk))(n-K)]/[(n-K)e′e  +  e′e]  >  1.  Since 
e′e  =  (n-K)s2, this simplifies to [e′e  +  bK

2(xk′M1xk)]/[e′e  +  s2]  >  1.  Since all terms are positive, the fraction 
is greater than one if and only bK

2(xk′M1xk)  >  s2  or  bK
2(xk′M1xk/s2)  >  1.  The denominator is the estimated 

variance of bk, so the result is proved.  
 
10.  This R2 must be lower.  The sum of squares associated with the coefficient vector which omits the 
constant term must be higher than the one which includes it.  We can write the coefficient vector in the 
regression without a constant as c  =  (0,b*) where b*  =  (W′W)-1W′y, with W being the other K-1 columns of 
X.  Then, the result of the previous exercise applies directly.  
 
11.  We use the notation ‘Var[.]’ and ‘Cov[.]’ to indicate the sample variances and covariances.  Our 
information is   Var[N] = 1,  Var[D] = 1, Var[Y] = 1. 
Since C = N + D, Var[C] = Var[N] + Var[D] + 2Cov[N,D]  =  2(1 + Cov[N,D]). 
From the regressions, we have 
   Cov[C,Y]/Var[Y] = Cov[C,Y] = .8. 
But,   Cov[C,Y] = Cov[N,Y] + Cov[D,Y]. 
Also,   Cov[C,N]/Var[N] = Cov[C,N] = .5, 
but,   Cov[C,N] = Var[N] + Cov[N,D]  =  1 + Cov[N,D], so Cov[N,D] = -.5, 
so that   Var[C] = 2(1 + -.5) = 1. 
And,   Cov[D,Y]/Var[Y] = Cov[D,Y] = .4. 
Since          Cov[C,Y] = .8 = Cov[N,Y] + Cov[D,Y],  Cov[N,Y] = .4. 
Finally,      Cov[C,D] = Cov[N,D] + Var[D] = -.5 + 1 = .5. 
Now, in the regression of C on D, the sum of squared residuals is (n-1){Var[C] - (Cov[C,D]/Var[D])2Var[D]} 
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based on the general regression result Σe2 =  Σ(yi - y )2  - b2Σ(xi - x )2.  All of the necessary figures were 
obtained above.  Inserting these and n-1 = 20 produces a sum of squared residuals of 15. 
 
12.  The relevant submatrices to be used in the calculations are 
         Investment    Constant     GNP     Interest 
 Investment        *   3.0500    3.9926  23.521 
 Constant                    15      19.310      111.79 
 GNP                                    25.218      148.98 
 Interest                                         943.86 
The inverse of the lower right 3×3 block is (X′X)-1, 
     7.5874  
   (X′X)-1  =    -7.41859      7.84078 
       .27313   -.598953 .06254637 
The coefficient vector is   b  =  (X′X)-1X′y  =  (-.0727985, .235622, -.00364866)′.  The total sum of squares is 
y′y = .63652, so we can obtain  e′e  =  y′y  -  b′X′y.  X′y is given in the top row of the matrix.  Making the 
substitution, we obtain e′e  =  .63652 - .63291  =  .00361.  To compute R2, we require Σi (xi - y )2  =   
.63652  -  15(3.05/15)2  =  .01635333, so R2  =  1   -   .00361/.0163533  =  .77925. 
 
13.  The results cannot be correct.  Since log S/N = log S/Y + log Y/N by simple, exact algebra, the same 
result must apply to the least squares regression results.  That means that the second equation estimated 
must equal the first one plus log Y/N.  Looking at the equations, that means that all of the coefficients 
would have to be identical save for the second, which would have to equal its counterpart in the first 
equation, plus 1.  Therefore, the results cannot be correct.  In an exchange between Leff and Arthur 
Goldberger that appeared later in the same journal, Leff argued that the difference was simple rounding 
error.  You can see that the results in the second equation resemble those in the first, but not enough so that 
the explanation is credible.  Further discussion about the data themselves appeared in subsequent 
idscussion.  [See Goldberger (1973) and Leff (1973).] 
 
14.  A proof of Theorem 3.1 provides a general statement of the observation made after (3-8). The 
counterpart for a multiple regression to the normal equations preceding (3-7) is 

 

1 2 2 3 3
2

1 2 2 2 3 2 3 2 2

2
1 2 2 3 3

...

...
...

...

                    

      
                                  

    

i i i i K i iK i i

i i i i i i i K i i iK i i i

i iK i iK i i iK i K i iK i i

b n b x b x b x y

b x b x b x x b x x x y

b x b x x b x x b x x

+ Σ + Σ + + Σ = Σ

Σ + Σ + Σ + + Σ = Σ

Σ + Σ + Σ + + Σ = Σ .K iy

 

As before, divide the first equation by n, and manipulate to obtain the solution for the constant term, 
1 2 2 ... K Kb y b x b x= − − − .  Substitute this into the equations above, and rearrange once again to obtain the 

equations for the slopes, 

        

2
2 2 2 3 2 2 3 3 2 2 2 2

2
2 3 3 2 2 3 3 3 3 3 3 3

( ) ( )( ) ... ( )( ) ( )(

( )( ) ( ) ... ( )( ) ( )(

   

   
                                          

i i i i i K i i iK K i i i

i i i i i K i i iK K i i i

b x x b x x x x b x x x x x x y y

b x x x x b x x b x x x x x x y y

Σ − + Σ − − + + Σ − − = Σ − −

Σ − − + Σ − + + Σ − − = Σ − −

)

)

2
2 2 2 3 3 3

...
( )( ) ( )( ) ... ( ) ( )(

                         
 i iK K i i iK K i K i iK K i iK K ib x x x x b x x x x b x x x x y yΣ − − + Σ − − + + Σ − = Σ − − ).

 

If the variables are uncorrelated, then all cross product terms of the form ( )(i ij j ik k )x x x xΣ − − will equal 
zero.  This leaves the solution, 

 

2
2 2 2 2 2

2
3 3 3 3 3

2

( ) ( )(

( ) ( )( )
...

( ) ( )(

 

 
i i i i i

i i i i i

K i iK K i iK K i

b x x x x y y

b x x x x y y

b x x x x y y

Σ − = Σ − −

Σ − = Σ − −

Σ − = Σ − −

)

),

 

 

which can be solved one equation at a time for  

[ ] 2( )( ) ( )k i ik k i i ik kb x x y y x x⎡ ⎤= Σ − − Σ −⎣ ⎦ , k = 2,...,K. 
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Each of these is the slope coefficient in the simple of y on the respective variable. 
 

================================================= 
 1 

hered,sibs$ 
================================= 

---+----------+ 
>t]| Mean of X| 

---+----------+ 
>t]| Mean of X| 

Application  
 
?======================
 Chapter 3 Application?

?======================================================================= 
Read $ 
(Data appear in the text.) 

t ; X1 = one,educ,exp,ability$ Namelis
Namelist ; X2 = mothered,fat
?======================================
? a. 
?======================================================================= 

ss  ; Lhs = wage ; Rhs = x1$ Regre
+----------------------------------------------------+ 

sion               | | Ordinary    least squares regres
| LHS=WAGE     Mean                 =   2.059333     | 
|              Standard deviation   =   .2583869     | 
| WTS=none     Number of observs.   =         15     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =         11     | 
| Residuals    Sum of squares       =   .7633163     | 
|              Standard error of e  =   .2634244     | 
| Fit          R-squared            =   .1833511     | 
|              Adjusted R-squared   =  -.3937136E-01 | 
| Model test   F[  3,    11] (prob) =    .82 (.5080) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+-----
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.66364000       .61855318     2.690   .0210 
 EDUC    |     .01453897       .04902149      .297   .7723   12.8666667 

  2.80000000  EXP     |     .07103002       .04803415     1.479   .1673 
 ABILITY |     .02661537       .09911731      .269   .7933    .36600000 
?======================================================================= 
? b. 
?======================================================================= 

ss  ; Lhs = wage ; Rhs = x1,x2$ Regre
+----------------------------------------------------+ 

n               | | Ordinary    least squares regressio
| LHS=WAGE     Mean                 =   2.059333     | 
|              Standard deviation   =   .2583869     | 
| WTS=none     Number of observs.   =         15     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =          8     | 
| Residuals    Sum of squares       =   .4522662     | 
|              Standard error of e  =   .2377673     | 
| Fit          R-squared            =   .5161341     | 
|              Adjusted R-squared   =   .1532347     | 
| Model test   F[  6,     8] (prob) =   1.42 (.3140) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+-----
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .04899633       .94880761      .052   .9601 
 EDUC    |     .02582213       .04468592      .578   .5793   12.8666667 

  2.80000000  EXP     |     .10339125       .04734541     2.184   .0605 
 ABILITY |     .03074355       .12120133      .254   .8062    .36600000 
 MOTHERED|     .10163069       .07017502     1.448   .1856   12.0666667 
 FATHERED|     .00164437       .04464910      .037   .9715   12.6666667 
 SIBS    |     .05916922       .06901801      .857   .4162   2.20000000 
?======================================================================= 
? c. 
?======================================================================= 
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Regress  ; Lhs = mothered ; Rhs = x1 ; Res = meds $  
Regress  ; Lhs = fathered ; Rhs = x1 ; Res = feds $  
Regress  ; Lhs = sibs     ; Rhs = x1 ; Res = sibss $  
Namelist ; X2S = meds,feds,sibss $ 
Matrix   ; list ; Mean(X2S) $ 

olumns. Matrix Result   has  3 rows and  1 c
               1 
        +-------------- 
       1| -.1184238D-14 
       2|  .1657933D-14 
       3| -.5921189D-16 
The means are (essentially) zero.  The sums must be zero, as these new variables 

) $ 
0*X*b12 $ 

12 $ 
ym0y * e'e $ 

od of computation. 

*X0'*M0*X0*b120 $ 

*b120 $ 
y * e0'e0 $ 

ow it is computed.  It also goes up, 

---+----------+ 

are orthogonal to the columns of X1. The first column in X1 is a column of ones, 
so this means that these residuals must sum to zero. 
?======================================================================= 
? d.  
?======================================================================= 
Namelist ; X = X1,X2 $ 
Matrix   ; i = init(n,1,1) $ 

*i*i' $ Matrix   ; M0 = iden(n) - 1/n
Matrix   ; b12 = <X'X>*X'wage$ 
Calc     ; list ; ym0y =(N-1)*var(wage
Matrix   ; list ; cod = 1/ym0y * b12'*X'*M
Matrix COD      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|     .51613 
Matrix   ; e = wage - X*b
Calc     ; list ; cod = 1 - 1/
+------------------------------------+ 
 COD     =       .516134 

ethThe R squared is the same using either m
Calc     ; list ; RsqAd = 1 - (n-1)/(n-col(x))*(1-cod)$ 
+------------------------------------+ 
 RSQAD   =       .153235 
? Now drop the constant 

bility,X2 $ Namelist ; X0 = educ,exp,a
Matrix   ; i = init(n,1,1) $ 
Matrix   ; M0 = iden(n) - 1/n*i*i' $ 
Matrix   ; b120 = <X0'X0>*X0'wage$ 
Matrix   ; list ; cod = 1/ym0y * b120'
Matrix COD      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|     .52953 
Matrix   ; e0 = wage - X0
Calc     ; list ; cod = 1 - 1/ym0
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 COD     =       .515973 
The R squared now changes depending on h
completely artificially. 
?======================================================================= 
? e. 
?======================================================================= 
The R squared for the full regression appears immediately below. 
? f. 
Regress ; Lhs = wage ; Rhs = X1,X2 $ 

----------------+ +------------------------------------
| Ordinary    least squares regression               | 
| WTS=none     Number of observs.   =         15     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =          8     | 
| Fit          R-squared            =   .5161341     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+-----
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|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .04899633       .94880761      .052   .9601 
 EDUC    |     .02582213       .04468592      .578   .5793   12.8666667 
 EXP     |     .10339125       .04734541     2.184   .0605   2.80000000 
 ABILITY |     .03074355       .12120133      .254   .8062    .36600000 
 MOTHERED|     .10163069       .07017502     1.448   .1856   12.0666667 
 FATHERED|     .00164437       .04464910      .037   .9715   12.6666667 
 SIBS    |     .05916922       .06901801      .857   .4162   2.20000000 
Regress ; Lhs = wage ; Rhs = X1,X2S $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| WTS=none     Number of observs.   =         15     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =          8     | 
| Fit          R-squared            =   .5161341     | 
|              Adjusted R-squared   =   .1532347     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 

-1

econd set of regressors is M1X2, so 
2)]-1(M1X2)′ 
d n  e second set of coefficients 

|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.66364000       .55830716     2.980   .0176 
 EDUC    |     .01453897       .04424689      .329   .7509   12.8666667 
 EXP     |     .07103002       .04335571     1.638   .1400   2.80000000 
 ABILITY |     .02661537       .08946345      .297   .7737    .36600000 
 MEDS    |     .10163069       .07017502     1.448   .1856 -.118424D-14 
 FEDS    |     .00164437       .04464910      .037   .9715  .165793D-14 
 SIBSS   |     .05916922       .06901801      .857   .4162 -.592119D-16 
 
In the first set of results, the first coefficient vector is 
b1 = (X1′M2X1) X1′M2y and 

-1 yb2 = (X2′M1X2) X2′M1  
In the second re ression, the sg

-1b1 = (X1′M12 X1) X1′M12y where M12 = I – (M1X2)[(M1X2)′(M1X
Thus, because the “M” matrix is different, the coefficient vector is iffere t.  Th
in the second regression is 
b2 = [(M1X2)′M1(M1X2)]-1 (M1X2)M1y = (X2′M1X2)-1X2′M1y because M1 is idempotent. 
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Chapter 4 
 

Statistical Properties of the Least 
Squares Estimator 
 

Exercises 
 
1.  Consider the optimization problem of minimizing the variance of the weighted estimator.  If the estimate is 
to be unbiased, it must be of the form c1 1θ̂ + c2 2θ̂ where c1 and c2 sum to 1.  Thus, c2 = 1 - c1.  The function to 

minimize is MincL*  =  c1
2v1 + (1 - c1)2v2.  The necessary condition is  ∂L*/∂c1  =  2c1v1 - 2(1 - c1)v2  =  0  

which implies  c1  =  v2 / (v1 + v2).  A more intuitively appealing form is obtained by dividing numerator and 
denominator by v1v2 to obtain c1  =  (1/v1) / [1/v1 + 1/v2].  Thus, the weight is proportional to the inverse of the 
variance.  The estimator with the smaller variance gets the larger weight.  
 
2.  First, =  c′y = c′x + c′ε.   So  E[ ]  =  βc′x  and  Var[β̂ β̂ β̂ ]  =  σ2c′c.  Therefore,  

MSE[ ]  =  β2[c′x - 1]2 + σ2c′c.  To minimize this, we set ∂MSE[β̂ β̂ ]/∂c  =  2β2[c′x - 1]x + 2σ2c = 0. 
Collecting terms,     β2(c′x - 1)x  =  -σ2c 
Premultiply by x′ to obtain β2(c′x - 1)x′x  =  -σ2x′c 
or                 c′x  =  β2x′x / (σ2 + β2x′x). 
Then,              c  =  [(-β2/σ2)(c′x - 1)]x, 
so                 c  =  [1/(σ2/β2  +  x′x)]x. 
Then,              =  c′y  =  x′y / (σ2/β2  +  x′x). β̂
The expected value of this estimator is 
    E[ ]  =  βx′x / (σ2/β2  +  x′x) β̂

so                 E[ ] - β  =  β(-σ2/β2) / (σ2/β2  +  x′x) β̂
                      =  -(σ2/β) / (σ2/β2  +  x′x) 
while its variance is  Var[x′(xβ + ε) / (σ2/β2  +  x′x)]  =  σ2x′x / (σ2/β2  +  x′x)2 
The mean squared error is the variance plus the squared bias,  
    MSE[ β̂ ]  =  [σ4/β2 + σ2x′x]/[σ2/β2  +  x′x]2. 
The ordinary least squares estimator is, as always, unbiased, and has variance and mean squared error 
    MSE(b)  =  σ2/x′x. 
The ratio is taken by dividing each term in the numerator 

  
ˆMSE

S b

⎡ ⎤β⎣ ⎦
Μ Ε( )

   =   
( )

( / ) / ( / ' ) ' ( / ' )

/ '

σ σ σ σ

σ

4 2 2 2 2

2 2 2
β

β

x x x x / x x

x x

+

+
 

              =   [σ2x′x/β2 + (x′x)2]/(σ2/β2  +  x′x)2 
        =   x′x[σ2/β2 + x′x]/(σ2/β2  +  x′x)2 
        =   x′x/(σ2/β2  +  x′x) 
Now, multiply numerator and denominator by β2/σ2 to obtain 
  MSE[ β ]/MSE[b]  =  β2x′x/σ2/[1 + β2x′x/σ2]  =  τ2/[1 + τ2] ˆ

As τ→∞, the ratio goes to one.  This would follow from the result that the biased estimator and the unbiased 
estimator are converging to the same thing, either as σ2 goes to zero, in which case the MMSE estimator is the 
same as OLS, or as x′x grows, in which case both estimators are consistent. 
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3.  The OLS estimator fit without a constant term is b  =  x′y / x′x.  Assuming that the constant term is, in fact, 
zero, the variance of this estimator is Var[b]  =  σ2/x′x.  If a constant term is included in the regression, then,  
  b′  =  ( )( )1

n
i i ix x y y=Σ − − / ( )2

1
n
i ix x=Σ −  

The appropriate variance is  σ2/ ( 2
1

n
i i )x x=Σ − as always.  The ratio of these two is 

   Var[b]/Var[b′] =  [σ2/x′x] / [σ2/ ( )2
1

n
i ix x=Σ − ] 

But,   ( 2
1

n
i i )x x=Σ − =  x′x + n x 2 

so the ratio is  Var[b]/Var[b′]  =  [x′x + n x 2]/x′x  =  1 - n x 2/x′x  =  1 - { n x 2/[Sxx + n x 2]} < 1 
It follows that fitting the constant term when it is unnecessary inflates the variance of the least squares 
estimator if the mean of the regressor is not zero.  
 
4.  We could write the regression as  yi  =  (α + λ)  +  βxi  +  (εi - λ)  =  α*  +  βxi  +  εi

*.   Then, we know that 
E[εi

*] = 0, and that it is independent of xi.  Therefore, the second form of the model satisfies all of our 
assumptions for the classical regression.  Ordinary least squares will give unbiased estimators of α* and β.  As 
long as λ is not zero, the constant term will differ from α.  
 
5.   Let the constant term be written as a  =  Σidiyi  =  Σidi(α + βxi + εi)  =  αΣidi + βΣidixi + Σidiεi.  In order for 
a to be unbiased for all samples of xi, we must have Σidi = 1 and Σidixi = 0.  Consider, then, minimizing the 
variance of a subject to these two constraints.  The Lagrangean is 
  L*  =  Var[a] + λ1(Σidi - 1) +  λ2Σidixi  where   Var[a] = Σi σ2di

2. 
Now, we minimize this with respect to di, λ1, and λ2.  The (n+2) necessary conditions are 
 ∂L*/∂di  =  2σ2di + λ1 + λ2xi,   ∂L*/∂λ1  =  Σi di - 1,   ∂L*/∂λ2  =  Σi dixi 
The first equation implies that di  =  [-1/(2σ2)](λ1 + λ2xi). 
Therefore,         Σi di     =  1  =  [-1/(2σ2)][nλ1 + (Σi xi)λ2] 
and    Σi dixi   =  0  =  [-1/(2σ2)][(Σi xi)λ1 + (Σi xi

2)λ2]. 
We can solve these two equations for λ1 and λ2 by first multiplying both equations by -2σ2 then writing the 

resulting equations as The solution is  
n x
x x

i i

i i i i

Σ
Σ Σ 2

1

2

22
0

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
λ
λ

σ .   
-1λ

λ
σ1

2 2

22

0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n x

x x
i i

i i i i

Σ

Σ Σ
.

Note, first, that Σi xi = n x  .  Thus, the determinant of the matrix is nΣi xi
2 - (n x )2  =  n(Σi xi

2 - n x 2) = nSxx 

where Sxx ( 2
1

n
i i )x x=Σ − .  The solution is, therefore, 

2 2
1

2

21  
0 0

i i

xx

x nx
nS nx

λ ⎡ ⎤ ⎡ ⎤Σ − − σ⎛ ⎞
=⎜ ⎟ ⎢ ⎥ ⎢λ −⎝ ⎠

⎥
⎣ ⎦ ⎣ ⎦

 

or   λ1  =  (-2σ2)(Σi xi
2/n)/Sxx 

   λ2  =  (2σ2 x )/Sxx 
Then,   di  =  [Σi xi

2/n  - x xi]/Sxx 
This simplifies if we writeΣxi

2  =  Sxx + n x 2, so Σi xi
2/n  =  Sxx/n + x 2.  Then, 

di  =  1/n  + x ( x  -  xi)/Sxx, or, in a more familiar form, di  =  1/n  - x  (xi  - x )/Sxx. 
This makes the intercept term Σidiyi  =  (1/n)Σiyi  - x ( )1

n
i i ix x y=Σ − /Sxx  = y  - b x   which was to be shown.  

 
6. Let q = E[Q].  Then,   q  =  α  +  βP, or P  =  (-α/β) + (1/β)q. 
Using a well known result, for a linear demand curve, marginal revenue is  MR  =  (-α/β) + (2/β)q.  The profit 
maximizing output is that at which marginal revenue equals marginal cost, or 10.  Equating MR to 10 and 
solving for q produces  q  =  α/2  +  5β, so we require a confidence interval for this combination of the 
parameters. 
 The least squares regression results are  =   20.7691  -  .840583.  The estimated covariance matrix 

of the coefficients is  .  The estimate of q is 6.1816.  The estimate of the variance 

of  is  (1/4)7.96124 + 25(.056436) + 5(-.0624559)  or  0.278415, so the estimated standard error is 0.5276.  

Q̂

7 96124 0 624559
0 624559 0 0564361
. .
. .

−
−

⎡

⎣
⎢

⎤

⎦
⎥

q̂
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The 95% cutoff value for a t distribution with 13 degrees of freedom is 2.161, so the confidence interval is  
6.1816 - 2.161(.5276) to 6.1816 + 2.161(.5276) or 5.041 to  7.322.  
 
7.  a.  The sample means are (1/100) times the elements in the first column of X'X.  The sample covariance 
matrix for the three regressors is obtained as (1/99)[(X′X) ij -100 i jx x ].  

Sample Var[x] =  The simple correlation matrix is 
10127 0 069899 0555489

0 069899 0 755960 0 417778
0555489 0 417778 0 496969

. . .
. . .
. . .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  
1 07971 78043

07971 1 68167
78043 68167 1

. .
. .
. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

b.  The vector of slopes is (X′X)-1X′y =  [-.4022, 6.123, 5.910, -7.525]′.   
c.  For the three short regressions, the coefficient vectors are 
   (1) one, x1, and x2:  [-.223, 2.28, 2.11]′ 
   (2) one, x1, and x3   [-.0696, .229, 4.025]′ 
   (3) one, x2, and x3:  [-.0627, -.0918, 4.358]′ 
d.  The magnification factors are 
   for x1:  [(1/(99(1.01727)) / 1.129]2  =  .094 
   for x2:  [(1/99(.75596)) / 1.11]2  =  .109 
   for x3:  [(1/99(.496969))/ 4.292]2  =  .068. 
e.  The problem variable appears to be x3 since it has the lowest magnification factor.  In fact, all three are 
highly intercorrelated.  Although the simple correlations are not excessively high, the three multiple 
correlations are .9912 for x1 on x2 and x3, .9881 for x2 on x1 and x3, and .9912 for x3 on x1 and x2.  
 
8.  We consider two regressions.  In the first, y is regressed on K variables, X.  The variance of the least 
squares estimator, b  =  (X′X)-1X′y, Var[b]  =  σ2(X′X)-1.  In the second, y is regressed on X and an additional 
variable, z. Using results for the partitioned regression, the coefficients on X when y is regressed on X and z 
are b.z  =  (X′MzX)-1X′Mzy where Mz   =  I - z(z′z)-1z′. The true variance of b.z is the upper left K×K matrix in  

Var[b,c]  =  s2 .  But, we have already found this above.  The submatrix is Var[b.z]  =  

s2(X′MzX)-1.  We can show that the second matrix is larger than the first by showing that its inverse is smaller.  
(See (A-120).)  Thus, as regards the true variance matrices (Var[b])-1 - (Var[b.z])-1  =  (1/σ2)z(z′z)-1z′ 

X X X z
z X z X

'
' '

'⎡

⎣
⎢

⎤

⎦
⎥

−1

which is a nonnegative definite matrix.  Therefore Var[b]-1 is larger than Var[b.z]-1, which implies that Var[b] 
is smaller. 
 Although the true variance of b is smaller than the true variance of b.z, it does not follow that the 
estimated variance will be.  The estimated variances are based on s2, not the true σ2.  The residual variance 
estimator based on the short regression is s2  =  e′e/(n - K) while that based on the regression which includes z 
is sz

2  =  e.z′e.z/(n - K - 1).  The numerator of the second is definitely smaller than the numerator of the first, but 
so is the denominator.  It is uncertain which way the comparison will go.  The result is derived in the previous 
problem.  We can conclude, therefore, that if t ratio on c in the regression which includes z is larger than one 
in absolute value, then sz

2 will be smaller than s2. Thus, in the comparison,   Est.Var[b]  =  s2(X′X)-1  is based 
on a smaller matrix, but a larger scale factor than  Est.Var[b.z]  =  sz

2(X′MzX)-1.  Consequently, it is uncertain 
whether the estimated standard errors in the short regression will be smaller than those in the long one.  Note 
that it is not sufficient merely for the result of the previous problem to hold, since the relative sizes of the 
matrices also play a role. But, to take a polar case, suppose z and X were uncorrelated. Then, XNMzX equals 
XNX.  Then, the estimated variance of b.z would be less than that of b without z even though the true variance 
is the same (assuming the premise of the previous problem holds).  Now, relax this assumption while holding 
the t ratio on c constant.  The matrix in Var[b.z] is now larger, but the leading scalar is now smaller.  Which 
way the product will go is uncertain.  
 
9.  The F ratio is computed as  [b′X′Xb/K]/[e′e/(n - K)].  We substitute e  =  Mε, and 
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b  =  β  +  (X′X)-1X′ε  =  (X′X)-1X′ε.  Then, F  =  [ε′X(X′X)-1X′X(X′X)-1X′ε/K]/[ε ′Mε/(n - K)]  =   
[ε′(I - M)ε/K]/[ε′Mε/(n - K)]. 
 The exact expectation of F can be found as follows: F  =  [(n-K)/K][ε′(I - M)ε]/[ε′Mε].  So, its exact 
expected value is (n-K)/K times the expected value of the ratio.  To find that, we note, first, that Mε and  
(I - M)ε are independent because M(I - M) = 0.  Thus, E{[ε′(I - M)ε]/[ε′Mε]} = E[ε′(I- M)ε]×E{1/[ε′Mε]}. 
The first of these was obtained above, E[ε′(I - M)ε]  =  Kσ2.  The second is the expected value of the 
reciprocal of a chi-squared variable.  The exact result for the reciprocal of a chi-squared variable is 
E[1/χ2(n-K)]  =  1/(n - K - 2).  Combining terms, the exact expectation is E[F]  =  (n - K) / (n - K - 2).  Notice 
that the mean does not involve the numerator degrees of freedom. 
 
10.  We write  b  =  β  +  (X′X)-1X′ε, so b′b  =  β′β  +  ε′X(X′X)-1(X′X)-1X′ε  +  2β′(X′X)-1X′ε.  The expected 
value of the last term is zero, and the first is nonstochastic.  To find the expectation of the second term, use the 
trace, and permute ε′X inside the trace operator.  Thus, 
 E[β′β]   =  β′β +  E[ε′X(X′X)-1(X′X)-1X′ε] 
  =  β′β +  E[tr{ε′X(X′X)-1(X′X)-1X′ε}] 
  =  β′β  +  E[tr{(X′X)-1X′εε′X(X′X)-1}] 
  =  β′β  +  tr[E{(X′X)-1X′εε′X(X′X)-1}] 
  =  β′β  +  tr[(X′X)-1X′E[εε′]X(X′X)-1] 
  =  β′β  +  tr[(X′X)-1X′(σ2I)X(X′X)-1] 
  =  β′β  +  σ2tr[(X′X)-1X′X(X′X)-1] 
  =  β′β  +  σ2tr[(X′X)-1] 
  =  β′β  +  σ2Σk (1/λk ) 
The trace of the inverse equals the sum of the characteristic roots of the inverse, which are the reciprocals of 
the characteristic roots of X′X. 
 
11.  The F ratio is computed as  [b′X′Xb/K]/[e′e/(n - K)].  We substitute e  =  M, and 
b  =  β  +  (X′X)-1X′ε  =  (X′X)-1X′ε.  Then, F  =  [ε′X(X′X)-1X′X(X′X)-1X′ε/K]/[ε ′Mε/(n - K)]  =   
[ε′(I - M)ε/K]/[ε′Mε/(n - K)].  The denominator converges to σ2 as we have seen before.  The numerator is an 
idempotent quadratic form in a normal vector.  The trace of (I - M) is K regardless of the sample size, so the 
numerator is always distributed as σ2 times a chi-squared variable with K degrees of freedom.  Therefore, the 
numerator of F does not converge to a constant, it converges to σ2/K times a chi-squared variable with K 
degrees of freedom.   Since the denominator of F converges to a constant, σ2, the statistic converges to a 
random variable, (1/K) times a chi-squared variable with K degrees of freedom. 
 
12.  We can write ei as  ei  =  yi - b′xi  =  (β′xi + εi) - b′xi  =  εi  +  (b - β)′xi 
We know that plim b = β, and xi is unchanged as n increases, so as n→∞, ei is arbitrarily close to εi. 
 
13.  The estimator is y =  (1/n)Σi yi  =  (1/n)Σi (μ + εi)  =  μ  +  (1/n)Σi εi. Then, E[ y ] = μ+  (1/n)Σi E[εi]  =  μ 
and Var[ y ]=  (1/n2)Σi Σj Cov[εi,εj]  =  σ2/n. Since the mean equals μ and the variance vanishes as n→∞, y is 
mean square consistent. In addition, since y is a linear  combination of normally distributed variables, y   has a 
normal distribution with the mean and variance given above in every sample.  Suppose that εi were not 
normally distributed.  Then, n ( y -μ)  =  (1/ n )(Σiεi) satisfies the requirements for the central limit 
theorem.  Thus, the asymptotic normal distribution applies whether or not the disturbances have a normal 
distribution. 
 For the alternative estimator, =  Σi wiyi, so E[μ̂ μ̂ ] =  Σi wiE[yi]  =  Σi wiμ  =  μΣi wi  =  μ and Var[ μ̂ ]=  
Σi wi

2σ2  =  σ2Σi wi
2.  The sum of squares of the weights is Σiwi

2 = Σi i2/[Σi i]2 =  [n(n+1)(2n+1)/6]/[n(n+1)/2]2 =  
[2(n2 + 3n/2 + 1/2)]/[1.5n(n2 + 2n + 1)]. As n→∞, the fraction will be dominated by the term (1/n) and will 
tend to zero.  This establishes the consistency of this estimator.  The last expression also provides the 
asymptotic variance.  The large sample variance can be found as Asy.Var[ μ̂ ]  =  (1/n)lim n→∞Var[ n ( μ̂ - 
μ)].  For the estimator above, we can use Asy.Var[ μ̂ ]  =  (1/n)lim n→∞nVar[ μ̂ - μ] =  (1/n)lim n→∞σ2[2(n2 + 
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3n/2 + 1/2)]/[1.5(n2 + 2n + 1)] =  1.3333σ2.  Notice that this is unambiguously larger than the variance of the 
sample mean, which is the ordinary least squares estimator.  
 
14.  To obtain the asymptotic distribution, write the result already in hand as b = (β + Q-1γ) + (X′X)-1X′ε - Q-

1ε. We have established that plim b = β + Q-1γ.  For convenience, let θ ≠ β denote β + Q-1γ = plim b.  Write 
the preceding in the form b - θ = (X′X/n)-1(X′ε/n) - Q-1γ.  Since plim(X′X/n) = Q, the large sample behavior 
of the right hand side is the same as that of plim (b - θ) = Q-1plim(X′ε/n) - Q-1γ.  That is, we may replace 
(X′X/n) with Q in our derivation.  Then, we seek the asymptotic distribution of  n (b - θ) which is the same 
as that of 

n [Q-1plim(X′ε/n) - Q-1γ] = Q-1 n ( )1(1/ )   -  n
i i in =Σ εx γ .  From this point, the derivation is exactly the same 

as that when γ = 0, so there is no need to redevelop the result.  We may proceed directly to the same 
asymptotic distribution we obtained before.  The only difference is that the least squares estimator estimates θ, 
not β. 
 
15.  a.  To solve this, we will use an extension of Exercise 6 in Chapter 3 (adding one row of data), and the 
necessary matrix result, (A-66b) in which B will be Xm and C will be I.  Bypassing the matrix algebra, 
which will be essentially identical to the earlier exercise, we have 
 bc,m = bc + [I + Xm(Xc′Xc)-1Xm]-1(Xc′Xc)-1Xm′(ym – Xmbc) 
But, in this case, ym is precisely Xmbc, so the ending vector is zero.  Thus, the coefficient vector is the 
same.  b.  The model applies to the first nc observations, so bc is the least squares estimator for those 
observations.  Yes, it is unbiased. 
c.  The residuals at the second step are ec and (Xmbc – Xmbc) = (ec′, 0′)′.  Thus, the sum of squares is the 
same at both steps. 
d.  The numerator of s2 is the same in both cases, however, for the second one, the degrees of freedom is 
larger.  The first is unbiased, so the second one must be biased downward. 
 

Applications 
 
?======================================================================= 
? Chapter 4 Application 1 
?======================================================================= 
Read $ 
Year GasExp Pop Gasp Income PNC PUC PPT PD PN PS  
1953 7.4 159565 16.668 8883 47.2 26.7 16.8 37.7 29.7 19.4  
... 
2004 224.5 293951 123.901 27113 133.9 133.3 209.1 114.8 172.2 222.8  
 
Sample ; 1 - 52 $ 
Create ; G = 1000000*gasexp/(gasp*pop)$ 
Create ; t = year - 1952 $ 
Namelist ; X = one,income, gasp,pnc,puc,ppt,pd,pn,ps,t$ 
?======================================================================= 
? a.  Basic regression 
?======================================================================= 
Regress ; Lhs = g ; Rhs = X $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=G        Mean                 =   4.935619     | 
|              Standard deviation   =   1.059105     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =         42     | 
| Residuals    Sum of squares       =   .4985489     | 
|              Standard error of e  =   .1089505     | 
| Fit          R-squared            =   .9912852     | 
|              Adjusted R-squared   =   .9894177     | 
| Model test   F[  9,    42] (prob) = 530.82 (.0000) | 
+----------------------------------------------------+ 
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+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.10587817       .56937860     1.942   .0588 
 INCOME  |     .00021575     .517619D-04     4.168   .0001   16805.0577 
 GASP    |    -.01108386       .00397812    -2.786   .0080   51.3429615 
 PNC     |     .00057735       .01284414      .045   .9644   87.5673077 
 PUC     |    -.00587463       .00487032    -1.206   .2345   77.8000000 
 PPT     |     .00690726       .00483613     1.428   .1606   89.3903846 
 PD      |     .00122888       .01188175      .103   .9181   78.2692308 
 PN      |     .01269051       .01259799     1.007   .3195   83.5980769 
 PS      |    -.02802781       .00799625    -3.505   .0011   89.7769231 
 T       |     .07250369       .01418280     5.112   .0000   26.5000000 
?======================================================================= 
? b.  Hypothesis that b(NC) = b(UC) $ 
?======================================================================= 
Calc ; list ; (b(4)-b(5))/sqr(varb(4,4)+varb(5,5)-2*varb(4,5)) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =       .494883 
?======================================================================= 
? c.  Elasticities.  In each case, elasticity = b*xbar/ybar 
?======================================================================= 
Calc ; g2004   = g(52)$ 
Calc ; i2004   = income(52)$ 
Calc ; pg2004  = gasp(52)$ 
Calc ; ppt2004 = ppt(52)$ 
Calc ; list ; ei = b(2)*i2004/g2004 
            ; ep = b(3)*pg2004/g2004  
            ; eppt = b(6)*ppt2004/g2004$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 EI      =       .948988 
 EP      =      -.222792 
 EPPT    =       .234311 
?======================================================================= 
? d. Log regression 
?======================================================================= 
Create ; logg = log(g) ; logpg = log(gasp) ; logi = log(income) 
       ; logpnc=log(pnc) ; logpuc = log(puc) ; logppt = log(ppt) 
       ; logpd = log(pd) ; logpn = log(pn) ; logps = log(ps) $ 
Namelist ; LogX = one,logi,logpg,logpnc,logpuc,logppt,logpd,logpn,logps,t$ 
Regress ; lhs = logg ; rhs = logx $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   1.570475     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =         42     | 
| Residuals    Sum of squares       =   .3812817E-01 | 
|              Standard error of e  =   .3012994E-01 | 
| Fit          R-squared            =   .9868911     | 
|              Adjusted R-squared   =   .9840821     | 
| Model test   F[  9,    42] (prob) = 351.33 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -7.28719016      2.52056245    -2.891   .0061 
 LOGI    |     .99299135       .25037574     3.966   .0003   9.67214751 
 LOGPG   |     .06051812       .05401018     1.120   .2689   3.72930296 
 LOGPNC  |    -.15471632       .26696298     -.580   .5653   4.38036654 
 LOGPUC  |    -.48909058       .08519952    -5.741   .0000   4.10544881 
 LOGPPT  |     .01926966       .13644891      .141   .8884   4.14194132 
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 LOGPD   |    1.73205775       .25988611     6.665   .0000   4.23906603 
 LOGPN   |    -.72953933       .26506853    -2.752   .0087   4.23689080 
 LOGPS   |    -.86798166       .35291106    -2.459   .0181   4.17535768 
 T       |     .03797198       .00751371     5.054   .0000   26.5000000 
?======================================================================= 
? e.  Correlations of Price Variables 
?======================================================================= 
Namelist ; Prices = pnc,puc,ppt,pd,pn,ps$ 
Matrix   ; list ; xcor(prices) $ 
Correlation Matrix for Listed Variables 
 
              PNC      PUC      PPT       PD       PN       PS 
     PNC  1.00000   .99387   .98074   .99327   .98853   .97849 
     PUC   .99387  1.00000   .98242   .98783   .98220   .97685 
     PPT   .98074   .98242  1.00000   .95847   .98986   .99751 
      PD   .99327   .98783   .95847  1.00000   .97734   .95633 
      PN   .98853   .98220   .98986   .97734  1.00000   .99358 
      PS   .97849   .97685   .99751   .95633   .99358  1.00000 
?======================================================================= 
? f.  Renormalizations of price variables 
?======================================================================= 
/* 
In the linear case, the coefficients would be divided by the same 
scale factor, so that x*b would be unchanged, where x is a variable 
and b is the coefficient.  In the loglinear case, since log(k*x)= 
log(k)+log(x), the renomalization would simply affect the constant 
term.  The price coefficients woulde be unchanged. 
*/ 
?======================================================================= 
? g.  Oaxaca decomposition 
?======================================================================= 
Dates ; 1953 $ 
Period ; 1953-1973 $ 
Matrix ; xb0 = Mean(logx)$ 
Regress ; lhs = logg ; rhs = logx $ 
Matrix ; b0 = b ; v0 = varb $ 
Calc ; yb0 = ybar $ 
Period ; 1974-2004 $ 
Matrix ; xb1 = mean(logx) $ 
Regress ; lhs = logg ; rhs = logx $ 
Matrix ; b1 = b ; v1 = varb $ 
Calc ; yb1 = ybar $ 
? Now the decomposition 
Calc ; list ; dybar = yb1 - yb0 $ Total 
Calc ; list ; dy_dx = b1'xb1 - b1'xb0 $ Change due to change in x 
Calc ; list ; dy_db = b1'xb0 - b0'xb0 $ 
Matrix ; vdb = v1+v0 ; vdb = xb0'[vdb]xb0 $ 
Calc ; sdb = sqr(vdb) 
     ; list ; lower = dy_db - 1.96*sqr(vdb)  
            ; upper = dy_db + 1.96*sqr(vdb) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 DYBAR   =       .395377 
 DY_DX   =       .122745 
 DY_DB   =       .272631 
 LOWER   =       .184844 
 UPPER   =       .360419 
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?======================================================================= 
? Chapter 4 Application 2 
?======================================================================= 
Create ; lc = log(cost/pf) ; lpl=log(pl/pf) ; lpk=log(pk/pf)$ 
Create ; lq = log(q) ; lqq = .5*lq*lq $ 
Namelist ; x = one,lq,lqq,lpk,lpl $ 
? a.  Cost function 
Regress; lhs = lc ; rhs = x ; printvc $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LC       Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =          5     | 
|              Degrees of freedom   =        153     | 
| Residuals    Sum of squares       =   2.904896     | 
|              Standard error of e  =   .1377906     | 
| Fit          R-squared            =   .9922222     | 
|              Adjusted R-squared   =   .9920189     | 
| Model test   F[  4,   153] (prob) =4879.59 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -6.81816332       .25243920   -27.009   .0000 
 LQ      |     .40274543       .03148312    12.792   .0000   8.26548908 
 LQQ     |     .06089514       .00432530    14.079   .0000   35.7912728 
 LPK     |     .16203385       .04040556     4.010   .0001    .85978893 
 LPL     |     .15244470       .04659735     3.272   .0013   5.58162250 
               1             2             3             4             5 
        +---------------------------------------------------------------------- 
       1|     .06373      -.00238       .00031       .00399      -.01047 
       2|    -.00238       .00099      -.00013       .00010      -.00020 
       3|     .00031      -.00013    .1870819D-04 -.1493338D-04  .2453652D-04 
       4|     .00399       .00010   -.1493338D-04     .00163      -.00102 
       5|    -.01047      -.00020    .2453652D-04    -.00102       .00217 
?======================================================================= 
? b.  capital price coefficient 
?======================================================================= 
Wald ; fn1 = 1 - b_lpk - b_lpl $ 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =    266.36109     | 
| Prob. from Chi-squared[ 1] =       .00000     | 
+-----------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 Fncn(1) |     .68552145       .04200352    16.321   .0000 
?======================================================================= 
? c.  efficient scale 
?======================================================================= 
Wald ; fn1 = exp((1-b_lq)/b_lqq) $ 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =     21.74979     | 
| Prob. from Chi-squared[ 1] =       .00000     | 
+-----------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 Fncn(1) |    18177.1045      3897.59890     4.664   .0000 
Calc ; qstar = waldfns(1) ; vqstar = varwald(1,1) 
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     ; list ; lower = qstar - 1.96*sqr(vqstar) 
            ; upper = qstar + 1.96*sqr(vqstar) $ 
?======================================================================= 
? d.  Raw data 
?======================================================================= 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 LOWER   =  10537.810653 
 UPPER   =  25816.398344 
Create ; output = q $ 
Sort ; lhs = output $ 
/*  
The estimated efficient scale is 18177.  There are 25 firms in the sample that have output larger than this.  
As noted in the problem, many of the largest firms in the sample are aggregates of smaller ones, so it is 
difficult to draw a conclusion here.  However, some of the largest firms (Southern, American Electric  
power) are singly counted, and are much larger than this scale.  The important point is that much of the 
output in the sample is produced by firms that are smaller than this efficient scale.  There are unexploited 
economies of scale in this industry. 
*/ 
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Chapter 5 
 

Inference and Prediction 
 

Exercises 
 
1.  The estimated covariance matrix for the least squares estimator is 

s2(X′X)-1  =  20
3900

3900 29 0 0
0 80 1
0 10 8
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  =   where s2  =  520/(29-3) = 20.  Then, 

the test may be based on t = (.4 + .9 - 1)/[.410 + .256 - 2(.051)]1/2  =  .399.  This is smaller than the critical 
value of 2.056, so we would not reject the hypothesis.   

.
. .
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2.  In order to compute the regression, we must recover the original sums of squares and cross products for y.  
These areX′y  =  X′Xb  =  [116, 29, 76]′.  The total sum of squares is found using  R2 = 1 -  e′e/y′M0y, so 
y′M0y  =  520 / (52/60)  =  600. The means are x1 =  0, x2 =  0, y =  4, so, y′y  =  600 + 29(42)  =  1064.  The 
slope in the regression of y on x2 alone is b2  =  76/80, so the regression sum of squares is b2
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(80)  =  72.2, and 
the residual sum of squares is 600  -  72.2  =  527.8.  The test based on the residual sum of squares is F  =    
[(527.8 - 520)/1]/[520/26]  =  .390.   In the regression of the previous problem, the t-ratio for testing the same 
hypothesis would be  t = .4/(.410)1/2 = .624 which is the square root of .39.  
 
3.  For the current problem, R = [0,I] where I is the last K2 columns.  Therefore, R(X′X)-1RN is the lower 
right K2×K2 block of (X′X)-1.  As we have seen before, this is (X2′M1X2)-1.  Also, (X′X)-1R′ is the last K2 

columns of (X′X)-1.  These are (X′X)-1R′     =   Finally, since q = 0, Rb - 

q = (0b1 + Ib2) - 0 = b2.  Therefore, the constrained estimator is 
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b*  =  (X2′M1X2)b2,  where b1 and b2 are the multiple regression 

coefficients in the regression of y on both X1 and X2. Collecting terms, this produces b*  =  

.   But, we have from Section 6.3.4 that b1  =  (X1′X1)-1X1′y - (X1′X1)-

1X1′X2b2 so the preceding reduces to b*  =   which was to be shown. 

b
b

1

2

⎡

⎣
⎢

⎤

⎦
⎥ -  - X X X X X M X

X M X
1 1 1 2 2 1 2

2 1 2

( ' ) ' ( ' )
( ' )

− −

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 1

1

b
b

1

2

⎡

⎣
⎢

⎤

⎦
⎥ -  

- X X X X b
b

1 1 1 2 2

2

( ' ) '−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

( ' ) 'X X X y
0

1 1 1
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

 If, instead, the restriction is β2 = β2
0 then the preceding is changed by replacing Rβ - q = 0 with  

Rβ - β2
0  = 0.  Thus,  Rb - q  =  b2 - β2

0.  Then, the constrained estimator is 

b*  =  (X2′M1X2)(b2 - β2
0) 
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b*  =   
b
b

1

2 22

Using the result of the previous paragraph, we can rewrite the first part as 

( ' ) ' ( )
)

X X X X b
 -  b

1 1 1 2 2

  b   =  (X1′X1)-1X1′y - (X1′X1)-1X1′X2β2
0 =  (X1′X1)-1X1′(y - X2β2

0) 1*
which was to be shown.   
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4.  By factoring the result in (5-14), we obtain  b*  =  [I - CR]b + w where C = (X′X)-1R′[R(X′X)-1R′]-1  and  
w   =  Cq.  The covariance matrix of the least squares estimator is 
 Var[b*] =  [I - CR]σ2(X′X)-1[I - CR]′ 
  =  σ2(X′X)-1 + σ2CR(X′X)-1R′C′ - σ2CR(X′X)-1 - σ2(X′X)-1R′C′. 
By multiplying it out, we find that CR(X′X)-1  =  (X′X)-1R′(R(X′X)-1R′)-1R(X′X)-1 =  CR(X′X)-1R′C′ 
so Var[b*]  =  σ2(X′X)-1 - σ2CR(X′X)-1R′C′ =  σ2(X′X)-1 - σ2(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1 
This may also be written as  Var[b*] = σ2(X′X)-1{I - R′(R(X′X)-1R′)-1R(X′X)-1} 
    = σ2(X′X)-1{[σ2(X′X)-1]-1 - R′[Rσ2(X′X)-1R′]-1R}σ2(X′X)-1 
Since Var[Rb]  =  Rσ2(X′X)-1R′  this is the answer we seek.  
 
5.  The variance of the restricted least squares estimator is given in the second equation in the previous 
exercise.  We know that this matrix is positive definite, since it is derived in the form B′σ2(X′X)-1B′, and 
σ2(X′X)-1 is positive definite. Therefore, it remains to show only that the matrix subtracted from Var[b] to 
obtain Var[b*] is positive definite.  Consider, then, a quadratic form in Var[b*] 
 z′Var[b*]z  = z′Var[b]z - σ2z′(X′X)-1(R′[R(X′X)-1R′]-1R)(X′X)-1z 
              = z′Var[b]z - w′[R(X′X)-1R′]-1w   where  w  = σR(X′X)-1z. 
It remains to show, therefore, that the inverse matrix in brackets is positive definite.  This is obvious since its 
inverse is positive definite. This shows that every quadratic form in Var[b*] is less than a quadratic form in 
Var[b] in the same vector. 
  
6.  The result follows immediately from the result which precedes (5-19).  Since the sum of squared residuals 
must be at least as large, the coefficient of determination, COD  =  1 - sum of squares / Σi (yi - y )2, 
must be no larger.  
 
7.  For convenience, let  F = [R(X′X)-1R′]-1.  Then, λ = F(Rb - q) and the variance of the vector of Lagrange 
multipliers is Var[λ]  =  FRσ2(X′X)-1R′F =  σ2F.  The estimated variance is obtained by replacing σ2 with s2.  
Therefore, the chi-squared statistic is 
χ2  =  (Rb - q) ′F′(s2F)-1F(Rb - q)   =  (Rb - q) ′[(1/s2)F](Rb - q) 
        =  (Rb - q) ′[R(X′X)-1R′]-1(Rb - q)/[e′e/(n - K)] 
This is exactly J times the F statistic defined in (5-19) and (5-20).  Finally, J times the F statistic in (5-20) 
equals the expression given above.  
 
8.  We use (5-19) to find the new sum of squares.  The change in the sum of squares is 
   e*′e* - e′e  =  (Rb - q) ′[R(X′X)-1R′]-1(Rb - q) 
For this problem,  (Rb - q)  =  b2 + b3 - 1  =  .3.  The matrix inside the brackets is the sum of the 4 elements in 
the lower right block of (X′X)-1.  These are given in Exercise 1, multiplied by s2 = 20.  Therefore, the required 
sum is [R(X′X)-1R′]  =  (1/20)(.410 + .256 - 2(.051)) = .028.  Then, the change in the sum of squares is   
.32 / .028  =  3.215.  Thus, e′e = 520, e*′e* = 523.215, and the chi-squared statistic is  26[523.215/520  -  1]  =  
.16.  This is quite small, and would not lead to rejection of the hypothesis.   Note that for a single restriction, 
the Lagrange multiplier statistic is equal to the F statistic which equals, in turn, the square of the t statistic used 
to test the restriction.  Thus, we could have obtained this quantity by squaring the .399 found in the first 
problem (apart from some rounding error).  
 
9.  First, use (5-19) to write  e*′e*  =  e′e + (Rb - q)′[R(X′X)-1R′]-1(Rb - q).  Now, the result that E[e′e] = (n - 
K)σ2 obtained in Chapter 6 must hold here, so E[e*′e*]  =  (n - K)σ2 + E[(Rb - q)′[R(X′X)-1R′]-1(Rb - q)]. 
Now, b  =  β  +  (X′X)-1X′ε,  so  Rb - q  =  Rβ - q  +  R(X′X)-1X′ε.  But, Rβ - q  =  0,  so under the 
hypothesis, Rb - q  =  R(X′X)-1X′ε.  Insert this in the result above to obtain  
E[e*′e*] = (n-K)σ2 + E[ε′X(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1X′ε].  The quantity in square brackets is a scalar, 
so it is equal to its trace. Permute ε′X(X′X)-1R′ in the trace to obtain 
  E[e*′e*]  =  (n - K)σ2  +  E[tr{[R(X′X)-1R′]-1R(X′X)-1X′εε′X(X′X)-1R′]} 
We may now carry the expectation inside the trace and use  E[εε′]  =  σ2I to obtain 
  E[e*′e*]  =  (n - K)σ2 + tr{[R(X′X)-1R′]-1R(X′X)-1X′σ2IX(X′X)-1R′]} 
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Carry the σ2 outside the trace operator, and after cancellation of the products of matrices times their inverses, 
we obtain E[e*′e*]  =  (n - K)σ2 + σ2tr[IJ]  =  (n - K + J)σ2. 
 
10. Show that in the multiple regression of y on a constant, x1, and x2, while imposing the restriction  
β1 + β2 = 1 leads to the regression of y - x1 on a constant and x2 - x1. 
 For convenience, we put the constant term last instead of first in the parameter vector.  The constraint 
is Rb - q = 0 where  R  =  [1  1  0]  so  R1  =  [1]  and R2  =  [1,0].  Then, β1 = [1]-1[1 - β2]  =  1  -  β2.  Thus,  y  
=  (1 - β2)x1 + β2x2 + αi + ε or  y - x1  =  β2(x2 - x1) + αi + ε.   
 

Applications 
 
?======================================================================= 
? Application 5.1 Wage Equation 
?======================================================================= 
Read;File="F:\Text-Revision\edition6\Solutions-and-Applications\time_var.dat"; 
nvar=5;nobs=17919$ 
? This creates the group count variable. 
Regress ; Lhs = one ; Rhs = one ; Str = ID ; Panel $ 
? This READ merges the smaller file into the larger one. 
Read;File="F:\Text-Revision\edition6\Solutions-and-Applications\time_invar.dat"; 
names=ability,med,fed,bh,sibs? ; group=_groupti ;nvar=5;nobs=2178$ 
Names=id,educ,lwage,pexp,t; 
namelist ; x1=one,educ,pexp,ability$ 
namelist ; x2=med,fed,bh,sibs$ 
?======================================================================= 
? a.  Long regression 
?======================================================================= 
regress ; lhs= lwage ; rhs = x1,x2 $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   2.296821     | 
|              Standard deviation   =   .5282364     | 
| WTS=none     Number of observs.   =      17919     | 
| Model size   Parameters           =          8     | 
|              Degrees of freedom   =      17911     | 
| Residuals    Sum of squares       =   4119.734     | 
|              Standard error of e  =   .4795950     | 
| Fit          R-squared            =   .1760081     | 
|              Adjusted R-squared   =   .1756861     | 
| Model test   F[  7, 17911] (prob) = 546.55 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .98965433       .03389449    29.198   .0000 
 EDUC    |     .07118866       .00225722    31.538   .0000   12.6760422 
 PEXP    |     .03951038       .00089858    43.970   .0000   8.36268765 
 ABILITY |     .07736880       .00493359    15.682   .0000    .05237402 
 MED     |    .709887D-04      .00169543      .042   .9666   11.4719013 
 FED     |     .00531681       .00133795     3.974   .0001   11.7092472 
 BH      |    -.05286954       .00999042    -5.292   .0000    .15385903 
 SIBS    |     .00487138       .00179116     2.720   .0065   3.15620291 
?======================================================================= 
? b.  F test 
?======================================================================= 
Calc ; list ; fstat = Rsqrd/(kreg-1)/((1-rsqrd)/(n-kreg)) $ 
+------------------------------------+ 
 FSTAT   =     14.025040 
Calc ; r1 = rsqrd ; df1=n-kreg$ 
Matrix ; b1 = b ; v1 = varb $ 
Matrix ; b1 =b1(5:8) ; v1=varb(5:8,5:8)$ 
Regress ; lhs = lwage ; rhs = x1 $ 
+----------------------------------------------------+ 
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| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   2.296821     | 
|              Standard deviation   =   .5282364     | 
| WTS=none     Number of observs.   =      17919     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =      17915     | 
| Residuals    Sum of squares       =   4132.637     | 
|              Standard error of e  =   .4802919     | 
| Fit          R-squared            =   .1734272     | 
|              Adjusted R-squared   =   .1732888     | 
| Model test   F[  3, 17915] (prob) =1252.94 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.02722913       .03004146    34.194   .0000 
 EDUC    |     .07376210       .00221425    33.312   .0000   12.6760422 
 PEXP    |     .03948955       .00089835    43.958   .0000   8.36268765 
 ABILITY |     .08289072       .00459996    18.020   .0000    .05237402 
?======================================================================= 
? c.  F test for hypothesis that coefficients on X2 are zero 
?======================================================================= 
Calc ; list ; fstat = (r1-rsqrd)/(col(x2))/((1-r1)/(df1)) $ 
+------------------------------------+ 
 FSTAT   =     14.025040 
?======================================================================= 
? c.  Wald test for hypothesis that coefficients on X2 are zero 
?======================================================================= 
Matrix ; List ; Wald = b1'<v1>b1 $ 
Matrix WALD     has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   56.10016 
Note Wald = 4*F, as expected. 
 
?======================================================================= 
? Application 5.2 Translog Cost Function 
?======================================================================= 
? First prepare the data 
? 
Create ; lpk=log(pk);lpl=log(pl);lpf=log(pf)$ 
create ; lpk2=.5*lpk^2 ; lpl2=.5*lpl^2 ; lpf2=.5*lpf^2$ 
Create ; lpkf=lpk*lpf ; lplf=lpl*lpf ; lpkl=lpk*lpl $ 
Create ; lq = log(q) ; lq2 = .5*lq^2 $ 
Create ; lqk=lq*lpk ; lql=lq*lpl ; lqf=lq*lpf $ 
Create ; lc = log(cost) $ 
Create ; lcpf = log(cost/pf) $ 
Create ; lpkpf=log(pk/pf) ; lplpf=log(pl/pf) $ 
Create ; lpkpf2=.5*lpkpf^2 ; lplpf2=.5*lplpf^2 ; lplfpkf=lplpf*lpkpf $ 
Create ; lqlpkf=lq*lpkpf ; lqlplf=lq*lplf $ 
?======================================================================= 
? a.  Beta is a,b,dk,dl,df,pkk,pll,pff,pkl,pkf,plf,c,tqk,tql,tqf 
?======================================================================= 
Restrictions are 
            0,0,1,1,1,0,0,0,0,0,0,0,0,0,0      1 
            0,0,0,0,0,1,0,0,1,1,0,0,0,0,0      0 
    R =     0,0,0,0,0,0,1,0,1,0,1,0,0,0,0  q = 0  
            0,0,0,0,0,0,0,1,0,1,1,0,0,0,0      0 
            0,0,0,0,0,0,0,0,0,0,0,0,1,1,1      0 
?======================================================================= 
? b. Testing the theory 
?======================================================================= 
Namelist ; X1=one,lq,lpk,lpl,lpf,lpk2,lpl2,lpf2,lpkl,lpkf,lplf,lq2,lqk,lq... 
Namelist ; X0=one,lq,lpkf,lplf,lpkpf2,lplpf2,lplfpkf,lq2,lqlpkf,lqlplf$ 
Regress ; lhs = lc ; rhs=x0 $ 
 
+----------------------------------------------------+ 
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| Ordinary    least squares regression               | 
| LHS=LC       Mean                 =   3.071619     | 
|              Standard deviation   =   1.542734     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =        148     | 
| Residuals    Sum of squares       =   2.634416     | 
|              Standard error of e  =   .1334170     | 
| Fit          R-squared            =   .9929498     | 
|              Adjusted R-squared   =   .9925211     | 
| Model test   F[  9,   148] (prob) =2316.03 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -1.13340208      1.04296294    -1.087   .2789 
 LQ      |     .02244828       .12717485      .177   .8601   8.26548908 
 LPKF    |    -.02309567       .14153592     -.163   .8706   14.4192992 
 LPLF    |    -.01690697       .09185395     -.184   .8542   30.4387314 
 LPKPF2  |    -.04730093       .21017152     -.225   .8222    .42211776 
 LPLPF2  |    -.03419034       .06850142     -.499   .6184   15.6173009 
 LPLFPKF |    -.00741233       .11649585     -.064   .9494   4.84868706 
 LQ2     |     .05544306       .00446607    12.414   .0000   35.7912728 
 LQLPKF  |     .03562155       .02862683     1.244   .2153   7.15696461 
 LQLPLF  |     .01279036       .00375187     3.409   .0008   251.570118 
Calc ; ee0 = sumsqdev $ 
Regress ; lhs = lcpf ; rhs = x1 $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LCPF     Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =         15     | 
|              Degrees of freedom   =        143     | 
| Residuals    Sum of squares       =   2.464348     | 
|              Standard error of e  =   .1312753     | 
| Fit          R-squared            =   .9934018     | 
|              Adjusted R-squared   =   .9927558     | 
| Model test   F[ 14,   143] (prob) =1537.82 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -76.2592615      38.2800363    -1.992   .0483 
 LQ      |   -1.08042535       .37554512    -2.877   .0046   8.26548908 
 LPK     |    6.38079702      4.52920686     1.409   .1611   4.25096457 
 LPL     |    14.7182926      7.08482345     2.077   .0395   8.97279814 
 LPF     |   -1.89473291      2.84231282     -.667   .5061   3.39117564 
 LPK2    |    -.32741427       .44070869     -.743   .4587   9.05539681 
 LPL2    |   -1.53852735       .69240298    -2.222   .0279   40.2700121 
 LPF2    |    -.07350556       .18203881     -.404   .6870   5.78602018 
 LPKL    |    -.57205049       .37189026    -1.538   .1262   38.1346773 
 LPKF    |    -.02402470       .24632928     -.098   .9224   14.4192992 
 LPLF    |     .16228289       .27007181      .601   .5489   30.4387314 
 LQ2     |     .05297849       .00471336    11.240   .0000   35.7912728 
 LQK     |     .04014440       .02979137     1.348   .1799   35.1677247 
 LQL     |     .13104059       .03828401     3.423   .0008   74.2063474 
 LQF     |     .05865220       .02554928     2.296   .0232   28.0107601 
Calc ; ee1 = sumsqdev $ 
Calc ; list ; Fstat = ((ee0 - ee1)/5)/(ee1/(158-15))$ 
+------------------------------------+ 
FSTAT   =      1.973714 
--> Calc ; list ; ftb(.95,5,143)$ 
+------------------------------------+ 
Result  =      2.277490 
The F statistic is small; the theory is not rejected. 
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?======================================================================= 
? c. Testing homotheticity 
?======================================================================= 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LCPF     Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =        148     | 
| Residuals    Sum of squares       =   2.634223     | 
|              Standard error of e  =   .1334121     | 
| Fit          R-squared            =   .9929469     | 
|              Adjusted R-squared   =   .9925180     | 
| Model test   F[  9,   148] (prob) =2315.08 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -2.78239562      1.04292476    -2.668   .0085 
 LQ      |     .01362521       .12717020      .107   .9148   8.26548908 
 LPKF    |    -.06044098       .14153074     -.427   .6700   14.4192992 
 LPLF    |    -.07639000       .09185059     -.832   .4069   30.4387314 
 LPKPF2  |    -.10507269       .21016383     -.500   .6178    .42211776 
 LPLPF2  |    -.00146323       .06849891     -.021   .9830   15.6173009 
 LPLFPKF |     .01806822       .11649158      .155   .8770   4.84868706 
 LQ2     |     .05565578       .00446590    12.462   .0000   35.7912728 
 LQLPKF  |     .03824257       .02862578     1.336   .1836   7.15696461 
 LQLPLF  |     .01296202       .00375173     3.455   .0007   251.570118 
Regress ; lhs = lcpf ; Rhs = x0 ; cls:b(9)=0,b(10)=0$ 
+----------------------------------------------------+ 
| Linearly restricted regression                     | 
| Ordinary    least squares regression               | 
| LHS=LCPF     Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =          8     | 
|              Degrees of freedom   =        150     | 
| Residuals    Sum of squares       =   2.896172     | 
|              Standard error of e  =   .1389526     | 
| Fit          R-squared            =   .9922456     | 
|              Adjusted R-squared   =   .9918837     | 
| Model test   F[  7,   150] (prob) =2741.96 (.0000) | 
| Restrictns.  F[  2,   148] (prob) =   7.36 (.0009) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -6.20547247       .37175165   -16.693   .0000 
 LQ      |     .40111764       .03208201    12.503   .0000   8.26548908 
 LPKF    |    -.05918207       .14502101     -.408   .6838   14.4192992 
 LPLF    |     .03234530       .08668866      .373   .7096   30.4387314 
 LPKPF2  |    -.20340518       .21249945     -.957   .3400    .42211776 
 LPLPF2  |    -.00516132       .06888408     -.075   .9404   15.6173009 
 LPLFPKF |     .08684971       .10534811      .824   .4110   4.84868706 
 LQ2     |     .06103878       .00440807    13.847   .0000   35.7912728 
 LQLPKF  |   -.138778D-16    .517639D-09      .000  1.0000   7.15696461 
 LQLPLF  |       .000000     .915064D-10      .000  1.0000   251.570118 
Calc ; list ; ftb(.95,2,148)$ 
+------------------------------------+ 
Result  =      3.057197 
The F statistic of 7.36 is larger than the critical value of 3.057.  The 
hypothesis is rejected.
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?======================================================================= 
? d.  Testing generalized Cobb-Douglas against full translog. 
?======================================================================= 
Regress ; lhs = lcpf ; rhs = x0 ;cls:b(5)=0,b(6)=0,b(7)=0,b(9)=0,b(10)=0$ 
+----------------------------------------------------+ 
| Linearly restricted regression                     | 
| Ordinary    least squares regression               | 
| LHS=LCPF     Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =          5     | 
|              Degrees of freedom   =        153     | 
| Residuals    Sum of squares       =   3.191949     | 
|              Standard error of e  =   .1444383     | 
| Fit          R-squared            =   .9914536     | 
|              Adjusted R-squared   =   .9912302     | 
| Model test   F[  4,   153] (prob) =4437.33 (.0000) | 
| Restrictns.  F[  5,   148] (prob) =   6.27 (.0000) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -5.07718678       .18072495   -28.093   .0000 
 LQ      |     .41724916       .03285950    12.698   .0000   8.26548908 
 LPKF    |     .00903097       .01466874      .616   .5391   14.4192992 
 LPLF    |    -.03131901       .00770196    -4.066   .0001   30.4387314 
 LPKPF2  |   -.582867D-15    .127559D-07      .000  1.0000    .42211776 
 LPLPF2  |   -.328730D-15    .986857D-08      .000  1.0000   15.6173009 
 LPLFPKF |    .461436D-15    .201473D-07      .000  1.0000   4.84868706 
 LQ2     |     .05956626       .00452575    13.162   .0000   35.7912728 
 LQLPKF  |   -.555112D-16    .538074D-09      .000  1.0000   7.15696461 
 LQLPLF  |   -.693889D-17    .223074D-09      .000  1.0000   251.570118 
 
Calc ; list ; ftb(.95,5,148)$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =      2.275319 
The F statistic of 6.27 is larger than the critical value of 2.275.  The 
hypothesis is rejected. 
 
?======================================================================= 
? e.  Testing Cobb-Douglas against full translog. 
?======================================================================= 
Matrix ; b2=b(5:10) ; v2=varb(5:10,5:10) $ 
Matrix ; list ; Fcd = 1/6 * b2'<v2>b2 $ 
Matrix FCD      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   28.87144 
Calc ; list ; ftb(.95,6,148)$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =      2.160352 
The F statistic of 28.871 is larger than the critical value of 2.16.  The 
hypothesis is rejected. 
 
?======================================================================= 
? f. Testing generalized Cobb-Douglas against homothetic translog. 
?======================================================================= 
Regress ; Lhs = lcpf ; rhs = one,lq,lpkf,lplf,lpkpf2,lplpf2,lplfpkf,lq2 
        ; cls:b(5)=0,b(6)=0,b(7)=0$ 
+----------------------------------------------------+ 
| Linearly restricted regression                     | 
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| Ordinary    least squares regression               | 
| LHS=LCPF     Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =          5     | 
|              Degrees of freedom   =        153     | 
| Residuals    Sum of squares       =   3.191949     | 
|              Standard error of e  =   .1444383     | 
| Fit          R-squared            =   .9914536     | 
|              Adjusted R-squared   =   .9912302     | 
| Model test   F[  4,   153] (prob) =4437.33 (.0000) | 
| Restrictns.  F[  3,   150] (prob) =   5.11 (.0022) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -5.07718678       .18072495   -28.093   .0000 
 LQ      |     .41724916       .03285950    12.698   .0000   8.26548908 
 LPKF    |     .00903097       .01466874      .616   .5391   14.4192992 
 LPLF    |    -.03131901       .00770196    -4.066   .0001   30.4387314 
 LPKPF2  |   -.199840D-14    .243505D-07      .000  1.0000    .42211776 
 LPLPF2  |   -.746798D-15    .608762D-08      .000  1.0000   15.6173009 
 LPLFPKF |    .140166D-14    .121752D-07      .000  1.0000   4.84868706 
 LQ2     |     .05956626       .00452575    13.162   .0000   35.7912728 
 
Calc ; list ; ftb(.95,3,150) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =      2.664907 
? 
?======================================================================= 
? g.  We have not rejected the theory, but we have rejected all the  
? functional forms 
? except the nonhomothetic translog.  Just like Christensen and Greene. 
?======================================================================= 
 
 
?======================================================================= 
? Application 5.3 Nonlinear restrictions 
?======================================================================= 
sample;1-52$ 
name;x=one,logpg,logi,logpnc,logpuc,logppt,t,logpd,logpn,logps$ 
?======================================================================= 
? a.  Simple hypothesis test 
?======================================================================= 
Regr;lhs=logg;rhs=x$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   1.570475     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =         42     | 
| Residuals    Sum of squares       =   .3812817E-01 | 
|              Standard error of e  =   .3012994E-01 | 
| Fit          R-squared            =   .9868911     | 
|              Adjusted R-squared   =   .9840821     | 
| Model test   F[  9,    42] (prob) = 351.33 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -7.28719016      2.52056245    -2.891   .0061 
 LOGPG   |     .06051812       .05401018     1.120   .2689   3.72930296 
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 LOGI    |     .99299135       .25037574     3.966   .0003   9.67214751 
 LOGPNC  |    -.15471632       .26696298     -.580   .5653   4.38036654 
 LOGPUC  |    -.48909058       .08519952    -5.741   .0000   4.10544881 
 LOGPPT  |     .01926966       .13644891      .141   .8884   4.14194132 
 T       |     .03797198       .00751371     5.054   .0000   26.5000000 
 LOGPD   |    1.73205775       .25988611     6.665   .0000   4.23906603 
 LOGPN   |    -.72953933       .26506853    -2.752   .0087   4.23689080 
 LOGPS   |    -.86798166       .35291106    -2.459   .0181   4.17535768 
Calc;r1=rsqrd$ 
Regr;lhs=logg;rhs=one,logpg,logi,logpnc,logpuc,logppt,t$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   1.570475     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =         45     | 
| Residuals    Sum of squares       =   .1014368     | 
|              Standard error of e  =   .4747790E-01 | 
| Fit          R-squared            =   .9651249     | 
|              Adjusted R-squared   =   .9604749     | 
| Model test   F[  6,    45] (prob) = 207.55 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -13.1396625      2.09171186    -6.282   .0000 
 LOGPG   |    -.05373342       .04251099    -1.264   .2127   3.72930296 
 LOGI    |    1.64909204       .20265477     8.137   .0000   9.67214751 
 LOGPNC  |    -.03199098       .20574296     -.155   .8771   4.38036654 
 LOGPUC  |    -.07393002       .10548982     -.701   .4870   4.10544881 
 LOGPPT  |    -.06153395       .12343734     -.499   .6206   4.14194132 
 T       |    -.01287615       .00525340    -2.451   .0182   26.5000000 
 
Calc;r0=rsqrd$ 
Calc;list;f=((r1-r0)/2)/((1-r1)/(n-10))$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 F       =     34.868735 
The critical value from the F table is 2.827, so we would reject the hypothesis.  
 
?======================================================================= 
? b.  Nonlinear restriction 
?======================================================================= 
 Since the restricted model is quite nonlinear, it would be quite cumbersome to estimate and examine 
the loss in fit.  We can test the restriction using the unrestricted model.  For this problem, 
   f  =  [γnc - γuc, γncδs - γptδd] ′ 
The matrix of derivatives, using the order given above and " to represent the entire parameter vector, is 

G = = .  The parameter estimates are 

∂ ∂
∂ ∂

f
f

1

2

/
/

α
α

⎡

⎣
⎢

⎤

⎦
⎥

0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0

−
− −

⎡

⎣
⎢

⎤

⎦
⎥δ δ γs d pt ncγ

Thus, f  =  [-.17399, .10091]′.  The covariance matrix to use for the tests is Gs2(X′X)-1G′   
The statistic for the joint test  is χ2  =  f′[Gs2(X′X)-1G′]-1f  =  .4772.   This is less than the critical value for a  
chi-squared with two degrees of freedom, so we would not reject the joint hypothesis.  For the individual 
hypotheses,  
we need only compute the equivalent of a t ratio for each element of f.  Thus, 
  z1  = -.6053 
and  z2  =  .2898 
Neither is large, so neither hypothesis would be rejected.  (Given the earlier result, this was to be expected.)     
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?======================================================================= 
? c.  Computations for nonlinear restriction 
?======================================================================= 
sample;1-52$ 
name;x=one,logpg,logi,logpnc,logpuc,logppt,t,logpd,logpn,logps$ 
Regr;lhs=logg;rhs=x$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   1.570475     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =         45     | 
| Residuals    Sum of squares       =   .1014368     | 
|              Standard error of e  =   .4747790E-01 | 
| Fit          R-squared            =   .9651249     | 
|              Adjusted R-squared   =   .9604749     | 
| Model test   F[  6,    45] (prob) = 207.55 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -13.1396625      2.09171186    -6.282   .0000 
 LOGPG   |    -.05373342       .04251099    -1.264   .2127   3.72930296 
 LOGI    |    1.64909204       .20265477     8.137   .0000   9.67214751 
 LOGPNC  |    -.03199098       .20574296     -.155   .8771   4.38036654 
 LOGPUC  |    -.07393002       .10548982     -.701   .4870   4.10544881 
 LOGPPT  |    -.06153395       .12343734     -.499   .6206   4.14194132 
 T       |    -.01287615       .00525340    -2.451   .0182   26.5000000 
Calc;r1=rsqrd$ 
Regr;lhs=logg;rhs=one,logpg,logi,logpnc,logpuc,logppt,t$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   1.570475     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =         45     | 
| Residuals    Sum of squares       =   .1014368     | 
|              Standard error of e  =   .4747790E-01 | 
| Fit          R-squared            =   .9651249     | 
|              Adjusted R-squared   =   .9604749     | 
| Model test   F[  6,    45] (prob) = 207.55 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -13.1396625      2.09171186    -6.282   .0000 
 LOGPG   |    -.05373342       .04251099    -1.264   .2127   3.72930296 
 LOGI    |    1.64909204       .20265477     8.137   .0000   9.67214751 
 LOGPNC  |    -.03199098       .20574296     -.155   .8771   4.38036654 
 LOGPUC  |    -.07393002       .10548982     -.701   .4870   4.10544881 
 LOGPPT  |    -.06153395       .12343734     -.499   .6206   4.14194132 
 T       |    -.01287615       .00525340    -2.451   .0182   26.5000000 
Calc;r0=rsqrd$ 
Calc;list;fstat=((r1-r0)/2)/((1-r1)/(n-10))$ 
+------------------------------------+ 
 FSTAT   =     34.868735 
Calc;list;ftb(.95,3,42)$ 
+------------------------------------+ 
 Result  =      2.827049 
 
REGR;Lhs=logg;rhs=x$ 
Calc ; ds=b(10);dd=-b(8);gpt=-b(6);gnc=b(4)$ 
Matr;gm=[0,0,0,1,-1,0,0,0,0,0 / 0,0,0,ds,0,dd,0,gpt,0,gnc]$ 
Calc;f1=b(4)-b(6) ; f2=b(4)*b(10)-b(6)*b(8)$ 
Matrix;list;f=[f1/f2]$ 
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Matrix F        has  2 rows and  1 columns. 
               1 
        +-------------- 
       1|    -.17399 
       2|     .10091 
Matrix;list;vf=gm*varb*gm'$ 
Matrix VF       has  2 rows and  2 columns. 
               1             2 
        +---------------------------- 
       1|     .08263      -.08059 
       2|    -.08059       .12129 
Matrix;list;Wald=f'<vf>f$ 
Matrix WALD     has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|     .47716 
Calc;list;z1=f(1)/sqr(vf(1,1))$ 
+------------------------------------+ 
 Z1      =      -.605278 
Calc;list;z2=f(2)/sqr(vf(2,2))$ 
+------------------------------------+ 
 Z2      =       .289760 
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Chapter 6 
 

Functional Form and Structural 
Change 
 

Exercises 
 
1.    T he F statistic could be computed as 
  F  =   {[1425 - (104 + 88 + ... + 211)] / (70 - 16)}/[(104 + 88 + ... + 211) / (570 - 70)]  =  1.343 
The 95% critical value for the F distribution with 54 and 500 degrees of freedom is 1.363. 
 
2.  a. Using the hint, we seek the c* which is the slope on d in the regression of q = y - cd - e on y and d.  The 

regression coefficients are 
1 ( )

( )
c
c

−′ ′ ′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ′ ′⎣ ⎦ ⎣ ⎦

y y y d y y - d - e
d y d d d y - d - e

  =  
1 c

c

−′ ′ ′ ′ ′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ′ ′ ′ ′⎣ ⎦ ⎣ ⎦

y y y d y y - y d - y e
d y d d d y - d d - d e

.  In the preceding, 

note that (y′y,d′y)′ is the first column of the matrix being inverted while c(y′d,d′d)′ is c times the second.   An 
inverse matrix times the first column of the original matrix is the first column of an identity matrix, and 
likewise for the second.   Also, since d was one of the original regressors in (1), d′e = 0, and, of  course, y′e = 
e′e. If we combine all of these, the coefficient vector is  

11 0
0 1 0

c
−′ ′ ′⎛ ⎞ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞

− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎝ ⎠

y y y d e e
d y d d

  =  
11 0 1

0 1 0
c

−′ ′⎛ ⎞ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞ ′− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎝ ⎠

y y y d
e e

d y d d
.  We are interested in the second 

(lower) of the two coefficients.  The matrix product at the end is e′e times the first column of the inverse 
matrix, and we wish to find its second (bottom) element.  Therefore,  collecting what we have thus far, the 
desired coefficient is   c*  = -c - e′e times the off diagonal element in the inverse matrix.  The off diagonal 
element is 
 -d′y / [(y′y)(d′d) - (y′d)2]    =   -d′y / {[(y′y)(d′d)][1  -  (y′d)2/[(y′y)(d′d)]]} 
    =   -d′y / [(y′y)(d′d)(1 - ryd

2 )]. 

Therefore,  c*            =  [(e′e)(d′y)] / [(y′y)(d′d)(1 - ryd
2 )] -  c 

 (The two negative signs cancel.)  This can be further reduced.  Since all variables are in deviation form, 
e′e/y′y is (1 - R2) in the full regression.  By multiplying it out, you can show that d = P so that 
  d′d  =  Σi (di - P)2  =  nP(1-P) 
and   d′y  =  Σi (di - P)(yi - y )  =  Σi(di - P)yi  =  n1( y1  -  y ) 
where n1 is the number of observations which have di = 1.  Combining terms once again, we have 
  c*  =  {[n1( y1  -  y )(1 - R2)} / {nP(1-P)(1 - ryd

2 )}  -  c 
Finally, since P = n1/n, this further simplifies to the result claimed in the problem, 
  c*  =  {( y1  -  y )(1 - R2)} / {(1-P)(1 - ryd

2 )}  -  c 

The problem this creates for the theory is that in the present setting, if, indeed, c is negative, ( y1  -  y ) will 
almost surely be also.    Therefore,  the sign of c* is ambiguous.  
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3.  We first find the joint distribution of the observed variables.  
*

0
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joint normal distribution with mean vector
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,  The probability limit of the 

slope in the linear regression of y on x is, as usual, 
   plim b  =  Cov[y,x]/Var[x]  =  β/(1 +  σu

2/σ*
2)  <  β. 

The probability limit of the intercept is plim  
   a =  E[y]  - (plim b)E[x]  =  α + βμ* - βμ*/(1 +  σu

2/σ*
2) 

      =  α + β[μ*σu / (σ*
2 + σu

2)]  >  α   (assuming β > 0). 
If x is regressed on y instead, the slope will estimate plim[b′]  =  Cov[y,x]/Var[y]  =  βσ*

2/(β2σ*
2 + σε

2).  
Then,plim[1/b′]  =  β + σε

2/β2σ*
2  >  β.  Therefore, b and b′ will bracket the true parameter (at least in their 

probability limits).  Unfortunately, without more information about σu
2, we have no idea how wide this 

bracket is.  Of course, if the sample is large and the estimated bracket is narrow, the results will be strongly 
suggestive.    
 
4.  In the regression of y on x and d, if d and x are independent, we can invoke the familiar result for least 
squares regression.  The results are the same as those obtained by two simple regressions.  It is instructive to 

verify this. ( )11 22 2
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 Therefore, although 

the coefficient on x is distorted, the effect of interest, namely, γ, is correctly measured.  Now consider what 
happens if x* and d are not independent.  With the second assumption, we must replace the off diagonal zero 
above with plim(x′d/n).  Since u and d are still uncorrelated, this equals Cov[x*,d].  This is  
  Cov[x*,d]  =  E[x*d]  =  πE[x*d|d=1] + (1-π)E[x*d|d=0]  =  πμ1. 
Also, plim[y′d/n] is now βCov[x*,d] + γplim(d′d/n) = βπμ1 + γπ and plim[y′x*/n] equals βplim[x*′x*/n] + 
γplim[x*′d/n] = βσ*

2 + γπμ1.  Then, the probability limits of the least squares coefficient estimators is 
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The second expression does reduce to plim c  =  γ  + βπμ1σu
2/[π(σ*

2 + σu
2) - π2(μ1)2], but the upshot is that in 

the presence of measurement error, the two estimators become an unredeemable hash of the underlying 
parameters.  Note that both expressions reduce to the true parameters if σu

2 equals zero. 
 Finally, the two means are estimators of 
  E[y|d=1]  =  βE[x*|d=1] + γ =  βμ1 + γ 
and  E[y|d=0]  =  βE[x*|d=0]       =  βμ0, 
so the difference is β(μ1 - μ0) + γ, which is a mixture of two effects.  Which one will be larger is entirely 
indeterminate, so it is reasonable to conclude that this is not a good way to analyze the problem.  If γ equals 
zero, this difference will merely reflect the differences in the values of x*, which may be entirely unrelated to 
the issue under examination  here. (This is, unfortunately, what is usually reported in the popular press.)    
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Applications 
 
?======================================================================= 
? Application 6.1 
?======================================================================= 
a. Wage equation 
Namelist ; X = one,educ,ability,pexp,med,fed,bh,sibs$ 
Regress ; Lhs = lwage ; Rhs = x $ 
Calc ; xb = b(1)+b(2)*12+b(3)*xbr(ability)+b(4)*xbr(med) 
           +b(5)*xbr(fed)+b(6)*0+b(7)*xbr(sibs) $ 
Calc ; list ; mv = exp(xb) * b(2) $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   2.296821     | 
|              Standard deviation   =   .5282364     | 
| WTS=none     Number of observs.   =      17919     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =      17912     | 
| Residuals    Sum of squares       =   4126.175     | 
|              Standard error of e  =   .4799564     | 
| Fit          R-squared            =   .1747197     | 
|              Adjusted R-squared   =   .1744433     | 
| Model test   F[  6, 17912] (prob) = 632.02 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .96950956       .03370543    28.764   .0000 
 EDUC    |     .07220350       .00225076    32.080   .0000   12.6760422 
 ABILITY |     .07746781       .00493727    15.690   .0000    .05237402 
 PEXP    |     .03950928       .00089926    43.936   .0000   8.36268765 
 MED     |    -.00011702       .00169634     -.069   .9450   11.4719013 
 FED     |     .00545695       .00133870     4.076   .0000   11.7092472 
 SIBS    |     .00476557       .00179240     2.659   .0078   3.15620291 
 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 MV      =       .725176b. Step function 
 
?======================================================================= 
? b. 
?======================================================================= 
Histogram ; Rhs = Educ $ 
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Create ; HS = Educ <= 12 $ 
Create ; Col = (Educ>12) * (educ <=16) $ 
Create ; Grad = Educ > 16 $ 
Regress ; Lhs=lwage ; Rhs = one,Col,Grad,ability,pexp,med,fed,bh,sibs $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   2.296821     | 
|              Standard deviation   =   .5282364     | 
| WTS=none     Number of observs.   =      17919     | 
| Model size   Parameters           =          9     | 
|              Degrees of freedom   =      17910     | 
| Residuals    Sum of squares       =   4215.033     | 
|              Standard error of e  =   .4851239     | 
| Fit          R-squared            =   .1569472     | 
|              Adjusted R-squared   =   .1565706     | 
| Model test   F[  8, 17910] (prob) = 416.78 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.81124933       .02069456    87.523   .0000 
 COL     |     .17467913       .00872506    20.020   .0000    .32183716 
 GRAD    |     .36244740       .02086328    17.373   .0000    .03493499 
 ABILITY |     .10097636       .00486713    20.747   .0000    .05237402 
 PEXP    |     .03814088       .00090643    42.078   .0000   8.36268765 
 MED     |     .00081934       .00171488      .478   .6328   11.4719013 
 FED     |     .00700641       .00135096     5.186   .0000   11.7092472 
 BH      |    -.06962521       .01007870    -6.908   .0000    .15385903 
 SIBS    |     .00371191       .00181156     2.049   .0405   3.15620291 
 
 
c. Education squared 
Create ; educsq = educ*educ $ 
Regress ; Lhs = lwage;rhs=one,educ,educsq,ability,pexp,med,fed,bh,sibs$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   2.296821     | 
|              Standard deviation   =   .5282364     | 
| WTS=none     Number of observs.   =      17919     | 
| Model size   Parameters           =          9     | 
|              Degrees of freedom   =      17910     | 
| Residuals    Sum of squares       =   4114.269     | 
|              Standard error of e  =   .4792902     | 
| Fit          R-squared            =   .1771010     | 
|              Adjusted R-squared   =   .1767334     | 
| Model test   F[  8, 17910] (prob) = 481.81 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .42778242       .12008093     3.562   .0004 
 EDUC    |     .15590624       .01751608     8.901   .0000   12.6760422 
 EDUCSQ  |    -.00313261       .00064230    -4.877   .0000   164.377588 
 ABILITY |     .07433494       .00496954    14.958   .0000    .05237402 
 PEXP    |     .03962214       .00089830    44.108   .0000   8.36268765 
 MED     |     .00030520       .00169504      .180   .8571   11.4719013 
 FED     |     .00519423       .00133734     3.884   .0001   11.7092472 
 BH      |    -.04957434       .01000691    -4.954   .0000    .15385903 
 SIBS    |     .00499325       .00179020     2.789   .0053   3.15620291 
Namelist ; x1 = one,educ,educsq,ability,pexp,med,fed,bh,sibs $ 
Matrix ; means = mean(x1)$ 
Matrix ; means(2)=0 $ 
Matrix ; means(3)=0$ 
Calc   ; a=means'b $ 
Calc   ; b2=b(2) ; b3=b(3) $ 
Sample ; 1 $ 
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Fplot ; fcn = a + b2*schoolng + b3*schoolgn^2 ; pts=100 
      ; start = 12 ; limits = 1,20 ; labels=schoolng ; plot(schoolng) $  

 
 
d. Interaction. 
Sample ; All $ 
Create ; EA = Educ*ability $ 
Regress ; Lhs = lwage;rhs=one,educ,ability,ea,pexp,med,fed,bh,sibs$ 
Calc ; abar =xbr(ability) $ 
Calc ; list ; me = b(2)+b(4)*abar $ 
Calc ; sdme = sqr(varb(2,2)+abar^2*varb(4,4) + 2*abar*varb(2,4))$ 
Calc ; list ; lower = me - 1.96*sdme ; upper = me + 1.96*sdme $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   2.296821     | 
|              Standard deviation   =   .5282364     | 
| WTS=none     Number of observs.   =      17919     | 
| Model size   Parameters           =          9     | 
|              Degrees of freedom   =      17910     | 
| Residuals    Sum of squares       =   4119.377     | 
|              Standard error of e  =   .4795877     | 
| Fit          R-squared            =   .1760794     | 
|              Adjusted R-squared   =   .1757113     | 
| Model test   F[  8, 17910] (prob) = 478.44 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.00190276       .03529335    28.388   .0000 
 EDUC    |     .07006221       .00243183    28.811   .0000   12.6760422 
 ABILITY |     .04693108       .02494471     1.881   .0599    .05237402 
 EA      |     .00253975       .00204029     1.245   .2132   1.60372621 
 PEXP    |     .03947437       .00089903    43.908   .0000   8.36268765 
 MED     |    .542277D-04      .00169546      .032   .9745   11.4719013 
 FED     |     .00534599       .00133813     3.995   .0001   11.7092472 
 BH      |    -.05314420       .00999271    -5.318   .0000    .15385903 
 SIBS    |     .00479076       .00179231     2.673   .0075   3.15620291 
 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 ME      =       .070195 
 LOWER   =       .065503 
 UPPER   =       .074888 
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e.   
Regress ; Lhs = lwage;rhs=one,educ,educsq,ability,ea,pexp,med,fed,bh,sibs$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   2.296821     | 
|              Standard deviation   =   .5282364     | 
| WTS=none     Number of observs.   =      17919     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =      17909     | 
| Residuals    Sum of squares       =   4106.031     | 
|              Standard error of e  =   .4788235     | 
| Fit          R-squared            =   .1787487     | 
|              Adjusted R-squared   =   .1783360     | 
| Model test   F[  9, 17909] (prob) = 433.11 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    -.10514525       .14931731     -.704   .4813 
 EDUC    |     .24088793       .02252126    10.696   .0000   12.6760422 
 EDUCSQ  |    -.00654261       .00085754    -7.630   .0000   164.377588 
 ABILITY |    -.12453442       .03354596    -3.712   .0002    .05237402 
 EA      |     .01631824       .00272231     5.994   .0000   1.60372621 
 PEXP    |     .03951247       .00089761    44.020   .0000   8.36268765 
 MED     |     .00045246       .00169356      .267   .7893   11.4719013 
 FED     |     .00524829       .00133606     3.928   .0001   11.7092472 
 BH      |    -.04775208       .01000179    -4.774   .0000    .15385903 
 SIBS    |     .00460796       .00178961     2.575   .0100   3.15620291 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 AVGLOW  =      -.798563 
 AVGHIGH =       .717891 
Create ; lowa = ability < xbr(ability) ; higha = 1 - lowa $ 
Calc   ; list ; avglow= lowa'ability / lowa'lowa ; 
avghigh=higha'ability/higha'higha $ 
Calc   ; a = b(1) + b(6)*xbr(pexp)+b(7)*xbr(med)+ 
             b(8)*xbr(fed)+b(9)*xbr(bh)+b(10)*xbr(sibs)$ 
Calc   ; al=a+b(4)*avglow ; ah = a+b(4)*avghigh$ 
Samp;1-120$ 
Create ; school = trn(9,.1)$ 
Create ; lwlow  = al + b(2)*school+b(3)*school^2 + b(5)*avglow*school $ 
Create ; lwhigh = ah + b(2)*school+b(3)*school^2 + b(5)*avghigh*school $ 
Plot ; lhs = school ; rhs =lwhigh,lwlow ;fill ;grid 
;Title=Comparison of logWage Profiles for Low and High Ability$ 
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?======================================================================= 
? Application 6.2 
?======================================================================= 
Sample ; All $ 
Namelist ; X = one,educ,ability,pexp,med,fed,sibs$ 
Regress ; For [bh=0] ; Lhs = lwage ; Rhs = x $ 
Calc ; ee0=sumsqdev $ 
Matrix ; b0=b ; v0=varb $ 
Regress ; For [bh=1] ; Lhs = lwage ; Rhs = x $ 
Calc ; ee1=sumsqdev $ 
Matrix ; b1=b ; v1=varb $ 
Regress ; Lhs = lwage ; Rhs = x $ 
Calc ; ee=sumsqdev $ 
Calc ; list ; chow = ((ee-ee0-ee1)/col(x))/ ((ee0+ee1)/(n-2*col(x))) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 CHOW    =      7.348379 
Matrix ; db=b0-b1 ; vdb=v0+v1 $ 
Matrix ; list ; Wald = db'<vdb>db $ 
Matrix WALD     has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   50.57114 
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?======================================================================= 
? Application 6.3 
?======================================================================= 
a.  The least squares estimates of the four models are 
  q/A      =  .45237   + .23815lnk 
  q/A      =  .91967   - .61863/k 
  ln(q/A)  =  -.72274  + .35160lnk 
  ln(q/A)  =  -.032194 - .91496/k 
At these parameter values, the four functions are nearly identical.  A plot of the four sets of predictions from 
the regressions and the actual values appears below.  
 

 
 
b.  The scatter diagram is shown below.  The last seven years of the data set show clearly the effect observed 
by Solow.   
 

 
 
.  
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c.  The regression results for the various models are listed below. (d is the dummy variable equal to 1 for the 
last seven years of the data set.  Standard errors for parameter estimates are given in parentheses.) 
        α                    β                  γ                 δ                R2                    e′e 
Model 1:q/A = α + βlnk + γd + δ(dlnk) + ε 
.4524      .2381                           .94355        .00213 
(.00903)   (.00932) 
.4477      .2396      .01900               .99914       .000032 
(.00113)   (.00117)    (.000384) 
.4476      .2397      .02746   -.08883     .99915       .000032 
(.00115)   (.00118)    (.0119)   (.0126) 
Model 2: q/A = α - β(1/k) + γd + δ(d/k) + ε 
  .9168      .6186                         .94915       .001915 
(.00891)    (.0229) 
.9167      .6185     .01961                .99321       .000256 
(.00331)   (.00849)   (.00108) 
.9168      .6187    .008651     .02140     .99322       .000255 
(.00336)   (.00863)    (.0354)    (.0917) 
Model 3: ln(q/A) = α + βlnk + γd + δ(dlnk) + ε 
-.7227       .3516                         .94069       .004882 
(.0137)     (.0141) 
-.7298       .3538    .002881              .99918       .000068 
(.00164)   (.00169)   (.000554) 
-.7300       .3540     .04961    -.02182   .99921       .000065 
(.00164)   (.00148)   (.0171)    (.0179) 
Model 4: ln(q/A) = α - β(1/k) + γd + δ(d/k) + ε 
-.03219      .9150                         .94964       .004146 
(.0131)     (.0337) 
-.03665      .9148     .02572              .99629       .000305 
(.00361)   (.00928)   (.00118) 
-.03646      .9153    .004290     .05556   .99632       .000303 
(.00366)   (.00941)   (.0386)    (.0999) 
 
d.  For the four models, the F test of the third specification against the first is equivalent to the Chow-test.  The 
statistics are: 
   Model 1:  F  =  (.002126 - .000032)/2 / (.000032/37)  = 1210.6 
   Model 2:  F  =                                          = 120.43 
   Model 3:  F  =                                          = 1371.0 
   Model 4:  F  =                                          = 234.64 
The critical value from the F table for 2 and 37 degrees of freedom is 3.26, so all of these are statistically 
significant.  The hypothesis that the same model applies in both subperiods must be rejected.    
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?======================================================================= 
? Application 6.4 
?======================================================================= 
According to the full model, the expected number of incidents for a ship of the base type A built in the base 
period 1960 to 1964, is 3.4. The other 19 predicted values follow from the previous results and are left as 
an exercise. The relevant test statistics for differences across ship type and year are as follows: 

 
(3925.2 - 660.9)/4

type : F[4,12] = =14.82,
660.9/12

 

 
(1090.3 - 660.9)/3

year : F[3,12] = = 2.60
660.9/12

.  

The 5 percent critical values from the F table with these degrees of freedom are 3.26 and 3.49, 
respectively, so we would conclude that the average number of incidents varies significantly across ship 
types but not across years. 

Regression Coefficients 
 Full Model Time Effects Type Effects No Effects 

Constant            3.4    6.0       8.25        10.85 
B    27.75 0     27.75     0 
C –7.0 0   –7.0     0 
D –4.5 0   –4.5     0 
E   –3.25 0    –3.25     0 
65–69   7.0    7.0 0     0 
70–74 11.4  11.4 0     0 
75–79   1.0    1.0 0     0 
R2           0.84823          0.0986            0.74963     0 
e′e        660.9        3925.2      1090.2 4354.5 
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Chapter 7 
 

Specification Analysis and Model 
Selection 
 

Exercises 
 
1.  The result cited is E[b1]  =  β1  + P1.2β2 where P1.2 = (X1′X1)-1X1′X2, so the coefficient estimator is 

biased.  If the conditional mean function E[X2|X1] is a linear function of X1, then the sample estimator P1.2 
actually is an unbiased estimator of the slopes of that function.  (That result is Theorem B.3, equation (B-
68), in another form).  Now, write the model in the form 
 

y  =  X1β1 + E[X2|X1]β2 + ε + (X2 - E[X2|X1])β2 
 
So, when we regress y on X1 alone and compute the predictions, we are computing an estimator of   
X1(β1 + P1.2β2)  =  X1β1 + E[X2|X1]β2.  Both parts of the compound disturbance in this regression ε and  
(X2 - E[X2|X1])β2 have mean zero and are uncorrelated with X1 and E[X2|X1], so the prediction error has 
mean zero.  The implication is that the forecast is unbiased.  Note that this is not true if E[X2|X1] is 
nonlinear, since P1.2 does not estimate the slopes of the conditional mean in that instance.  The generality is 
that leaving out variables wil bias the coefficients, but need not bias the forecasts.  It depends on the 
relationship between the conditional mean function E[X2|X1] and X1P1.2. 
 
2.  The “long” estimator, b1.2 is unbiased, so its mean squared error equals its variance, σ2(X1′M2X1)-1 
The short estimator, b1 is biased; E[b1] = β1 + P1.2β2.  It’s variance is σ2(X1′X1)-1.  It’s easy to show that 

this latter variance is smaller.  You can do that by comparing the inverses of the two matrices.  The inverse 
of the first matrix equals the inverse of the second one minus a positive definite matrix, which makes the 
inverse smaller hence the original matrix is larger - Var[b1.2] > Var[b1].  But, since b1 is biased, the variance 
is not its mean squared error.  The mean squared error of b1 is Var[b1] + bias×bias′.  The second term is 
P1.2β2β2′P1.2′.  When this is added to the variance, the sum may be larger or smaller than Var[b1.2]; it 
depends on the data and on the parameters, β2.  The important point is that the mean squared error of the 
biased estimator may be smaller than that of the unbiased estimator. 
 
3.  The log likelihood function at the maximum is 
 lnL  = -n/2[1 + ln2π + ln(e′e/n)] 
  = -n/2{1 + ln2π + ln[nSyy(1 – R2)]}  

= -n/2{1 + ln2π + ln(nSyy) + ln(1-R2)} where Syy = 2
1( )n

i iy y=Σ −  
since R2 = 1 - e′e/Syy .  The derivative of this expression is ∂lnL/∂R2 = (-n/2){1/(1-R2)}(-1) which is always 
positive.  Therefore, the log likelihood increases when R2 increases. 
 
4.  An inconvenient way to obtain the result is by repeated substitution of Ct-1, then Ct-2 and so on.  It is 
much easier and faster to introduce the lag operator used in Chapter 20.  Thus, the alternative model is 
 Ct = γ1 + γ2Yt + γ3LCt + ε1t where LCt = Ct-1. 
Then,  (1 – γ3L)Ct = γ1 + γ2Yt + ε1t. 
Now, multiply both sides of the equation by 1/(1-γ3L) = 1 + γ3L + γ3

2L2 + … to obtain 
 Ct = γ1/(1 - γ3) + γ2Yt + γ2γ3Yt-1 + 2s

∞
=Σ γ2γ3

sYt-s + 0s
∞
=Σ γ3

sεt-s.
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Application 
 
The J test in Example is carried out using over 50 years of data.  It is optimistic to hope that the underlying 
structure of the economy did not change in 50 years.  Does the result of the test carried out in Example 8.2 
persist if it is based on data only from 1980 to 2000?  Repeat the computation with this subset of the data. 
?==================================== 
? Example 7.2 and Application 7.1 
?==================================== 
Dates  ; 1950.1 $ 
Period ; 1950.1 - 2000.4 $ 
Create ; Ct = Realcons ; Yt = RealDPI $ 
Create ; Ct1 = Ct[-1] ; Yt1 = Yt[-1] $ 
? Example 7.2 
Period ; 1950.2 - 2000.4 $ 
Regress; Lhs = Ct ; Rhs = one,Yt,Yt1 ; Keep = CY $ 
Regress; Lhs = Ct ; Rhs = one,Yt,Ct1 ; Keep = CC $ 
Regress; Lhs = Ct ; Rhs = one,Yt,Yt1,CC $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Model was estimated May 12, 2007 at 08:56:19AM     | 
| LHS=CT       Mean                 =   3008.995     | 
|              Standard deviation   =   1456.900     | 
| WTS=none     Number of observs.   =        203     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =        199     | 
| Residuals    Sum of squares       =   73550.21     | 
|              Standard error of e  =   19.22496     | 
| Fit          R-squared            =   .9998285     | 
|              Adjusted R-squared   =   .9998259     | 
| Model test   F[  3,   199] (prob) =******* (.0000) | 
| Diagnostic   Log likelihood       =  -886.1351     | 
|              Restricted(b=0)      =  -1766.209     | 
|              Chi-sq [  3]  (prob) =1760.15 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   5.931932     | 
|              Akaike Info. Criter. =   5.931926     | 
| Autocorrel   Durbin-Watson Stat.  =  2.0256102     | 
|              Rho = cor[e,e(-1)]   =  -.0128051     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    -.60444607      3.43245774     -.176   .8604 
 YT      |     .31456542       .04619552     6.809   .0000   3352.09360 
 YT1     |    -.33004915       .04591940    -7.188   .0000   3325.25222 
 CC      |    1.01450597       .01613899    62.861   .0000   3008.99507 
Regress; Lhs = Ct ; Rhs = one,Yt,Ct1,CY $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Model was estimated May 12, 2007 at 08:56:19AM     | 
| LHS=CT       Mean                 =   3008.995     | 
|              Standard deviation   =   1456.900     | 
| WTS=none     Number of observs.   =        203     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =        199     | 
| Residuals    Sum of squares       =   73550.21     | 
|              Standard error of e  =   19.22496     | 
| Fit          R-squared            =   .9998285     | 
|              Adjusted R-squared   =   .9998259     | 
| Model test   F[  3,   199] (prob) =******* (.0000) | 
| Diagnostic   Log likelihood       =  -886.1351     | 
|              Restricted(b=0)      =  -1766.209     | 
|              Chi-sq [  3]  (prob) =1760.15 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   5.931932     | 
|              Akaike Info. Criter. =   5.931926     | 
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| Autocorrel   Durbin-Watson Stat.  =  2.0256102     | 
|              Rho = cor[e,e(-1)]   =  -.0128051     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -865.712368      120.569071    -7.180   .0000 
 YT      |    9.82505250      1.36759557     7.184   .0000   3352.09360 
 CT1     |    1.02780685       .01635059    62.861   .0000   2982.97438 
 CY      |   -10.6765577      1.48541853    -7.188   .0000   3008.99507 
? Application 7.1.  We use only the 1980 data, so we 
? start in quarter 2 of 1980 even though data are  
? available for the last quarter of 1979. 
Period ; 1980.2 - 2000.4 $ 
Regress; Lhs = Ct ; Rhs = one,Yt,Yt1 ; Keep = CY $ 
Regress; Lhs = Ct ; Rhs = one,Yt,Ct1 ; Keep = CC $ 
Regress; Lhs = Ct ; Rhs = one,Yt,Yt1,CC $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Model was estimated May 12, 2007 at 08:58:19AM     | 
| LHS=CT       Mean                 =   4503.230     | 
|              Standard deviation   =   879.3593     | 
| WTS=none     Number of observs.   =         83     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =         79     | 
| Residuals    Sum of squares       =   43603.43     | 
|              Standard error of e  =   23.49345     | 
| Fit          R-squared            =   .9993123     | 
|              Adjusted R-squared   =   .9992862     | 
| Model test   F[  3,    79] (prob) =******* (.0000) | 
| Diagnostic   Log likelihood       =  -377.7300     | 
|              Restricted(b=0)      =  -679.9419     | 
|              Chi-sq [  3]  (prob) = 604.42 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   6.360511     | 
|              Akaike Info. Criter. =   6.360436     | 
| Autocorrel   Durbin-Watson Stat.  =  1.8153241     | 
|              Rho = cor[e,e(-1)]   =   .0923379     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    39.6958824      37.1402619     1.069   .2884 
 YT      |     .20222923       .07364203     2.746   .0075   4987.32410 
 YT1     |    -.25661196       .07221392    -3.553   .0006   4951.70482 
 CC      |    1.04938412       .04670690    22.467   .0000   4503.23012 
Regress; Lhs = Ct ; Rhs = one,Yt,Ct1,CY $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Model was estimated May 12, 2007 at 08:58:19AM     | 
| LHS=CT       Mean                 =   4503.230     | 
|              Standard deviation   =   879.3593     | 
| WTS=none     Number of observs.   =         83     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =         79     | 
| Residuals    Sum of squares       =   43603.43     | 
|              Standard error of e  =   23.49345     | 
| Fit          R-squared            =   .9993123     | 
|              Adjusted R-squared   =   .9992862     | 
| Model test   F[  3,    79] (prob) =******* (.0000) | 
| Diagnostic   Log likelihood       =  -377.7300     | 
|              Restricted(b=0)      =  -679.9419     | 
|              Chi-sq [  3]  (prob) = 604.42 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   6.360511     | 
|              Akaike Info. Criter. =   6.360436     | 
| Autocorrel   Durbin-Watson Stat.  =  1.8153241     | 
|              Rho = cor[e,e(-1)]   =   .0923379     | 
+----------------------------------------------------+ 
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+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -856.107861      221.141722    -3.871   .0002 
 YT      |    1.21490273       .32340906     3.757   .0003   4987.32410 
 CT1     |     .98759074       .04395654    22.467   .0000   4465.65542 
 CY      |   -1.13474451       .31933175    -3.553   .0006   4503.23012 
? 
? The results are essentially the same.  This suggests  
? that neither model is right. 
 The regressions are based on real consumption and real disposable income.  Results for 1950 to 
2000 are given in the text.  Repeating the exercise for 1980 to 2000 produces: for the first regression, the 
estimate of α is 1.03 with a t ratio of 23.27 and for the second, the estimate is -1.24 with a t ratio of -3.062.  
Thus, as before, both models are rejected.  This is qualitatively the same results obtained with the full 51 
year data set. 
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Chapter 8 
 

The Generalized Regression Model 
and Heteroscedasticity 
 
 

Exercises 
 
1.  Write the two estimators as β̂ =  β  +  (X′Ω-1X)-1X′Ω-1ε  and   b  =  β  +  (X′X)-1X′ε. Then, 

( β̂ - b)  =  [(X′Ω-1X)-1X′Ω-1  -  (X′X)-1X′]ε  has   E[ β̂ - b] = 0 since both estimators are unbiased.  Therefore, 

 Cov[ β̂ , β̂ - b]  =  E[( β̂ - β)( β̂ - b)′]. 
Then, 
 E{(X′Ω-1X)-1X′Ω-1εε′[(X′Ω-1X)-1X′Ω-1  -  (X′X)-1X′]′} 
   =  (X′Ω-1X)-1X′Ω-1(σ2Ω)[Ω-1X(X′Ω-1X)-1 - X(X′X)-1] 
   =  σ2(X′Ω-1X)-1X′Ω-1ΩΩ-1X(X′Ω-1X)-1 - (X′Ω-1X)-1X′Ω-1ΩX(X′X)-1 
   =  (X′Ω-1X)-1(X′Ω-1X)(X′Ω-1X)-1  -  (X′Ω-1X)-1(X′X)(X′X)-1  =  0 
once the inverse matrices are multiplied.  
 
2  First,     (R β̂  - q)  =  R[β + (X′Ω-1X)-1X′Ω-1ε)] - q  =  R(X′Ω-1X)-1X′Ω-1ε  if  Rβ - q  =  0. 
Now, use the inverse square root matrix of Ω, P  =  Ω-1/2  to obtain the transformed data, 
  X*  =  PX  =  Ω-1/2X,   y*  =  Py  =  Ω-1/2y,  and   ε*  =  Pε  =  Ω-1/2ε. 
Then,  E[ε*ε*′]  =  E[Ω-1/2εε′Ω-2]  =  Ω-1/2(σ2Ω)Ω-1/2   =  σ2I, 
and,  β̂  =  (X′Ω-1X)-1X′Ω-1y  =  (X*′X*)-1X*′y* 
   =  the OLS estimator in the regression of y* on X*. 
Then,  R β̂  - q  =  R(X*′X*)-1X*′ε* 
and the numerator is ε*′X*(X*′X*)-1R′[R(X*′X*)-1R′]-1R(X*′X*)-1X*′ε* / J.  By multiplying it out, we find that 
the matrix of the quadratic form above is idempotent.  Therefore, this is an idempotent quadratic form in a 
normally distributed random vector.  Thus, its distribution is that of σ2 times a chi-squared variable with 
degrees of freedom equal to the rank of the matrix.  To find the rank of the matrix of the quadratic form, we 
can find its trace.  That is 
    tr{X*(X*′X*)-1R′[R(X*′X*)-1R′]-1R(X*′X*)-1X*} 
   =  tr{(X*′X*)-1R′[R(X*′X*)-1R′]-1R(X*′X*)-1X*′X*} 
   =  tr{(X*′X*)-1R′[R(X*′X*)-1R′]-1R} 
   =  tr{[R(X*′X*)-1R′][R(X*′X*)-1R′]-1}  =  tr{IJ}  =  J, 
which might have been expected.  Before proceeding, we should note, we could have deduced this outcome 
from the form of the matrix.  The matrix of the quadratic form is of the form Q  =  X*ABA′X*′ where B is the 
nonsingular matrix in the square brackets and A  =  (X*′X*)-1R′, which is a K×J matrix which cannot have 
rank higher than J.  Therefore, the entire product cannot have rank higher than J.   Continuing, we now find 
that the numerator (apart from the scale factor, σ2) is the ratio of a chi-squared[J] variable to its degrees of 
freedom. 

 We now turn to the denominator.  By multiplying it out, we find that the denominator is 
(y*  -  X* β̂ )′(y*  -  X* β̂ )/(n - K).  This is exactly the sum of squared residuals in the least squares regression of 

y* on X*.  Since  y*  =  X*β  +  ε*  and β̂ =  (X*′X*)-1X*′y* the denominator is ε*′M*ε*/(n - K), the familiar form 
of the sum of squares.  Once again, this is an idempotent quadratic form in a normal vector (and, again, apart 
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from the scale factor, σ2, which now cancels).  The rank of the M matrix is n - K, as always, so the 
denominator is also a chi-squared variable divided by its degrees of freedom.  
 It remains only to show that the two chi-squared variables are independent.  We know they are if the 
two matrices are orthogonal.  They are since M*X* = 0.  This completes the proof, since all of the 
requirements for the F distribution have been shown.   
 
3.  First, we know that the denominator of the F statistic converges to σ2.  Therefore, the limiting distribution 
of the F statistic is the same as the limiting distribution of the statistic which results when the denominator is 
replaced by σ2.  It is useful to write this modified statistic as  
 W *  =  (1/σ2)(R β̂  - q)′[R(X*′X*)-1R′]-1(R β̂ - q)/J.   
Now, incorporate the results from the  previous problem to write this as 
  W * = ε*′X*(X*′X*)-1R′[Rσ2(X*′X*)-1R′]-1R(X*′X*)-1X*′ε/J 
Let  ε0  =  R(X*′X*)-1X*′ε*. 
Note that this is a J×1 vector.  By multiplying it out, we find that E[ε0ε0′]  =  Var[ε0]  =  R{σ2(X*′X*)-1}R′.  
Therefore, the modified statistic can be written as W *  =  ε0′Var[ε0]-1ε0/J. This is the ‘full rank quadratic form’ 
discussed in Appendix B.  For convenience, let C  =  Var[ε0],  T  =  C-1/2,  and v  =  Tε0.   Then, W * =  v′v. By 
construction, v = Var[ε0]-1/2ε0,  so  E[v]  =  0  and  Var[v]  =  I.  The limiting distribution of v′v is chi-squared 
J if the limiting distribution of v is standard normal.  All of the conditions for the central limit theorem apply 
to v, so we do have the result we need.  This implies that as long as the data are well behaved, the numerator 
of the F statistic will converge to the ratio of a chi-squared variable to its degrees of freedom.    
 
4. The development is unchanged.  As long as the limiting behavior of (1/n) X̂ ′ X̂  = (1/n)X′ Ω̂ -1X is the 
same as that of (1/n)X*′X*, the limiting distribution of the test statistic will be the same as if the true Ω 
were used instead of the estimate Ω̂ .  
 
5.   First, in order to simplify the algebra somewhat without losing any generality, we will scale the columns 
of X so that for each xk, xk′xk  =  1.  We do this by beginning with our original data matrix, say, X0 and 
obtaining X as  X  =  X0D-1/2,  where D is a diagonal matrix with diagonal elements Dkk  =  xk

0′xk
0.  By 

multiplying it out, we find that the GLS slopes based on X instead of X0 are  
β̂ =  [(X0D-1/2)′Ω-1(X0D-1/2)]-1[(X0D-1/2)′Ω-1y]   =  D1/2[X′Ω-1X](D′)1/2(D′)-1/2X′Ω-1y  =  D1/2  β̂ 0 

with variance   Var[ β̂ ]  =  D1/2σ2[X′Ω-1X]-1(D′)1/2  =  D1/2Var[ β̂ 0](D′)1/2.  Likewise, the OLS estimator based 
on X instead of X0 is  b  =  D1/2b0 and has variance Var[b]  =  D1/2Var[b0](D′)1/2.  Since the scaling affects both 
estimators identically, we may ignore it and simply assume that X′X = I. 
 If each column of X is a characteristic vector of Ω, then, for the kth column, xk,  Ωxk  =  λkxk.  
Further,  xk′Ωxk  =  λk  and  xk′Ωxj  =  0 for any two different columns of X.  (We neglect the scaling of X, so 
that X′X = I, which we would usually assume for a set of characteristic vectors.  The implicit scaling of X is 
absorbed in the characteristic roots.)  Recall that the characteristic vectors of Ω-1 are the same as those of Ω 
while the characteristic roots are the reciprocals. Therefore, X′ΩX  =  ΛK, the diagonal matrix of the K 
characteristic roots which correspond to the columns of X.  In addition,  X′Ω-1X  =  ΛK

-1,  so  (X′Ω-1X)-1  = ΛK,  
andX′Ω-1y =  ΛK

-1X′y.  Therefore, the GLS estimator is simply β̂ =  X′y with variance  Var[ β̂ ]  = σ2ΛK. The 
OLS estimator is  b  =  (X′X)-1X′y  =  X′y.  Its variance is  Var[b]  =  σ2(X′X)-1X′ΩX(X′X)-1  =  σ2ΛK, which 
means that OLS and GLS are identical in this case.  
 
6.   Write b  =  β  +  (X′X)-1X′ε  and β̂ =  β  +  (X′Ω-1X)-1X′Ω-1ε. The covariance matrix is 

E[(b - β)( β̂  - β)′]  =  E[(X′X)-1X′εε′Ω-1X(X′Ω-1X)-1]  =  (X′X)-1X′(σ2Ω)Ω-1X(X′Ω-1X)-1  =  σ2(X′Ω-1X)-1. 
 For part (b),  e  =  Mε  as always, so E[ee′] = σ2MΩM.  No further simplification is possible for the 
general case. 
 For part (c), ε̂ =  y  -  X β̂  =  y  -  X[β + (X′Ω-1X)-1X′Ω-1ε]   
    =  Xβ + ε - X[β + (X′Ω-1X)-1X′Ω-1ε] 
    =  [I - X(X′Ω-1X)-1X′Ω-1]ε. 
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Thus,    E[ ε̂ ε̂ ′] = [I - X(X′Ω-1X)-1X′Ω-1]E[εε′][I - X(X′Ω-1X)-1X′Ω-1] ′ 
  =  [I - X(X′Ω-1X)-1X′Ω-1](σ2Ω)[I - X(X′Ω-1X)-1X′Ω-1] ′ 
  =  [σ2Ω  -  σ2X(X′Ω-1X)-1X′][I - X(X′Ω-1X)-1X′Ω-1] ′ 
  =  [σ2Ω  -  σ2X(X′Ω-1X)-1X′][I - Ω-1X(X′Ω-1X)-1X′] 
  =  σ2Ω- σ2X(X′Ω-1X)-1X′ - σ2X(X′Ω-1X)-1X′ + σ2X(X′Ω-1)X)-1X′Ω-1X(X′Ω-1X)-1X′ 
  =  σ2[Ω - X(X′Ω-1X)-1X′] 
The GLS residual vector appears in the preceding part.  As always, the OLS residual vector is e  =  Mε  =   
[I - X(X′X)-1X′]ε.  The covariance matrix is   

E[e ε̂ ′]   =  E[(I - X(X′X)-1X′)εε′(I - X(X′Ω-1X)-1X′Ω-1)′] 
  =  (I - X(X′X)-1X′)(σ2Ω)(I - Ω-1X(X′Ω-1X)-1X′) 
  =  σ2Ω - σ2X(X′X)-1X′Ω - σ2ΩΩ-1X(X′Ω-1X)-1X′ + σ2X(X′X)-1X′ΩΩ-1X(X′Ω-1X)-1X′ 
  =  σ2Ω - σ2X(X′X)-1X′ 
  =  σ2MΩ.    
7.  The GLS estimator is β̂ =  (X′Ω-1X)-1X′-1y  =  [Σixixi′/(β′xi)2]-1[Σixiyi/(β′xi)2]. The log-likelihood for this 
model is   lnL = -Σiln(β′xi) - Σiyi/(β′xi).   
The likelihood equations are 
  ∂lnL/∂β  =  -Σi(1/β′xi)xi  +  Σi[yi/(β′xi)2]xi  =  0 
or        Σi(xiyi/(β′xi)2)  =  Σixi/(β′x i). 
Now, write          Σixi/(β′xi)  =  Σixixi′β/(β′xi)2, 
so the likelihood equations are equivalent to  Σi(xiyi/(β′x i).2)  =  Σixixi′β/(β′x i).2, or X′Ω-1y  =  (X′Ω-1X)β.  
These are the normal equations for the GLS estimator, so the two estimators are the same.  We should note, 
the solution is only implicit, since Ω is a function of β.  For another more common application, see the 
discussion of the FIML estimator for simultaneous equations models in Chapter 13.  
 
8.    The covariance matrix is 

1
1

1

1

ρ ρ ρ
ρ ρ ρ

σ σ ρ ρ ρ

ρ ρ ρ

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2 2Ω . 

The matrix X is a column of 1s, so the least squares estimator of μ is .y  Inserting this Ω into (10-5), we 

obtain 
2

Var[ ] (1 ).y n
n

σ
ρ ρ= − +   The limit of this expression is ρσ 2, not zero. Although ordinary least 

squares is unbiased, it is not consistent. For this model, X′ΩX/n = 1 + ρ(n – 1), which does not converge. 
Using Theorem 8.2 instead, X is a column of 1s, so X′X = n, a scalar, which satisfies condition 1. To find 
the characteristic roots, multiply out the equation Ωx = λx = (1-ρ)Ix + ρii′x = λx.  Since i′x = Σixi, consider 
any vector x whose elements sum to zero.  If so, then it’s obvious that λ = ρ.  There are n-1 such roots.  
Finally, suppose that x = i.  Plugging this into the equation produces λ = 1 - ρ + nρ. The characteristic roots 
of Ω are (1 – ρ) with multiplicity n – 1 and (1 – ρ + nρ), which violates condition 2. 
 
9.  This is a heteroscedastic regression model in which the matrix X is a column of ones.  The efficient 

estimator is the GLS estimator, β
∧

=  (X′Ω-1X)-1X′Ω-1y  =  [Σi1yi/xi
2] / [Σi 12/xi

2]  =  [Σi(yi/xi
2)] / [Σi(1/xi

2)].  As 

always, the variance of the estimator is  Var[β
∧

]  =  σ2(X′Ω-1X)-1  =  σ2/[Σi(1/xi
2)].  The ordinary least squares 

estimator is (X′X)-1X′y = y . The variance of y is σ2(X′X)-1(X′ΩX)(X′X)-1  =  (σ2/n2)Σixi
2.  To show that the 

variance of the OLS estimator is greater than or equal to that of the GLS estimator, we must show that 
(σ2/n2)Σixi

2  >  σ2/Σi(1/xi
2) or (1/n2)(Σixi

2)(Σi(1/xi
2))  >  1 or ΣiΣj(xi

2/xj
2)  >  n2.  The double sum contains n terms 

equal to one.  There remain n(n-1)/2 pairs of the form (xi
2/xj

2 + xj
2/xi

2). If it can be shown that each of these 
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sums is greater than or equal to 2, the result is proved.  Just let zi = xi
2.  Then, we require zi/zj + zj/zi - 2  >  0. 

But, this is equivalent to  (zi
2  +  zj

2  -  2zizj) / zizj  >  0 or (zi - zj)2/zizj  >  0, which is certainly true if zi and zj are 
positive.  They are since zi equals xi

2.  This completes the proof.  
 
10.   Consider, first, y .  We saw earlier that Var[ y ] =  (σ2/n2)Σixi

2  =  (σ2/n)(1/n)Σixi
2.  The expected value is 

E[ y ] =  E[(1/n)Σiyi]  =  α.  If the mean square of x converges to something finite, then y  is consistent for α.  

That is, if plim(1/n)Σixi
2  = q where q is some finite number, then, plim y =  α.  As such, it follows that s2 and 

s*
2 = (1/(n-1))Σi(yi - α)2 have the same probability limit.  We consider, therefore, plim s*

2  =  plim(1/(n-1))Σiεi
2. 

The expected value of s*
2 is E[(1/(n-1)) Σiεi

2]  =  σ2(1/Σixi
2).  Once again, nothing more can be said without 

some assumption about xi.  Thus, we assume again that the average square of xi converges to a finite, positive 
constant, q .  Of course, the result is unchanged by division by (n-1) instead of n, so  limn→∞ E[s*

2]  =  σ2 q . 
The variance of s*

2  is Var[s*
2]  =  ΣiVar[εi

2]/(n - 1)2 .  To characterize this, we will require the variances of the 
squared disturbances, which involves their fourth moments.  But, if we assume that every fourth moment is 
finite, then the preceding is (n/(n-1)2) times the average of these fourth moments.  If every fourth moment is 
finite, then the term is dominated by the leading (n/(n-1)2) which converges to zero.  It follows that plim s*

2  =  
σ2 q .  Therefore, the conventional estimator estimates  Asy.Var[ y ]=  σ2 q /n. 

 The appropriate variance of the least squares estimator is Var[ y ]=  (σ2/n2)Σixi
2,  which is, of course, 

precisely what we have been analyzing above.  It follows that the conventional estimator of the variance of the 
OLS estimator in this model is an appropriate estimator of the true variance of the least squares estimator.  
This follows from the fact that the regressor in the model, i, is unrelated to the source of heteroscedasticity, as 
discussed in the text.  
 
11.  The sample moments are obtained using, for example, Sxx  =  x′x  -  n x 2 and so on.  For the two samples, 
we obtain y  x   Sxx  Syy  Sxy  
 Sample 1 6   6 300 300 200    
 Sample 2 6 6 300 1000 400 
The parameter estimates are computed directly using the results of Chapter 6. 
   Intercept  Slope R2 s2 
 Sample 1  2           2/3 4/9 (1500/9)/48 = 3.472 
 Sample 2 -2  4/3 16/30 (4200/9)/48 = 9.722 

The pooled moments based on 100 observations are X′X = 
100 600
600 4200
⎡

⎣
⎢

⎤

⎦
⎥ , X′y = 

600
4200
⎡

⎣
⎢

⎤

⎦
⎥ , y′y = 4900.  The 

coefficient vector based on these data is [a,b] = [0,1].  This might have been predicted since the two X′X 
matrices are identical.  OLS which ignores the heteroscedasticity would simply average the estimates.  The 
sum of squared residuals would be e′e  =  y′y  -  b′X′y  =  4900 - 4200  =  700, so the estimate of σ2 is s2  =  
700/98 = 7.142.  Note that the earlier values obtained were 3.472 and 9.722, so the pooled estimate is between 
the two, once again, as might be expected.  The asymptotic covariance matrix of these estimates is  s2(X′X)-1  

=  7142
07 01
01 167

.
. .
. .

−
−
⎡

⎣
⎢

⎤

⎦
⎥ . 

 To test the equality of the variances, we can use the Goldfeld and Quandt test.  Under the null 
hypothesis of equal variances, the ratio F   =   [e1′e1/(n1 - 2)]/[e2′e2/(n2 - 2)] (or vice versa for the subscripts) is 
the ratio of two independent chi-squared variables each divided by their respective degrees of freedom.  
Although it might seem so from the discussion in the text (and the literature) there is nothing in the test which 
requires that the coefficient vectors be assumed equal across groups.  Since for our data, the second sample 
has the larger residual variance, we refer  F[48,48]  =  s2

2/s1
2  =  9.722 / 3.472  =  2.8 to the F table.  The 

critical value for 95% significance is 1.61, so the hypothesis of equal variances is rejected. 
 The method of Example 8.5 can be applied to this groupwise heteroscedastic model.  The two step 

estimator is β
∧

=  [(1/s1
2)X1′X1 + (1/s2

2)X2′X2]-1[(1/s1
2)X1′y1 + (1/s2

2)X2′y2].  The X′X matrices are the same in 
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this problem, so this simplifies to β
∧

=  [(1/s1
2 + 1/s2

2)X′X]-1[(1/s1
2)X1′y1 + (1/s2

2)X2′y2] . The estimator is, 

therefore 1
3 472

1
9 722

50 300
300 2100

1
3 472

300
2000

1
9 722
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2200

9469
8422

1

. . . .
.
.
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⎛
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⎟

⎡

⎣
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⎤

⎦
⎥

⎛
⎝
⎜

⎞
⎠
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⎜

⎞
⎠
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⎡

⎣
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⎠
⎟

−

.   

?======================================================= 
? Application 8.1 
?======================================================= 
a.    The ordinary least squares regression of Y on a constant, X1, and X2 produces the following results: 
  Sum of squared residuals      1911.9275 
  R2                                 .03790 
  Standard error of regression     6.3780 
  Variable Coefficient Standard Error  t-ratio 
  One             .190394          .9144            .208 
  X1                1.13113           .9826           1.151 
  X2                 .376825          .4399            .857 
b.    Covariance Matrix  White’s Corrected Matrix 
   .836212                          .524589     
  -.115451  .96551                  .076578   .282366 
  -.047133  .051081  .193532       .399218  -.091608   1.14447 
c.  To apply White's test, we first obtain the residuals from the regression of Y on a constant, X1, and X2.  Then, 
we regress the squares of these residuals on a constant, X1, X2, X1

2, X2
2, and X1X2.  The R2 in this regression is 

.78296, so the chi-squared statistic is 50×0.78296  = 39.148.  The critical value from the table of chi-squared 
with 5 degrees of freedom is 11.08, so we would conclude that there is evidence of heteroscedasticity.   
d.  Lagrange multiplier test.    
Regress;Lhs=y;rhs=one,x1,x2 ; Res=e ; het $ 
create ; lmi=e*e/(sumsqdev/n) - 1 $ 
Name ; x=one,x1,x2 $ 
Calc ; list ; .5*xss(x,lmi)$ 
The result was reported with the regression, 
| Br./Pagan LM Chi-sq [  2]  (prob) =  72.78 (.0000) | 
e.  Two step estimator 
read;nobs=50;nvar=1;names=y;byva $ 
   -1.42   2.75   2.10  -5.08   1.49   1.00    .16  -1.11   1.66 
    -.26  -4.87   5.94   2.21  -6.87    .90   1.61   2.11  -3.82 
    -.62   7.01  26.14   7.39    .79   1.93   1.97 -23.17  -2.52 
   -1.26   -.15   3.41  -5.45   1.31   1.52   2.04   3.00   6.31 
    5.51 -15.22  -1.47  -1.48   6.66   1.78   2.62  -5.16  -4.71 
    -.35   -.48   1.24    .69   1.91 
read;nobs=50;nvar=1;names=x1;byva $ 
   -1.65   1.48    .77    .67    .68    .23   -.40  -1.13    .15 
    -.63    .34    .35    .79    .77  -1.04    .28    .58   -.41 
   -1.78   1.25    .22   1.25   -.12    .66   1.06   -.66  -1.18 
    -.80  -1.32    .16   1.06   -.60    .79    .86   2.04   -.51 
     .02    .33  -1.99    .70   -.17    .33    .48   1.90   -.18 
    -.18  -1.62    .39    .17   1.02 
read;nobs=50;nvar=1;names=x2;byva $ 
    -.67    .70    .32   2.88   -.19  -1.28  -2.72   -.70  -1.55 
    -.74  -1.87   1.56    .37  -2.07   1.20    .26  -1.34  -2.10 
     .61   2.32   4.38   2.16   1.51    .30   -.17   7.82  -1.15 
    1.77   2.92  -1.94   2.09   1.50   -.46    .19   -.39   1.54 
    1.87  -3.45   -.88  -1.53   1.42  -2.70   1.77  -1.89  -1.85 
    2.01   1.26  -2.02   1.91  -2.23 
Regress;Lhs=y;rhs=one,x1,x2 ; Res=e $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Model was estimated May 12, 2007 at 08:33:20PM     | 
| LHS=Y        Mean                 =   .3938000     | 
|              Standard deviation   =   6.368374     | 
| WTS=none     Number of observs.   =         50     | 
| Model size   Parameters           =          3     | 
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|              Degrees of freedom   =         47     | 
| Residuals    Sum of squares       =   1911.928     | 
|              Standard error of e  =   6.378033     | 
| Fit          R-squared            =   .3790450E-01 | 
|              Adjusted R-squared   =  -.3035736E-02 | 
| Model test   F[  2,    47] (prob) =    .93 (.4033) | 
| Diagnostic   Log likelihood       =  -162.0430     | 
|              Restricted(b=0)      =  -163.0091     | 
|              Chi-sq [  2]  (prob) =   1.93 (.3806) | 
| Info criter. LogAmemiya Prd. Crt. =   3.763988     | 
|              Akaike Info. Criter. =   3.763844     | 
| Autocorrel   Durbin-Watson Stat.  =  1.8560359     | 
|              Rho = cor[e,e(-1)]   =   .0719820     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .19039401       .91444640      .208   .8360 
 X1      |    1.13113339       .98260352     1.151   .2555    .10820000 
 X2      |     .37682493       .43992218      .857   .3960    .21500000 
Create ; e2 = e*e $ 
Create ; loge2 = log(e2) $ 
Regress ; lhs = loge2 ; Rhs = one,x1,x2 ; keep=vi $ 
Create ; vi = 1/exp(vi) $ 
Regress ; Lhs = y ; rhs = one,x1,x2 ; wts = vi $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Model was estimated May 12, 2007 at 08:33:20PM     | 
| LHS=Y        Mean                 =  -.5316339     | 
|              Standard deviation   =   4.535703     | 
| WTS=VI       Number of observs.   =         50     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =         47     | 
| Residuals    Sum of squares       =   890.9017     | 
|              Standard error of e  =   4.353775     | 
| Fit          R-squared            =   .1162193     | 
|              Adjusted R-squared   =   .7861157E-01 | 
| Model test   F[  2,    47] (prob) =   3.09 (.0548) | 
| Diagnostic   Log likelihood       =  -150.0732     | 
|              Restricted(b=0)      =  -153.1619     | 
|              Chi-sq [  2]  (prob) =   6.18 (.0456) | 
| Info criter. LogAmemiya Prd. Crt. =   3.000355     | 
|              Akaike Info. Criter. =   3.285051     | 
| Autocorrel   Durbin-Watson Stat.  =  1.9978648     | 
|              Rho = cor[e,e(-1)]   =   .0010676     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .16662621       .71981411      .231   .8179 
 X1      |     .77648745       .63883379     1.215   .2303   -.51884171 
 X2      |     .84717700       .36328984     2.332   .0240   -.34867101 
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Applications 
 
 
?======================================================= 
? Application 8.2  Gasoline Consumption 
?======================================================= 
? Rename variable for convenience 
Create ; y=lgaspcar $ 
? RHS of new regression 
Namelist ; x = one,lincomep,lrpmg,lcarpcap $ 
? Base regression.  Is cars per capita significant? 
Regress ; Lhs = y ; Rhs = x $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=Y        Mean                 =   4.296242     | 
|              Standard deviation   =   .5489071     | 
| WTS=none     Number of observs.   =        342     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =        338     | 
| Residuals    Sum of squares       =   14.90436     | 
|              Standard error of e  =   .2099898     | 
| Fit          R-squared            =   .8549355     | 
|              Adjusted R-squared   =   .8536479     | 
| Model test   F[  3,   338] (prob) = 664.00 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    2.39132562       .11693429    20.450   .0000 
 LINCOMEP|     .88996166       .03580581    24.855   .0000  -6.13942544 
 LRPMG   |    -.89179791       .03031474   -29.418   .0000   -.52310321 
 LCARPCAP|    -.76337275       .01860830   -41.023   .0000  -9.04180473Calc ; r0 
= rsqrd $ 
Namelist ; Cntry=c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18$ 
Regress;lhs=y;rhs=x,cntry ; Res = e $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=Y        Mean                 =   4.296242     | 
|              Standard deviation   =   .5489071     | 
| WTS=none     Number of observs.   =        342     | 
| Model size   Parameters           =         21     | 
|              Degrees of freedom   =        321     | 
| Residuals    Sum of squares       =   2.736491     | 
|              Standard error of e  =   .9233035E-01 | 
| Fit          R-squared            =   .9733657     | 
|              Adjusted R-squared   =   .9717062     | 
| Model test   F[ 20,   321] (prob) = 586.56 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    2.28585577       .22832349    10.011   .0000 
 LINCOMEP|     .66224966       .07338604     9.024   .0000  -6.13942544 
 LRPMG   |    -.32170246       .04409925    -7.295   .0000   -.52310321 
 LCARPCAP|    -.64048288       .02967885   -21.580   .0000  -9.04180473 
 C2      |    -.12030455       .03414942    -3.523   .0005    .05555556 
 C3      |     .75598453       .04074554    18.554   .0000    .05555556 
 C4      |     .10360026       .03660467     2.830   .0049    .05555556 
 C5      |    -.08108439       .03356343    -2.416   .0163    .05555556 
 C6      |    -.13598740       .03187957    -4.266   .0000    .05555556 
 C7      |     .05125389       .04152961     1.234   .2180    .05555556 
 C8      |     .30646950       .03529373     8.683   .0000    .05555556 
 C9      |    -.05330785       .03711258    -1.436   .1519    .05555556 
 C10     |     .09007170       .03860659     2.333   .0203    .05555556 
 C11     |    -.05106438       .03357607    -1.521   .1293    .05555556 
 C12     |    -.06915517       .04040779    -1.711   .0880    .05555556 
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 C13     |    -.60407878       .09122015    -6.622   .0000    .05555556 
 C14     |     .74048679       .18008419     4.112   .0000    .05555556 
 C15     |     .11664698       .03471246     3.360   .0009    .05555556 
 C16     |     .22413229       .04764432     4.704   .0000    .05555556 
 C17     |     .05959184       .03018816     1.974   .0492    .05555556 
 C18     |     .76939510       .04457642    17.260   .0000    .05555556 
Calc ; r1 = rsqrd $ 
Calc ; list ; Fstat = ((r1 - r0)/17) / ((1-r1)/(n-4-17)) $ 
Calc ; list ; Fc    =ftb(.95,17,(n-4-17)) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 FSTAT   =     83.960798 
 FC      =      1.654675 
Plot ; lhs = country ; rhs = e ; Bars = 0  
;Title=Plot of OLS Residuals by Country $ 

 
Regress;lhs=y;rhs=x,cntry ; Het $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=Y        Mean                 =   4.296242     | 
|              Standard deviation   =   .5489071     | 
| WTS=none     Number of observs.   =        342     | 
| Model size   Parameters           =         21     | 
|              Degrees of freedom   =        321     | 
| Residuals    Sum of squares       =   2.736491     | 
|              Standard error of e  =   .9233035E-01 | 
| Fit          R-squared            =   .9733657     | 
|              Adjusted R-squared   =   .9717062     | 
| Model test   F[ 20,   321] (prob) = 586.56 (.0000) | 
| White heteroscedasticity robust covariance matrix  | 
| Br./Pagan LM Chi-sq [ 20]  (prob) = 338.94 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    2.28585577       .22608070    10.111   .0000 
 LINCOMEP|     .66224966       .07277408     9.100   .0000  -6.13942544 
 LRPMG   |    -.32170246       .05381258    -5.978   .0000   -.52310321 
 LCARPCAP|    -.64048288       .03876145   -16.524   .0000  -9.04180473 
 C2      |    -.12030455       .03160815    -3.806   .0002    .05555556 
 C3      |     .75598453       .03692877    20.471   .0000    .05555556 
 C4      |     .10360026       .03642008     2.845   .0047    .05555556 
 C5      |    -.08108439       .03252022    -2.493   .0132    .05555556 
 C6      |    -.13598740       .03504274    -3.881   .0001    .05555556 
 C7      |     .05125389       .05768530      .889   .3749    .05555556 
 C8      |     .30646950       .03516370     8.716   .0000    .05555556 
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 C9      |    -.05330785       .04078467    -1.307   .1921    .05555556 
 C10     |     .09007170       .05606508     1.607   .1091    .05555556 
 C11     |    -.05106438       .03228064    -1.582   .1147    .05555556 
 C12     |    -.06915517       .03857838    -1.793   .0740    .05555556 
 C13     |    -.60407878       .09798870    -6.165   .0000    .05555556 
 C14     |     .74048679       .18836593     3.931   .0001    .05555556 
 C15     |     .11664698       .03500336     3.332   .0010    .05555556 
 C16     |     .22413229       .08147015     2.751   .0063    .05555556 
 C17     |     .05959184       .03166823     1.882   .0608    .05555556 
 C18     |     .76939510       .04121364    18.668   .0000    .05555556 
 
Create ; e2 = e*e $ 
Regress ; Lhs = e2 ; Rhs = one,cntry $ 
Calc ; List ; White = n*rsqrd ;  ctb(.95,17) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 WHITE   =    131.209847 
 Result  =     27.587112 
Calc ; s2 = e'e/n $ 
Matrix ; s2g = {1/19} * cntry'e2  
       ; s2g = 1/s2 * s2g  
       ; g = s2g - 1  
       ; List ; lmstat = {19/2}*g'g  $ 
Matrix LMSTAT   has  1 rows and  1 columns. 
        +-------------- 
       1|  277.00947 
Name   ; All = c1,cntry $ 
Matrix ; vg = 1/19*all'e2 $ 
Create ; wt = 1/vg(country) $ 
Regress ; Lhs = y ; rhs = x,cntry;wts=wt $  
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=Y        Mean                 =   4.460122     | 
|              Standard deviation   =   .4535009     | 
| WTS=WT       Number of observs.   =        342     | 
| Model size   Parameters           =         21     | 
|              Degrees of freedom   =        321     | 
| Residuals    Sum of squares       =   .5901434     | 
|              Standard error of e  =   .4287719E-01 | 
| Fit          R-squared            =   .9915851     | 
|              Adjusted R-squared   =   .9910608     | 
| Model test   F[ 20,   321] (prob) =1891.29 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    2.43706653       .11308370    21.551   .0000 
 LINCOMEP|     .57506962       .02926687    19.649   .0000  -5.84790214 
 LRPMG   |    -.27967108       .03518536    -7.949   .0000   -.87736963 
 LCARPCAP|    -.56540465       .01613491   -35.042   .0000  -8.34742189 
 C2      |    -.12007208       .02789011    -4.305   .0000    .08866789 
 C3      |     .76945446       .03011060    25.554   .0000    .34252221 
 C4      |     .11000512       .03169158     3.471   .0006    .01995470 
 C5      |    -.09845013       .02921659    -3.370   .0008    .05724878 
 C6      |    -.13641007       .03387520    -4.027   .0001    .01079455 
 C7      |     .13502296       .04413211     3.060   .0024    .00604952 
 C8      |     .28669153       .03200056     8.959   .0000    .01577251 
 C9      |    -.08901681       .03324265    -2.678   .0078    .01701683 
 C10     |     .15281210       .05659004     2.700   .0073    .00228044 
 C11     |    -.04087890       .02882321    -1.418   .1571    .03809105 
 C12     |    -.05220341       .02952832    -1.768   .0780    .09438377 
 C13     |    -.53400193       .06166458    -8.660   .0000    .01328985 
 C14     |     .64117855       .10737812     5.971   .0000    .06594614 
 C15     |     .12783552       .03189740     4.008   .0001    .02454617 
 C16     |     .38638811       .05013313     7.707   .0000    .00712693 
 C17     |     .04507072       .03121765     1.444   .1498    .01629698 
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 C18     |     .77812476       .03277077    23.744   .0000    .17152029 
 
 
 
?======================================================= 
? Application 8.3  Iterative estimator 
?======================================================= 
create ; logc = log(c) ; logq=log(q) ; logq2=logq^2 ; logp=log(pf) $ 
Name ; x = one,logq,logq2,logp $ 
Regress ; lhs = logc ; rhs = x ; Res = e $ 
Matrix ; b0=b $ 
Procedure$ 
Create ; e2 = e*e  
; le = e2/(sumsqdev/n)-1 $ (MLE) 
?le = log(e2) $            (Iterative two step) 
Regress ; quiet ; lhs=le ; rhs=one,lf ; keep = s2i $ 
Create ; wi = 1/exp(s2i) $ 
Regress ; lhs = logc ; rhs = x ; wts=wi ; res=e $ 
Matrix ; db = b-b0 ; b0 = b $ 
Calc ; list ; db2 = db'db $ 
Endproc $ 
Exec ; n = 10 $ 
These are the two step estimators from Example 8.4 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGC     Mean                 =   12.92005     | 
|              Standard deviation   =   1.192244     | 
| WTS=WI       Number of observs.   =         90     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =         86     | 
| Residuals    Sum of squares       =   1.212889     | 
|              Standard error of e  =   .1187576     | 
| Fit          R-squared            =   .9904126     | 
|              Adjusted R-squared   =   .9900782     | 
| Model test   F[  3,    86] (prob) =2961.37 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    9.27731457       .20978736    44.222   .0000 
 LOGQ    |     .91610564       .03299348    27.766   .0000  -1.56779393 
 LOGQ2   |     .02164855       .01101812     1.965   .0527   3.87530677 
 LOGP    |     .40174171       .01633292    24.597   .0000   12.4336185 
These are the maximum likelihood estimates 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Residuals    Sum of squares       =   1.347926     | 
|              Standard error of e  =   .1251941     | 
| Fit          R-squared            =   .9892110     | 
|              Adjusted R-squared   =   .9888346     | 
| Model test   F[  3,    86] (prob) =2628.35 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    9.24395222       .21962091    42.090   .0000 
 LOGQ    |     .92163069       .03302261    27.909   .0000  -1.43646434 
 LOGQ2   |     .02461767       .01143734     2.152   .0342   3.46800689 
 LOGP    |     .40366011       .01701993    23.717   .0000   12.5455161 
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Chapter 9 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

Models for Panel Data 
 
1.  The pooled least squares estimator is 

 y
∧

=  -.747476   +  1.058959x,  e′e  =  120.6687 
   (.95595)   (.058656) 
The fixed effects regression can be computed just by including the three dummy variables since the sample 
sizes are quite small.  The results are 

 y
∧

=  - 1.4684i1 - 2.8362i2 + .12166i3  +  1.102192x e′e  =  79.183. 
                                                          (.050719) 
The F statistic for testing the hypothesis that the constant terms are all the same is 
 F[26,2]  =  [(120.6687 - 79.183)/2]/[79.183/26]  =  6.811. 
The critical value from the F table is 19.458, so the hypothesis is not rejected. 
 In order to estimate the random effects model, we need some additional parameter estimates.  The 
group means are       y      x  
  Group 1  15.502   14.962 
  Group 2  15.415   16.559 
  Group 3  14.373   12.930 
In the group means regression using these three observations, we obtain 
  y i. =  10.665  +  .29909 x i.  with  e**′e**  =  .19747. 
There is only one degree of freedom, so this is the candidate for estimation of σε

2/T + σu
2.  In the least squares 

dummy variable (fixed effects) regression, we have an estimate of σε
2 of 79.183/26  =  3.045. Therefore, our 

estimate of σu
2 is  σ

∧
u

2

=  .19747/1  -  3.045/10  =  -.6703.  Obviously, this won't do.  Before abandoning the 
random effects model, we consider an alternative consistent estimator of the constant and slope, the pooled 
ordinary least squares estimator.  Using the group means above, we find 
  Σ i=1

3 [ y i. - (-.747476) - 1.058959 x i.]2  =  3.9273. 
One ought to proceed with some caution at this point, but it is difficult to place much faith in the group means 
regression with but a single degree of freedom, so this is probably a preferable estimator in any event.  (The 
true model underlying these data -- using a random number generator -- has a slope, β of 1.000 and a true 
constant of zero.  Of course, this would not be known to the analyst in a real world situation.)  Continuing, we 

now use σu
2
∧

=  3.9273 - 3.045/10  =  3.6227 as the estimator.  (The true value of ρ = σu
2/(σu

2+σε
2) is .5.)  This 

leads to θ  =  1  -  [3.04551/2/(10(3.6227) + 3.045)1/2]  =  .721524.  Finally, the FGLS estimator computed 

according to (16-48) is y
∧

=  -1.3415(.786)  +  1.0987 (.028998)x. 
 For the LM test, we return to the pooled ordinary least squares regression.  The necessary quantities 
are e′e    =  120.6687,  Σt e1t  =  -.55314, Σt e2t  =  -13.72824,  Σt e3t  =  14.28138.  Therefore, 
 LM  =  {[3(10)]/[2(9)]}{[(-.55314)2 + (13.72824)2 + (14.28138)2]/120.687  -  1}2   =   8.4683 
The statistic has one degree of freedom.  The critical value from the chi-squared distribution is 3.84, so the 
hypothesis of no random effect is rejected.  Finally, for the Hausman test, we compare the FGLS and least 
squares dummy variable estimators.  The statistic is χ2  =  [(1.0987 - 1.058959)2]/[(.058656)2 - (.05060)2]  =  
1.794373.  This is relatively small and argues (once again) in favor of the random effects model.    
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2.  There is no effect on the coefficients of the other variables.  For the dummy variable coefficients, with the 
full set of n dummy variables, each coefficient is   
 y i * = mean residual for the ith group in the regression of y on the xs omitting the dummy variables. 
(We use the partitioned regression results of Chapter 6.)  If an overall constant term and n-1 dummy variables 
(say the last n-1) are used, instead, the coefficient on the ith dummy variable is simply y i* - y 1* while the 

constant term is still y 1* For a full proof of these results, see the solution to Exercise 5 of Chapter 8 earlier in 
this book.   
 

3.  (a)  The pooled OLS estimator will be 
1

1 1
n n
i i i i i i

−

= =′ ′⎡ ⎤ ⎡ ⎤= Σ Σ⎣ ⎦ ⎣ ⎦b X X X y where Xi and yi have Ti 

observations.  It remains true that yi = Xiβ + εi + uii, where Var[εi + uii|Xi] = Var[wi|Xi] = σε
2I + σu

2ii′ and, 
maintaining the assumptions, both εi and ui are uncorrelated with Xi.  Substituting the expression for yi into 
that of b and collecting terms, we have 

  
1

1 1
n n
i i i i i i

−

= =′ ′⎡ ⎤ ⎡ ⎤= + Σ Σ⎣ ⎦ ⎣ ⎦b X X X wβ . 

Unbiasedness follows immediately as long as E[wi|Xi] equals zero, which it does by assumption.  Consistency, 
as mentioned in Section 9.3.2, is covered in the discussion of Chapter 4.  We would need for the matrix Q 
= 1 1

1 i

n
i i in T=

⎡ ⎤′Σ⎣ ⎦X X  to converge to a matrix of constants, or not to degenerate to a matrix of zeros.  The 

requirements for the large sample behavior of the vector in the second set of brackets is quite the same as in 
our earlier discussions of consistency.  The vector 1 1(1/ ) (1/ )n n

i i i i in n= =′Σ = ΣX w v  has mean zero.  We would 
require the conditions of the Lindeberg-Feller version of the central theorem to apply, which could be 
expected. 
(b)  We seek to establish consistency, not unbiasedness.  As such, we will ignore the degrees of freedom 
correction, -K, in (9-37).  Use n(T-1) as the denominator.  Thus, the question is whether  

  plim
2

21 1 .( )
( 1)

n T
i t it ie e

n T
= =

ε

Σ Σ −
= σ

−
 

If so, then the estimator in (9-37) will be consistent. Using (9-33) and eit - i i i ie y a′= − −x b , it follows that 
( )( )it i it i it ie e− = ε − ε − − −x x b β . Summing the squares in (9-37), we find that the estimator in (9-37)  

2
21 1 .

1 1 1

.1 1

( ) 1 1 1ˆ ( ) ( ) ( )( ) ( )
( 1)

1 1                                                - 2( ) ( )( )

n T
n n Ti t it i

it i it ii i t

n T
it i it ii t

e e
i

n T n n T

n T

= =
= = =

= =

Σ Σ − ⎡ ⎤′ ′= σ + − − − −⎢ ⎥− ⎣ ⎦
⎡ ⎤′ ′− − ε − ε⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑

b x x x x b

b x x

β β

β

 

The second term will converge to zero as the center matrix converges to a constant Q and the vectors converge 
to zero as b converges to β. (We use the Slutsky theorem.)  The third term will converge to zero as both the 
leading vector converges to zero and the covariance vector between the regressors and the disturbances 
converges to zero.  That leaves the first term, which is the average of the estimators in (9-34).  The terms in 
the average are independent.  Each has expected value exactly equal to σε

2.  So, if each estimator has finite 
variance, then the average will converge to its expectation.  Appendix D discusses various different conditions 
underwhich a sample average will converge to its expectation.  For example, finite fouth moment of εit would 
be sufficient here (though weaker conditions would also suffice).  Note that this derivation follows through for 
any consistent estimator of β, not just for b. 
 
4.  To find plim(1/n)LM = plim [T/(2(T-1))]{[Σi(Σteit)2]/[ΣiΣteit

2]  -  1}2 we can concentrate on the sums inside 
the curled brackets.  First, Σi(Σteit)2  =  nT2{(1/n)Σi[(1/T)Σteit]2}  and   ΣiΣteit

2  =  nT(1/(nT))ΣiΣteit
2.  The ratio 

equals   [Σi(Σteit)2]/[ΣiΣteit
2]  =  T{(1/n)Σi[(1/T)Σteit]2}/{(1/(nT))ΣiΣteit

2}.  Using the argument used in Exercise 
8 to establish consistency of the variance estimator, the limiting behavior of this statistic is the same as that 
which is computed using the true disturbances since the OLS coefficient estimator  is consistent.  Using the 
true disturbances, the numerator may be written  (1/n)Σi[(1/T)Σtεit]2  =  (1/n)Σi εi.

2
  Since  E[ εi. ] =  0,  
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plim(1/n)Σi εi.
2

 =  Var[ εi. ] =  σε
2T + σu

2The denominator is simply the usual variance estimator, so  
plim(1/(nT))ΣiΣtεit

2    =  Var[εit]  =  σε
2+ σu

2Therefore, inserting these results in the expression for LM, we find 
that  plim (1/n)LM  =  [T/(2(T-1))]{[T(σε

2T + σu
2)]/[σε

2+ σu
2]   -   1}2.  Under the null hypothesis that σu

2 = 0, 
this equals 0.  By expanding the inner term then collecting terms, we find that under the alternative hypothesis 
that σu

2 is not equal to 0, plim (1/n)LM  =  [T(T-1)/2][ σu
2/(σε

2+σu
2)]2.  Within group i, Corr2[εit,εis]  =  ρ2  =  

σu
2/(σu

2+ σε
2)   so plim (1/n)LM  =  [T(T-1)/2](ρ2)2.  It is worth noting what is obtained if we do not divide the 

LM statistic by n at the outset.  Under the null hypothesis, the limiting distribution of LM is chi-squared with 
one degree of freedom.  This is a random variable with mean 1 and variance 2, so the statistic, itself, does not 
converge to a constant; it converges to a random variable.  Under the alternative, the LM statistic has mean 
and variance of order n (as we see above) and hence, explodes.  It is this latter attribute which makes the test a 
consistent one.  As the sample size increases, the power of the LM test must go to 1.    
 
5.  The ordinary least squares regression results are 
   R2  =  .92803,   e′e =  146.761,   40 observations 
   Variable Coefficient   Standard Error 
   X1    .446845          .07887  
   X2               1.83915         .1534 
   Constant               3.60568          2.555      
   Period 1             -3.57906         1.723      
          Period 2             -1.49784          1.716      
          Period 3              2.00677          1.760      
          Period 4             -3.03206          1.731      
          Period 5             -5.58937          1.768      
          Period 6             -1.49474          1.714      
          Period 7             1.52021          1.714      
          Period 8             -2.25414          1.737      
          Period 9             -3.29360          1.722      
   Group 1              -.339998          1.135      
          Group 2               4.39271          1.183      
          Group 3                5.00207          1.125      
    Estimated covariance matrix for the slopes: 
    β1  β2 
   β1 .0062209    
   β2 .00030947 .023523 
For testing the hypotheses that the sets of dummy variable coefficients are zero, we will require the sums of 
squared residuals from the restrictions.  These are 
 Regression                           Sum of squares 
 All variables included                   146.761 
 Period variables omitted                 318.503 
 Group variables omitted                  369.356 
 Period and group variables omitted    585.622 
The F statistics are therefore, 
 (1)  F[9,25]   =  [(318.503 - 146.761)/9]/[146.761/25]   =  3.251 
 (2)  F[3,25]   =  [(369.356 - 146.761)/3]/[146.761/25]   =  12.639 
 (3)  F[12,25]  =  [(585.622 - 146.761)/12]/[146.761/25]   =  6.23 
The critical values for the three distributions are 2.283, 2.992, and 2.165, respectively.  All sample statistics 
are larger than the table value, so all of the hypotheses are rejected.    
 
6.  The covariance matrix would be 
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7.  The two separate regressions are as follows: 
     Sample 1             Sample 2 
  b  =  x′y/x′x          4/5 = .8                 6/10 = .6 
  e′e = y′y - bx′y     20 - 4(4/5) = 84/5      10 - 6(6/10) = 64/10 
  R2 = 1 - e′e/y′y       1 - (84/5)/20 = .16     1 - (64/10)/10 = .36 
  s2 = e′e/(n-1)         (84/5)/19 = .88421      (64/10)/19 = .33684 
  Est.Var[b] = s2/x′x   .88421/5 = .17684       .33684/10 = .033684 
 To carry out a Lagrange multiplier test of the hypothesis of equal variances, we require the separate 
and common variance estimators based on the restricted slope estimator.  This, in turn, is the pooled least 
squares estimator.  For the combined sample, we obtain 
  b  =  [x1′y1 + x2′y2]/[x1′x1 + x2′x2]  =  (4 + 6) / (5 + 10) = 2/3. 
Then, the variance estimators are based on this estimate.  For the hypothesized common variance,  
  e′e = (y1′y1 + y2′y2) - b(x1′y1 + x2′y2)  =  (20 + 10) - (2/3)(4 + 6) = 70/3, 
so the estimate of the common variance is  e′e/40  =  (70/3)/40  =  .58333. Note that the divisor is 40, not 39, 
because we are comptuting maximum likelihood estimators.  The individual estimators are 
 e1′e1/20  =  (y1′y1 - 2b(x1′y1) + b2(x1′x1))/20   =  (20 - 2(2/3)4 + (2/3)25)/20    =  .84444 
and      e2′e2/20  =  (y2′y2 - 2b(x2′y2) + b2(x2′x2))/20   =  (10 - 2(2/3)6 + (2/3)210)/20  =  .32222. 
The LM statistic is given in Example 16.3,   
 LM = (T/2)[(s1

2/s2 - 1)2 + (s2
2/s2 - 1)2] = 10[(.84444/.58333 - 1)2 + (.32222/.58333 - 1)2]  =  4.007. 

This has one degree of freedom for the single restriction.  The critical value from the chi-squared table is 3.84, 
so we would reject the hypothesis. 
 In order to compute a two step GLS estimate, we can use either the original variance estimates based 
on the separate least squares estimates or those obtained above in doing the LM test.  Since both pairs are 
consistent, both FGLS estimators will have all of the desirable asymptotic properties.  For our estimator, we 

used σ
∧

1
2 =  ej′ej/T from the original regressions.  Thus, σ

∧

1
2 =  .84  and  σ

∧

2
2 =  .32.  The GLS estimator is 

β
∧

=  [(1/σ
∧

1
2 )x1′y1 + (1/σ

∧

2
2)x2′y2]/[ (1/σ

∧

1
2 )x1′x1 + (1/σ

∧

2
2)x2′x2]  =  [4/.84 + 6/.32]/[5/.84 + 10/.32]  = .632. 

The estimated sampling variance is 1/[ (1/σ
∧

1
2 )x1′x1 + (1/σ

∧

2
2)x2′x2]  =  .02688.  This implies an asymptotic 

standard error of (.02688)2  =  .16395.  To test the hypothesis that β = 1, we would refer  z = (.632 - 1) / 
.16395  =  -2.245 to a standard normal table.  This is reasonably large, and at the usual significance levels, 
would lead to rejection of the hypothesis. 
 The Wald test is based on the unrestricted variance estimates.  Using b = .632, the variance 

estimators are σ
∧

1
2 =  [y1′y1 - 2b(x1′y1) + b2(x1′x1)]/20  =  .847056 

and  σ
∧

2
2=  [y2′y2 - 2b(x2′y2) + b2(x2′x2)]/20  =  .320512 

while the pooled estimator would be σ
∧

2=  [y′y - 2b(x′y) + b2(x′x)]/40  =  .583784.  The statistic is given at the 

end of Example 16.3,   W  = (T/2)[(σ
∧

/σ
∧

1
2 - 1)2 + (σ

∧
/σ
∧

2
2 - 1)2]  

   = 10[(.583784/.847056 - 1)2 + (.583784/.320512 - 1)2]  =  7.713. 
We reach the same conclusion as before. 
 To compute the maximum likelihood estimators, we begin our iterations from the two separate 

ordinary least squares estimates of b which produce estimates σ
∧

1
2 = .84 and σ

∧

2
2= .32.  The iterations are 

  Iteration   σ
∧

1
2  σ

∧

2
2  β

∧
 

  0        .840000    .320000     .632000 
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  1        .847056    .320512     .631819 
  2        .847071    .320506     .631818 
  3        .847071    .320506     converged 
Now, to compute the likelihood ratio statistic for a likelihood ratio test of the hypothesis of equal variances, 
we refer χ2  =  40ln.58333 - 20ln.847071 - 20ln.320506 to the chi-squared table.  (Under the null hypothesis, 
the pooled least squares estimator is maximum likelihood.)  Thus,  χ2  =  4.5164, which is roughly equal to the 
LM statistic and leads once again to rejection of the null hypothesis. 
 Finally, we allow for cross sectional correlation of the disturbances.  Our initial estimate of b is the 
pooled least squares estimator, 2/3.  The estimates of the two variances are .84444 and .32222 as before while 
the cross sectional covariance estimate is 
  e1′e2/20  =  [y1′y2 - b(x1′y2 + x2′y1) + b2(x1′x2)]/20  =  .14444. 
Before proceeding, we note, the estimated squared correlation of the two disturbances is 
  r  =  .14444 / [(.84444)(.32222)]1/2  =  .277, 
which is not particularly large.  The LM test statistic given in (16-14) is 1.533, which is well under the critical 
value of 3.84.  Thus, we would not reject the hypothesis of zero cross section correlation.  Nonetheless, we 
proceed.   The estimator is shown in (16-6).  The two step FGLS and iterated maximum likelihood estimates 

appear below.  Iteration     σ
∧

1
2  σ

∧

2
2      σ

∧

12  β
∧

 
  0     .84444  .32222  .14444   .5791338 
  1     .8521955   .3202177 .1597994  .5731058 
  2     .8528702   .3203616 .1609133  .5727069 
  3     .8529155   .3203725 .1609873  .5726805 
  4     .8529185   .3203732 .1609921  .5726788 
  5     .8529187   .3203732 .1609925  converged 
Because the correlation is relatively low, the effect on the previous estimate is relatively minor.    
 
8.  If all of the regressor matrices are the same, the estimator in (8-35) reduces to 

  β
∧

=  (X′X)-1 Σ i
n
=1  {(1/σi

2)/[Σ j
n
=1  (1/σj

2)]}X′yi  =  Σ i
n
=1  wibi 

a weighted average of the ordinary least squares estimators,  bi  =  (X′X)-1X′yi with weights 
wi  =  (1/σi

2)/[Σ j
n
=1 (1/σj

2)].  If it were necessary to estimate the weights, a simple two step estimator could be 
based on individual variance estimators.  Either of  si

2  =  ei′ei/T based on separate least squares regressions 
(with different estimators of β) or based on residuals computed from a common pooled ordinary least squares 
slope estimator could be used.    
 
9.  The various least squares estimators of the parameters are 
   Sample 1 Sample 2 Sample 3 Pooled 
  a  11.6644  5.42213  1.41116  8.06392 
   (9.658)  (10.46)  (7.328) 
  b    .926881  1.06410  1.46885  1.05413 
   (.4328)  (.4756)  (.3590) 
  e′e   452.206  673.409  125.281 
   (464.288) (732.560) (171.240) (1368.088) 
 (Values of e′e in parentheses above are based on the pooled slope estimator.)  The FGLS estimator and its 
estimated asymptotic covariance matrix  are 

  b  = 
717889
113792
.
.

⎛
⎝
⎜

⎞
⎠
⎟ , Est.Asy.Var[b]  =  

22 8049 10629
10629 0 05197
. .
. .

−
−
⎡

⎣
⎢

⎤

⎦
⎥  

Note that the FGLS estimator of the slope is closer to the 1.46885 of sample 3 (the highest of the three OLS 
estimates).  This is to be expected since the third group has the smallest residual variance.  The LM test 
statistic is based on the pooled regression, 
  LM  =  (10/2){[(464.288/10)/(1368.088/30) - 1]2 + ...}  =  3.7901 
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To compute the Wald statistic, we require the unrestricted regression.  The parameter estimates are given 
above.  The sums of squares are 465.708, 785.399, and 145.055 for i = 1, 2, and 3, respectively.  For the 
common estimate of σ2, we use the total sum of squared GLS residuals, 1396.162. Then, 
  W  =  (10/2){[(1396.162/30)/(465.708/10) - 1]2 + ...}  =  25.21. 
The Wald statistic is far larger than the LM statistic.  Since there are two restrictions, at significance levels of 
95% or 99% with critical values of 5.99 or 9.21, the two tests lead to different conclusions.  The likelihood 
ratio statistic based on the FGLS estimates is  χ2  =  30ln(1396.162/30) - 10ln(465.708/10) ... = 6.42 
which is between the previous two and between the 95% and 99% critical values. 
 

Applications 
 
As usual, the applications below require econometric software.  The computations can be done with any 
modern software package, so no specific program is recommended. 
 
--> read $ 
Last observation read from data file was     200 
End of data listing in edit window was reached 
--> REGRESS ; Lhs = I ; Rhs = F,C,one $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=I        Mean                 =   145.9582     | 
|              Standard deviation   =   216.8753     | 
| WTS=none     Number of observs.   =        200     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =        197     | 
| Residuals    Sum of squares       =   1755850.     | 
|              Standard error of e  =   94.40840     | 
| Fit          R-squared            =   .8124080     | 
|              Adjusted R-squared   =   .8105035     | 
| Model test   F[  2,   197] (prob) = 426.58 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .11556216       .00583571    19.803   .0000   1081.68110 
 C       |     .23067849       .02547580     9.055   .0000   276.017150 
 Constant|   -42.7143694      9.51167603    -4.491   .0000 
 
--> CALC    ; R0=Rsqrd $ 
--> REGRESS ; Lhs = I ; Rhs = F,C,one ; Cluster = 20 $ 
    
 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=I        Mean                 =   145.9582     | 
|              Standard deviation   =   216.8753     | 
| WTS=none     Number of observs.   =        200     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =        197     | 
| Residuals    Sum of squares       =   1755850.     | 
|              Standard error of e  =   94.40840     | 
| Fit          R-squared            =   .8124080     | 
|              Adjusted R-squared   =   .8105035     | 
| Model test   F[  2,   197] (prob) = 426.58 (.0000) | 
+----------------------------------------------------+ 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of    200 observations contained     10 clusters defined by  | 
|     20 observations (fixed number) in each cluster.                 | 
| Sample of    200 observations contained      1 strata defined by    | 
|    200 observations (fixed number) in each stratum.                 | 
+---------------------------------------------------------------------+ 



 

 60

+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .11556216       .01589434     7.271   .0000   1081.68110 
 C       |     .23067849       .08496711     2.715   .0072   276.017150 
 Constant|   -42.7143694      20.4252029    -2.091   .0378 
 
The standard errors increase substantially.  This is at least suggestive that 
there is correlation across observations within the groups.  A formal test would 
be based on one of the panel models below.  When the random effects model is fit 
by maximum likelihood, for example, the log likelihood function is -1095.257.  
The log likelihood function for the pooled model is -1191.802.  Thus, the 
correlation is highly significant.  The Lagrange multiplier statistic reported 
below is 798.16, which is far larger than the critical value of 3.84.  Once 
again, these results do suggest within groups correlation. 
 
--> REGRESS ; Lhs = I ; Rhs = F,C,one  ; Panel ; Pds=20 ; Fixed $ 
+----------------------------------------------------+ 
| Least Squares with Group Dummy Variables           | 
| Ordinary    least squares regression               | 
| LHS=I        Mean                 =   145.9583     | 
|              Standard deviation   =   216.8753     | 
| WTS=none     Number of observs.   =        200     | 
| Model size   Parameters           =         12     | 
|              Degrees of freedom   =        188     | 
| Residuals    Sum of squares       =   523478.1     | 
|              Standard error of e  =   52.76797     | 
| Fit          R-squared            =   .9440725     | 
|              Adjusted R-squared   =   .9408002     | 
| Model test   F[ 11,   188] (prob) = 288.50 (.0000) | 
+----------------------------------------------------+ 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data      10 | 
|                Smallest   20,   Largest         20 | 
|                Average group size            20.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .11012380       .01185669     9.288   .0000   1081.68110 
 C       |     .31006534       .01735450    17.867   .0000   276.017150 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only    -1359.15096  .9359943929D+07    .0000000 | 
|(2)  Group effects only    -1216.34872  .2244352274D+07    .7602173 | 
|(3)  X - variables only    -1191.80236  .1755850484D+07    .8124080 | 
|(4)  X and group effects   -1070.78103  .5234781474D+06    .9440725 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   285.604      9  .00000   66.932     9     190   .00000 | 
|(3) vs (1)   334.697      2  .00000  426.576     2     197   .00000 | 
|(4) vs (1)   576.740     11  .00000  288.500    11     188   .00000 | 
|(4) vs (2)   291.135      2  .00000  309.014     2     188   .00000 | 
|(4) vs (3)   242.043      9  .00000   49.177     9     188   .00000 | 
+--------------------------------------------------------------------+ 
--> CALC    ; R1 = Rsqrd $ 
--> MATRIX  ; bf = b(1:2) ; vf = varb(1:2,1:2) $ 
--> CALC    ; List ; Fstat=((R1-R0)/9)/((1-R1)/(n-2-10)) 
    ; FC=Ftb(.95,9,(n-2-10)) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 FSTAT   =     49.176625 
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 FC      =      1.929957 
  
The F statistic of 49.18 is far larger than the critical value, so the 
hypothesis of equal constant terms is rejected. 
 
--> REGRESS ; Lhs = I ; Rhs = F,C,one 
    ; Panel ; Pds=20 ; Random $ 
+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .278446D+04  | 
|             Var[u]              =   .612849D+04  | 
|             Corr[v(i,t),v(i,s)] =   .687594      | 
| Lagrange Multiplier Test vs. Model (3) =  798.16 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
|             Sum of Squares          .184029D+07  | 
|             R-squared               .803387D+00  | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .10974919       .01031952    10.635   .0000   1081.68110 
 C       |     .30780890       .01715154    17.946   .0000   276.017150 
 Constant|   -57.7159079      27.1118671    -2.129   .0333 
 
The LM statistic, as noted earlier, is very large, so the hypothesis of no 
effects is rejected. 
 
--> MATRIX  ; br = b(1:2) ; vr = varb(1:2,1:2) $ 
--> MATRIX  ; db = bf-br ; vdb = vf-vr ; List ; Hausman=db'<vdb>db $ 
               1 
        +-------------- 
       1|    2.45500 
--> CALC    ; List ; Ctb(.95,2) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =      5.991465 
 
The Hausman statistic is quite small, which suggests that the random 
effects approach is consistent with the data. 
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2.   
create ; logc=log(cost/pfuel) 
       ; logp1=log(pmtl/pfuel) 
       ; logp2=log(peqpt/pfuel) 
       ; logp3=log(plabor/pfuel) 
       ; logp4=log(pprop/pfuel) 
       ; logp5=log(kprice/pfuel) 
       ; logq=log(output) 
       ; logq2=.5*logq^2 $ 
Namelist ; cd = logp1,logp2,logp3,logp4,logp5 $ 
create  
       ; p11=.5* logp1^2 
       ; p22=.5* logp2^2 
       ; p33=.5* logp3^2 
       ; p44=.5* logp4^2 
       ; p55=.5* logp5^2 
       ; p12=logp1*logp2 
       ; p13=logp1*logp3 
       ; p14=logp1*logp4 
       ; p15=logp1*logp5 
       ; p23=logp2*logp3 
       ; p24=logp2*logp4 
       ; p25=logp2*logp5 
       ; p34=logp3*logp4 
       ; p35=logp3*logp5 
       ; p45=logp4*logp5 $ 
Namelist ; tl = p11,p12,p13,p14,p15,p22,p23,p24,p25,p33,p34,p35,p44,p45,p55$ 
Namelist ; z = loadfctr,stage,points $ 
regress;lhs=logc;rhs=one,logq,logq2,cd,z $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGC     Mean                 =   .7723984     | 
|              Standard deviation   =   1.074424     | 
| WTS=none     Number of observs.   =        256     | 
| Model size   Parameters           =         11     | 
|              Degrees of freedom   =        245     | 
| Residuals    Sum of squares       =   2.965806     | 
|              Standard error of e  =   .1100242     | 
| Fit          R-squared            =   .9899249     | 
|              Adjusted R-squared   =   .9895136     | 
| Model test   F[ 10,   245] (prob) =2407.23 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    20.3856176      22.8643711      .892   .3735 
 LOGQ    |     .95227889       .01832119    51.977   .0000  -1.11237037 
 LOGQ2   |     .06568531       .01060839     6.192   .0000   1.45687077 
 LOGP1   |    -.32662031      1.17956412     -.277   .7821    .37999226 
 LOGP2   |    -.28619766       .56614750     -.506   .6136   -.25308254 
 LOGP3   |     .16012937       .08634095     1.855   .0649    .66688211 
 LOGP4   |    -.00519153       .07328859     -.071   .9436  -2.14504306 
 LOGP5   |    1.43718160      1.78896723      .803   .4225  -12.6860637 
 LOADFCTR|    -.94688632       .18441822    -5.134   .0000    .54786115 
 STAGE   |    -.00021794     .402227D-04    -5.418   .0000   507.879666 
 POINTS  |     .00199712       .00031682     6.304   .0000   72.9843750 
? 
? Turns out the translog model cannot be computed with the firm  
? dummy variables.  I'll use the Cobb Douglas form. 
?  
regress;lhs=logc;rhs=  one,logq,logq2,cd ; panel ; pds=ti $ 
+----------------------------------------------------+ 
| OLS Without Group Dummy Variables                  | 
| Ordinary    least squares regression               | 
| LHS=LOGC     Mean                 =   .7723984     | 
|              Standard deviation   =   1.074424     | 
| WTS=none     Number of observs.   =        256     | 
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| Model size   Parameters           =          8     | 
|              Degrees of freedom   =        248     | 
| Residuals    Sum of squares       =   4.190133     | 
|              Standard error of e  =   .1299834     | 
| Fit          R-squared            =   .9857657     | 
|              Adjusted R-squared   =   .9853639     | 
| Model test   F[  7,   248] (prob) =2453.53 (.0000) | 
+----------------------------------------------------+ 
+----------------------------------------------------+ 
| Panel Data Analysis of LOGC       [ONE way]        | 
|           Unconditional ANOVA (No regressors)      | 
| Source      Variation   Deg. Free.     Mean Square | 
| Between       272.013          24.     11.3339     | 
| Residual      22.3551         231.     .967752E-01 | 
| Total         294.368         255.     1.15439     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 LOGQ    |     .93708702       .01772733    52.861   .0000  -1.11237037 
 LOGQ2   |     .07754607       .01211431     6.401   .0000   1.45687077 
 LOGP1   |    -.94586281      1.38855410     -.681   .4964    .37999226 
 LOGP2   |    -.79081045       .66530892    -1.189   .2357   -.25308254 
 LOGP3   |     .01998606       .09963618      .201   .8412    .66688211 
 LOGP4   |     .08893118       .08543313     1.041   .2989  -2.14504306 
 LOGP5   |    2.63118115      2.10504302     1.250   .2125  -12.6860637 
 Constant|    35.4178566      26.9017806     1.317   .1892 
+----------------------------------------------------+ 
| Least Squares with Group Dummy Variables           | 
| Ordinary    least squares regression               | 
| LHS=LOGC     Mean                 =   .7723984     | 
|              Standard deviation   =   1.074424     | 
| WTS=none     Number of observs.   =        256     | 
| Model size   Parameters           =         32     | 
|              Degrees of freedom   =        224     | 
| Residuals    Sum of squares       =   .9373686     | 
|              Standard error of e  =   .6468911E-01 | 
| Fit          R-squared            =   .9968157     | 
|              Adjusted R-squared   =   .9963750     | 
| Model test   F[ 31,   224] (prob) =2261.94 (.0000) | 
+----------------------------------------------------+ 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data      25 | 
|                Smallest    2,   Largest         15 | 
|                Average group size            10.24 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 LOGQ    |     .66448665       .03580894    18.556   .0000  -1.11237037 
 LOGQ2   |    -.00955723       .01280811     -.746   .4563   1.45687077 
 LOGP1   |    1.84750938       .76113884     2.427   .0159    .37999226 
 LOGP2   |     .73986763       .37612716     1.967   .0503   -.25308254 
 LOGP3   |    -.05323942       .06396335     -.832   .4060    .66688211 
 LOGP4   |     .22763995       .04625120     4.922   .0000  -2.14504306 
 LOGP5   |   -1.83738098      1.16995945    -1.570   .1176  -12.6860637 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only     -381.12407  .2943684435D+03    .0000000 | 
|(2)  Group effects only      -51.16832  .2235506489D+02    .9240575 | 
|(3)  X - variables only      163.14470  .4190132631D+01    .9857657 | 
|(4)  X and group effects     354.81332  .9373685874D+00    .9968157 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
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|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   659.911     24  .00000  117.116    24     231   .00000 | 
|(3) vs (1)  1088.538      7  .00000 2453.527     7     248   .00000 | 
|(4) vs (1)  1471.875     31  .00000 2261.945    31     224   .00000 | 
|(4) vs (2)   811.963      7  .00000  731.160     7     224   .00000 | 
|(4) vs (3)   383.337     24  .00000   32.388    24     224   .00000 | 
+--------------------------------------------------------------------+ 
+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .418468D-02  | 
|             Var[u]              =   .127110D-01  | 
|             Corr[v(i,t),v(i,s)] =   .752323      | 
| Lagrange Multiplier Test vs. Model (3) =  479.37 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Baltagi-Li form of LM Statistic =         174.85 | 
| Fixed vs. Random Effects (Hausman)     =   40.99 | 
| ( 7 df, prob value =  .000001)                   | 
| (High (low) values of H favor FEM (REM).)        | 
|             Sum of Squares          .648771D+01  | 
|             R-squared               .978056D+00  | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 LOGQ    |     .79769706       .02494671    31.976   .0000  -1.11237037 
 LOGQ2   |     .02011534       .01130089     1.780   .0751   1.45687077 
 LOGP1   |    1.11671466       .74579390     1.497   .1343    .37999226 
 LOGP2   |     .27128619       .36294718      .747   .4548   -.25308254 
 LOGP3   |    -.10761385       .06138583    -1.753   .0796    .66688211 
 LOGP4   |     .18385724       .04550246     4.041   .0001  -2.14504306 
 LOGP5   |    -.49374865      1.13625272     -.435   .6639  -12.6860637 
 Constant|   -4.53328730      14.5229534     -.312   .7549 
regress;lhs=logc;rhs=z,one,logq,logq2,cd ; panel ; pds=ti $ 
+----------------------------------------------------+ 
| OLS Without Group Dummy Variables                  | 
| Ordinary    least squares regression               | 
| LHS=LOGC     Mean                 =   .7723984     | 
|              Standard deviation   =   1.074424     | 
| WTS=none     Number of observs.   =        256     | 
| Model size   Parameters           =         11     | 
|              Degrees of freedom   =        245     | 
| Residuals    Sum of squares       =   2.965806     | 
|              Standard error of e  =   .1100242     | 
| Fit          R-squared            =   .9899249     | 
|              Adjusted R-squared   =   .9895136     | 
| Model test   F[ 10,   245] (prob) =2407.23 (.0000) | 
+----------------------------------------------------+ 
+----------------------------------------------------+ 
| Panel Data Analysis of LOGC       [ONE way]        | 
|           Unconditional ANOVA (No regressors)      | 
| Source      Variation   Deg. Free.     Mean Square | 
| Between       272.013          24.     11.3339     | 
| Residual      22.3551         231.     .967752E-01 | 
| Total         294.368         255.     1.15439     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 LOADFCTR|    -.94688632       .18441823    -5.134   .0000    .54786115 
 STAGE   |    -.00021794     .402227D-04    -5.418   .0000   507.879666 
 POINTS  |     .00199712       .00031682     6.304   .0000   72.9843750 
 LOGQ    |     .95227889       .01832119    51.977   .0000  -1.11237037 
 LOGQ2   |     .06568531       .01060839     6.192   .0000   1.45687077 
 LOGP1   |    -.32662033      1.17956418     -.277   .7821    .37999226 
 LOGP2   |    -.28619767       .56614753     -.506   .6136   -.25308254 
 LOGP3   |     .16012937       .08634095     1.855   .0649    .66688211 



 

 65

 LOGP4   |    -.00519153       .07328859     -.071   .9436  -2.14504306 
 LOGP5   |    1.43718164      1.78896732      .803   .4225  -12.6860637 
 Constant|    20.3856181      22.8643723      .892   .3735 
+----------------------------------------------------+ 
| Least Squares with Group Dummy Variables           | 
| Ordinary    least squares regression               | 
| LHS=LOGC     Mean                 =   .7723984     | 
|              Standard deviation   =   1.074424     | 
| WTS=none     Number of observs.   =        256     | 
| Model size   Parameters           =         35     | 
|              Degrees of freedom   =        221     | 
| Residuals    Sum of squares       =   .7726037     | 
|              Standard error of e  =   .5912651E-01 | 
| Fit          R-squared            =   .9973754     | 
|              Adjusted R-squared   =   .9969716     | 
| Model test   F[ 34,   221] (prob) =2470.05 (.0000) | 
+----------------------------------------------------+ 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data      25 | 
|                Smallest    2,   Largest         15 | 
|                Average group size            10.24 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 LOADFCTR|    -.89457348       .14242570    -6.281   .0000    .54786115 
 STAGE   |    -.00022827     .894260D-04    -2.553   .0113   507.879666 
 POINTS  |     .00010341       .00041551      .249   .8037   72.9843750 
 LOGQ    |     .75278467       .03923479    19.187   .0000  -1.11237037 
 LOGQ2   |    -.00324835       .01306645     -.249   .8039   1.45687077 
 LOGP1   |    1.38217070       .72421015     1.909   .0575    .37999226 
 LOGP2   |     .61609241       .35323609     1.744   .0824   -.25308254 
 LOGP3   |     .00706546       .05918620      .119   .9051    .66688211 
 LOGP4   |     .14433953       .04404683     3.277   .0012  -2.14504306 
 LOGP5   |   -1.25331458      1.10477945    -1.134   .2577  -12.6860637 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only     -381.12407  .2943684435D+03    .0000000 | 
|(2)  Group effects only      -51.16832  .2235506489D+02    .9240575 | 
|(3)  X - variables only      207.37940  .2965806000D+01    .9899249 | 
|(4)  X and group effects     379.55705  .7726036853D+00    .9973754 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   659.911     24  .00000  117.116    24     231   .00000 | 
|(3) vs (1)  1177.007     10  .00000 2407.226    10     245   .00000 | 
|(4) vs (1)  1521.362     34  .00000 2470.054    34     221   .00000 | 
|(4) vs (2)   861.451     10  .00000  617.357    10     221   .00000 | 
|(4) vs (3)   344.355     24  .00000   26.140    24     221   .00000 | 
+--------------------------------------------------------------------+ 
 
+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .349594D-02  | 
|             Var[u]              =   .860939D-02  | 
|             Corr[v(i,t),v(i,s)] =   .711206      | 
| Lagrange Multiplier Test vs. Model (3) =  466.36 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Baltagi-Li form of LM Statistic =         170.10 | 
| Fixed vs. Random Effects (Hausman)     =   44.65 | 
| (10 df, prob value =  .000003)                   | 
| (High (low) values of H favor FEM (REM).)        | 
|             Sum of Squares          .451094D+01  | 
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|             R-squared               .984812D+00  | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 LOADFCTR|   -1.07921018       .13264921    -8.136   .0000    .54786115 
 STAGE   |    -.00016415     .672354D-04    -2.441   .0146   507.879666 
 POINTS  |     .00044792       .00035950     1.246   .2128   72.9843750 
 LOGQ    |     .86611837       .02783747    31.113   .0000  -1.11237037 
 LOGQ2   |     .02222380       .01102947     2.015   .0439   1.45687077 
 LOGP1   |     .92719911       .70150544     1.322   .1863    .37999226 
 LOGP2   |     .30782803       .33937387      .907   .3644   -.25308254 
 LOGP3   |    -.02581955       .05671735     -.455   .6489    .66688211 
 LOGP4   |     .09284095       .04277517     2.170   .0300  -2.14504306 
 LOGP5   |    -.36595849      1.06514141     -.344   .7312  -12.6860637 
 Constant|   -2.36774378      13.6315073     -.174   .8621 
matrix ; List ; bz=b(1:3);vz=varb(1:3,1:3) ; wald = bz'<vz>bz $ 
Matrix WALD     has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   74.33957 
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Chapter 10  
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Systems of Regression Equations 
  

1. The model can be written as 
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.  Therefore, the OLS estimator is 

  m  =  (i′i + i′i)-1(i′y1 + i′y2)  =  (n y1 + n y2 ) / (n + n)  =  ( y1 + y2 )/2  = 1.5. 

The sampling variance would be Var[m]  =  (1/2)2{Var[ y1 ] + Var[ y2 ] + 2Cov[( y1 1, y2 )]}. 

We would estimate the parts with Est.Var[ y1 ]   =  s11/n   =  ((150 - 100(1)2)/99)/100  =  .0051 

    Est.Var[ y2 ]   =  s22/n   =  ((550 - 100(2)2)/99)/100  =  .0152 

    Est.Cov[ y1 , y2 ]  =  s12/n  =  ((260 - 100(1)(2))/99)/100  =  .0061 
Combining terms,  Est.Var[m]  =  .0079. 
 The GLS estimator would be 
 [(σ11 + σ12)i′y1 + (σ22 + σ12)i′y2]/[(σ11 + σ12)i′i  + (σ22 + σ12)i′i] =   w y1 + (1-w) y2  
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The weight simplifies a bit as the determinant appears in both the denominator and the numerator.  Thus, 
w  =  (σ22 - σ12) / (σ11 + σ22 - 2σ12).  For our sample data, the two step estimator would be based on the 
variances computed above and s11  =  .5051, s22  =  1.5152, s12  =   .6061.  Then, w   =  1.1250.   The FGLS 
estimate is   1.125(1) + (1 - 1.125)(2)  =  .875.  The sampling variance of this estimator is  
w2Var[ y1 ] + (1 - w)2Var[ y2 ] + 2w(1 - w)Cov[ y1 , y2 ]   =  .0050  as compared to .0079 for the OLS 
estimator.    
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The generalized least squares estimator is   
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where      sxx  =  x′x/n, sx1  =  x′y1/n, sx2  =  x′y2/n 
and    σij = the ijth element of the 2×2 Σ-1. 
To obtain the explicit form, note, first, that all terms σij are of the form σji/(σ11σ22 - σ2

12)  But, the denominator 
in these ratios will be cancelled as it appears in both the inverse matrix and in the vector.  Therefore, in terms 
of the original parameters, (after cancelling n), we obtain 
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The two elements are    β
∧

1 =  [σ11sxx(σ22 y1 - σ12 y2 ) - σ12 x (σ12sx1 -σ11sx2)]/[σ11σ22sxx - (σ12 x )2] 

   β
∧

2 =  [σ12 x (σ22 y1  - σ12 y2 ) - σ22(σ12sx1 - σ11sx2)]/[σ11σ22sxx - (σ12 x )2] 
The asymptotic covariance matrix is  
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The OLS estimator is   b  =  (X′X)-1X′y  = 
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      Using the results above, the OLS coefficients are b1 = y1 = 150/50 = 3 and b2 = x′y2/x′x = 50/100 = 1/2. 
The estimators of the disturbance (co-)variances are 
   s11  =  Σi (yi1 - y1 )2/n  =  (500 - 50(3)2)/50  =  1 
   s22  =  Σi (yi2 - b2xi)2/n  =  (90 - (1/2)50)/50 = 1.3 
   s12  =  Σi (yi1 - y1 )(yi2 - b2xi)2/n  =  [y1′y2 - n y1 y2 - b2x′y1 + nb2 y1 x ]/n 
        =  (40 - 50(3)(1) - (1/2)60 + 50(1/2)(3)(2)/50   =  .2 
Therefore, we estimate the asymptotic covariance matrix of the OLS estimates as 

 Est.Var[b]  =  
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2 2 50 90 13 90
02 0000888

0000888 01444
/ . ( )[ ( )]

. ( )[ / ] . /
. .

. .
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ .  

 To compute the FGLS estimates, we use our results from part a. The necessary statistics for the 
computation are s11  =  1,  s22  =  1.3,   s11  =  .2, sxx  =  100/50  =  2, x =  100/50  =  2,   
  y1 =  150/50  =  3,  y2 =   50/50  =  1 
  sx1  =  60/50   =  1.2, sx2  =  50/50   =  1 

Then,  β
∧

1 =  {1(2)[1.3(3) - .2(1)] - .2(2)[.2(1.2) - 1(1)]}/{1(1.3) - [.2(2)]2}  =  3.157 

  β
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2 =  {2(2)[1.3(3) - .2(1)] - 1.3[.2(1.2) - 1(1)]}/{1(1.3) - [.2(2)]2} =  1.011 
The estimate of the asymptotic covariance matrix is    
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estimated variance of the FGLS estimator of the parameter of the first equation is larger.  The result for the 
true GLS estimator based on known values of the disturbance variances and covariance does not guarantee 
that the estimated variances will be smaller in a finite sample. However, the estimated variance of the second 
parameter is considerably smaller than that for the OLS estimate. 
 Finally, to test the hypothesis that β2 = 1 we use the z-statistic (asymptotically distributed as standard 
normal),  z  =  (1.011 - 1) / (.007945)2   =  .123.  The hypothesis cannot be rejected.    
 
3.  The ordinary least squares estimates of the parameters are 
  b1  =  x1′y1/x1′x1  =  4/5  = .8   and   b2  =  x2′y2/x2′x2 =  6/10 = .6 
Then, the variances and covariance of the disturbances are 
 s11  =  (y1′y1 - b1x1′y1)/n  = (20 - .8(4))/20  =  .84 
 s22  =  (y2′y2 - b2x2′y2)/n  = (10 - .6(6))/20  =  .32 
 s12  =  (y1′y2 - b2x2′y1 - b1x1′y2 + b1b2x1′x2 )/n =  (6 - .6(3) - .8(3) + .8(.6)(2))/20   =  .246 
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We will require S-1    = 
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.  Inserting the values given in the problem produces 

the FGLS estimates,β
∧

1  = .505335, β
∧

2  =  .541741  with estimated asymptotic covariance matrix equal to the 

inverse matrix shown above, Est.Var β
∧⎡

⎣
⎢
⎤

⎦
⎥ =

. .
. .
132565 0077645
0077645 0252505

⎡

⎣
⎢

⎤

⎦
⎥ .  To test the hypothesis, we use the t 

statistic, t = (.505335 - .541741)/[.132565  +  .0252505  -  2(.0077645)]2  =  -.0965 which is quite small.  We 
would not reject the hypothesis. 
 To compute the maximum likelihood estimates, we would begin with the OLS estimates of σ11, σ22, 
and σ12.  Then, we iterate between the following calculations 
 (1)  Compute the 2×2 matrix, S-1 

 (2)  Compute the 2×2 matrix   [X′(S-1⊗I)X] = s s
s s

11
1 1

12
1 2

12
1 2

22
2 2

x x x x
x x x x

' '
' '

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

               [X′(S-1⊗I)y] = s s
s s

11
1 1

12
1 2

12
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22
2 2

x y x y
x y x y

' '
' '

+
+

⎡

⎣
⎢
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⎤

⎦
⎥
⎥

 

 (3)  Compute the coefficient vector  β
∧

=  [X′(S-1⊗I)X]-1[X′(S-1⊗I)y] 
Compare this estimate to the previous one.  If they are similar enough, exit the iterations. 

 (4)  Recompute S using  sij  =  yi′yj  - β
∧

i xi′yj  -  β
∧

j xj′yi  +  β
∧

i β
∧

j xi′xj,  i,j = 1,2. 
 (5)  Go back to step (1) and continue. 
  Our iterations produce the two slope estimates 
   1:  .505335  .541741 
   2:  .601889  .564998 
   3:  .614884  .566875 
   4:  .616559  .567186 
   5:  .616775  .567227 
   6:  .616803  .567232 
   7:  .616807  .567232  converged. 
At convergence, we find the estimate of the asymptotic covariance matrix of the estimates as 

[XN(S-1⊗I)X]-1  =  
. .

. .
155355 00576887

00576887 029348
⎡

⎣
⎢

⎤

⎦
⎥  and   S  =  

. .

. .
8483899 1573814
1573814 3205369
⎡

⎣
⎢

⎤

⎦
⎥ . 

 To use the likelihood ratio method to test the hypothesis, we will require the restricted maximum 
likelihood estimate.  Under the hypothesis,the model is the one in Section 15.2.2.   The restricted estimate is 
given in (15-12) and the equations which follow.  To obtain them, we make a small modification in our 
algorithm above.  We replace step (3) with 

 (3') β
∧

=  [s11x1′y1 + s22x2′y2 + s12(x1′y2 + x2′y1)]/[s11x1′x1 + s22x2′x2 + 2s12x1′x2]. 

Step 4 is then computed using this common estimate for both β
∧

1 and β
∧

2 .  The iterations produce 
    1:  .5372671 
    2:  .5703837 
    3:  .5725274 
    4:  .5726687 
    5:  .5726780 
    6:  .5726786  converged. 
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At this estimate, the estimate of Σ is 
. .
. .

.
8529188 1609926
1609926 3203732
⎡

⎣
⎢

⎤

⎦
⎥   The likelihood ratio statistic is given in (15-56).  

Using our unconstrained and constrained estimates, we find  |Wu| = .2471714 and |Wr| = .2473338. The 
statistic is λ  =  20(ln.2473338 - ln.2471714)  =  .0131.  This is far below the critical value of 3.84, so once 
again, we do not reject the hypothesis.  
 
4.  The GLS estimator is 

  β
∧

= σ σ
σ σ

σ σ
σ σ

11 12

12 22

1 11
1

12
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12
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22
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X' X X'X
X'X X' X
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X'y X' y
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⎢

⎤

⎦
⎥
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+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

 

The matrix to be inverted equals [Σ-1 ⊗X′X]-1.  But,  [Σ-1⊗X′X]-1  =  Σ⊗(X′X)-1.  (See (2-76).)  Therefore, 

  β
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= σ σ
σ σ

σ σ
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12 22
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We now make the replacements X′y1  =  (X′X)b1  and  X′y2  =  (X′X)b2.  After multiplying out the product, 
we find that 

β
∧

= σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
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1 11
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( (
( ( )

 

The four scalar terms in the matrix product are the corresponding elements of ΣΣ-1 = I.  Therefore, β
∧

= 
b
b

1

2

⎛
⎝
⎜

⎞
⎠
⎟ . 

 
5.  The algebraic result is a little tedious, but straightforward.  The GLS estimator which is computed is 

β

β

σ σ
σ σ

σ σ
σ σ
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11
1 1
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x x x x
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x y x y
x y x y

' '
' '

' '
' '

. 

It helps at this point to make some simplifying substitutions.  The elements in the inverse matrix, σij, are all 
equal to elements of the original matrix divided by the determinant.  But, the determinant appears in the 
leading matrix, which is inverted and in the trailing vector (which is not).  Therefore, the determinant will 

cancel out.  Making the substitutions, β

β

σ σ
σ σ

σ
σ σ

1

2

22 1 1 12 1 2

12 2 1 11 2 2

1
22 1 1 12 1 2

12 2 1 22 2 2
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x y x y
x y x y

' '
' '

' '
' '

σ
.  Now, 

we are concerned with probability limits.  We divide every element of the matrix to be inverted by n, then 
because of the inversion, divide the vector on the right by n as well.  Suppose, for simplicity, that  

limn→∞xi′xj/n =  qij, i,j = 1,2,3. Then, plim β

β
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' / ' /
' / ' /

σ
 

Then, we will use plim (1/n)x1′y1  =  β1q11 + plim (1/n)x1Nε1  =  β1q11 
  plim (1/n)x1′y2  =  β2q12 + β3q13 
  plim (1/n)x2′y1  =  β1q12  
  plim (1/n)x2′y2  =  β2q22 + β3q23.  
Therefore, after multiplying out all the terms, 

plim β

β

σ σ
σ σ

β σ β β σ
β σ β σ β σ
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σ
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The inverse matrix is 1

11 22 11 22 12 12
2

11 22 12 12

12 12 22 22σ σ σ

σ σ
σ σq q q

q q
q q−

⎡

⎣
⎢

⎤

⎦
⎥( )

, so with Δ  =  (σ11F22q11q22 - (F12q12)2) 
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plim
1

1 22 11 2 12 12 3 12 131 11 22 12 12

1 12 12 2 11 22 3 11 2312 12 22 112

ˆ 1
ˆ

q q qq q
q q qq q

−⎛ ⎞ ⎡ ⎤ β σ −β σ −β σβ σ σ ⎡ ⎤⎛ ⎞
=⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ −β σ +β σ +β σσ σΔβ ⎝ ⎠ ⎣ ⎦⎣ ⎦⎝ ⎠

.  Taking the first coefficient 

separately and collecting terms, 

plimβ
∧

1 =  β1[σ11σ22q11q22-(σ12q12)2]/Δ + β2[σ11q22σ12q12 + σ12q12σ11q22]/Δ + β3[σ11q22σ12q13 + σ12q12σ11q23]/Δ 
The first term in brackets equals Δ while the second equals 0.  That leaves  

plim β
∧

1 =  β1 - β3[σ11σ12(q22q13 - q12q23)]/Δ which is not equal to β1.  There are two special cases worthy of 
note, though.  The right hand side does equal β1 if either (1)  σ12  =  0; the regressions are actually unrelated, 
or (2)  q12  =  q13  =  0; the regressors in the two equations are uncorrelated.  The second of these is similar to 
our finding for omitted variables in the classical regression model.   
 

6.  The model is 
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.  The GLS estimator of the full coefficient vector, θ, is 
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.   Let qxx equal x′x/n, qx1 = x′y1/n and, qx2  =  

x′y2/n.  The ns in the inverse and in the vector cancel.  Also, as suggested, we assume that x =  0.  As in the 
previous exercise, we replace elements of the inverse with elements from the original matrix and cancel the 
determinant which multiplies the matrix (after inversion) and divides the vector.  Thus, 
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directly, we obtain θ
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It remains only to multiply the matrices and collect terms.  The result is 

  α
∧

1 = y1 , α
∧

2 = y2 ,β
∧

=  [(qx1/qxx) - (σ12σ22)(qx2/qxx)]  =  b1 - γb2.    
 
7.  Once again, nothing is lost by assuming that x = 0.  Now, the OLS estimators are 
  a1  = y1 ,   a2  = y2 ,   a3  = y3 ,  b  =  x′y1/x′x. 

The vector of residuals is ei1  =  yi1  - y1 -  bxi 

   ei2  =  yi2  - y2  

   ei3  =  yi3  - y3  

Now, if yi2 + yi3 = 1 at every observation, then (1/n)Σi(yi2 + yi3) = y2 + y3 =  1  as well.  Therefore, by just 
adding the two equations, we see that  ei2 + ei3 = 0  for every observation.  Let ei  be the 3×1 vector of 
residuals.  Then,  ei′c  =  0, where  c  =  [0,1,1]′.  The sample covariance matrix of the residuals is 
 S  =  [(1/n)Σi eiei′].   Then,  Sc  =  [(1/n)Σi eiei′]c  =  [(1/n)Σi eiei′c]  =  [(1/n)Σi ei×0]  =  0, which 
means, by definition, that S is singular. 
 We can proceed simply by dropping the third equation.  The adding up condition implies that α3 = 1 
- α2.  So, we can treat the first two equations as a seemingly unrelated regression model and estimate a3 using 
the estimate of α2.    
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Applications 
 
1.  By adding the share equations vertically, we find the restrictions 
  β1  + β2  + β3   =  1 
  δ11 + δ12 + δ13  =  0 
  δ12 + δ22 + δ23  =  0 
  δ13 + δ23 + δ33  =  0 
  γy1 + γy2  + γy3  =  0. 
Note that the adding up condition also implies  ε1  + ε2  + ε3   =  0. 
We will eliminate the third share equation.  The restrictions imply 
  β3   =  1  -  β1  - β2  
  δ13  =  - δ11 - δ12 
  δ23  =  - δ12 - δ22 
  δ33  =  - δ13 - δ23  =  δ11 + δ22 + 2δ12 
  γy3  =  - γy1 - γy2. 
By inserting these in the three share equations, we find 
 S1   =  β1 + δ11lnp1 + δ12lnp2 - δ11lnp3 - δ12lnp3 + γy1lnY + ε1 
  =  β1 + δ11ln(p1/p3) + δ12ln(p2/p3) + γy1lnY + ε1 
 S2   =  β2 + δ12lnp1 + δ22lnp2 - δ12lnp3 - δ22lnp3 + γy2lnY + ε2 
  =  β2 + δ12ln(p1/p3) + δ22ln(p2/p3) + γy2lnY + ε2 
 S3   =  1 - β1 - β2 - δ11lnp1 - δ12lnp1 - δ12lnp2 - δ22lnp2 + δ11lnp3 + δ12lnp3 + δ12lnp3 
        + δ22lnp3 - γy1lnp3 - γy2lnp3 - ε1 - ε2 
  =  1  -  S1  -  S2 
For the cost function, making the substitutions for β3, δ13, δ23, δ33, and γy3 produces 
 lnC   =  α + β1(lnp1 - lnp3) + β2(lnp2 - lnp3)  
   + δ11((ln2p1)/2 - lnp1lnp3 + (ln2p3)/2) 
   + δ22((ln2p2)/2 - lnp2lnp3 + (ln2p3)/2) + δ12(lnp1lnp2 - lnp1lnp3 - lnp2lnp3 + (ln2p3)) 
   + γy1lnY(lnp1 - lnp3) + γy2lnY(lnp2 - lnp3)  + βylnY + βyy(ln2Y)/2 + εc 
  =   α + β1ln(p1/p3) + β2ln(p2/p3)  
   + δ11(ln2(p1/p3))/2 + δ22(ln2(p2/p3))/2 + δ12ln(p1/p3)ln(p2/p3) 
   + γy1lnYln(p1/p3) + γy2lnYln(p2/p3) + βylnY + βyy(ln2Y)/2 + εc 
 The system of three equations (cost and two shares) can be estimated as discussed in the text.  
Invariance is achieved by using a maximum likelihood estimator.  The five parameters eliminated by the 
restrictions can be estimated after the others are obtained just by using the restrictions.  The restrictions are 
linear, so the standard errors are also striaghtforward to obtain. 
 The least squares estimates are shown below.   Estimated standard errors appear in parentheses. 
Variable             Cost Function   Capital Share    Labor Share 
One                  51.32 (45.91)  -.0174 (.4697)   .2172 (.2408) 
ln(pk/pf)           -21.74 (20.14)   .2380 (.1045)   .0033 (.0534) 
ln(pl/pf)             32.39 (21.81)   .0065 (.1059)   .0168 (.0542) 
ln2(pk/pf)/2          4.596 (4.604)  -.0007 (.0098)  -.0117 (.0050) 
ln2(pl/pf)/2          8.216 (5.159) 
ln(pk/pf)ln(pl/pf)  -6.238 (4.684) 
lnY                  1.674 (.9297)     
ln2Y/2             ,006997 (.0313) 
lnYln(pk/pf)        -.3223 (.2652) 
lnYln(pl/pf)        .08631 (.1981) 
The estimates do not even come close to satisfying the cross equation restrictions.  The parameters in the cost 
function are extremely large, owing primarily to rather severe multicollinearity among the price terms. 
 The results of estimation of the system by direct maximum likelihood are shown.  The convergence 
criterion is the value of Belsley (discussed near the end of Section 5.5).  The value α shown below is g′H-1g 
where g is the gradient and H is the Hessian of the log-likelihood. 
 Iteration  0, F=46.76391, ln*S*= -7.514268, α= 2.054399     
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 Iteration  1, F=136.7448, ln*S*= -16.51236, α= .5796486     
 Iteration  2, F=146.9803, ln*S*= -17.53591, α= .02179947 
 Iteration  3, F=147.2268, ln*S*= -17.56055, α= .0004222 
 Residual covariance matrix 
   Cost        Capital      Labor       
     Cost       .0145572 
     Capital    .000304768   .00303853 
     Labor     -.000317554  -.000887258   .000798128 
   Coefficient Estimate  Std. Error 
      α        -6.41878     .6637      
            βk       -.0546555     .2422      
            βl        .250976      .2138      
            δkk        .245259      .06904  
            δll       .0245770     .04788  
            δkl       -.00403448    .04779  
            βy        .572452      .1340      
            βyy       .0456587     .01908  
            γyk       -.00124236    .008409  
            γyl       -.0116921     .004442  
            βf        .8036795 
            δkf       -.2412245 
            δlf       -.0205425 
            δff        .261767 
            γyf        .0129345 

 The means of the variables are:  Y  =  3531.8,   p k =  169.35,  pl  =  2.039,   p f  = 26.41.   The 
three factor shares computed at these means are Sk  =  .4182, Sl  =  .0865,  Sf  =  .4953.  (The sample means are 
.411, .0954, and .4936.)  The matrix of elasticities computed according to (15-72) is 
               k           l           f 
      .01115                    k 
  Σ  =   .8885    -7.2756          l 
                        -.1646     .5206     .04819    f 
 (Two of the three diagonals have the `wrong' sign.  This may be due to the very small sample size.  The cross 
elasticities however do conform to what one might expect, the primary one being the evident substitution 
between capital and fuel. 
 To test the hypothesis that γyi = 0, we reestimate the model without the interaction terms between lnY 
and the prices in the cost function and without lnY in the factor share equations.  The iterations for this 
restricted model are shown below. 
  Iter.=  0, F=46.76391, log|S|= -7.514268, α=    1.912223 
  Iter.=  1, F=123.7521, log|S|= -15.21308, α=    .5888180 
  Iter.=  2, F=136.3410, log|S|= -16.47198, α=    .2771995 
  Iter.=  3, F=141.3491, log|S|= -16.97279, α=    .08024513 
  Iter.=  4, F=142.5591, log|S|= -17.09379, α=    .01636212 
  Converged achieved 
Since we are interested only in the test statistic, we have not listed the parameter estimates.  The test 
statistic given in (17-26) is λ  =  T(ln|Sr| - ln|Su|)  =  20(-17.09379 - (-17.56055))  =  9.3352.  There are two 
restrictions since only two of the three parameters are free.  The critical value from the chi-squared table is 
5.99, so we would reject the hypothesis.  
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?=========================================== 
? Application 10.2 
?=========================================== 
? a.  Separate regressions and aggregation test. 
?     This saves the residuals to be used later. 
CALC    ; SS1=0 $ 
MATRIX  ; EOLS = Init(20,10,0) $ 
PROCEDURE $ 
Include ; new ; Firm = company $ 
REGRESS ; Lhs = I ; Rhs = F,C,one ; Res = e$ 
CALC    ; SS1=SS1 + Sumsqdev $ 
MATRIX  ; EOLS(*,company) = e $ 
ENDPROC $ 
EXECUTE ; Company=1,10 $ 
SAMPLE  ; 1-200 $ 
+----------------------------------------------------+ 
| Residuals    Sum of squares       =   143205.9     | 
|              Standard error of e  =   91.78167     | 
| Fit          R-squared            =   .9213540     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .11928083       .02583417     4.617   .0002   4333.84500 
 C       |     .37144481       .03707282    10.019   .0000   648.435000 
 Constant|   -149.782453      105.842125    -1.415   .1751 
+----------------------------------------------------+ 
| Residuals    Sum of squares       =   158093.3     | 
|              Standard error of e  =   96.43445     | 
| Fit          R-squared            =   .4708624     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .17485602       .07419805     2.357   .0307   1971.82500 
 C       |     .38964189       .14236688     2.737   .0140   294.855000 
 Constant|   -49.1983219      148.075365     -.332   .7438 
+----------------------------------------------------+ 
| Residuals    Sum of squares       =   13216.59     | 
|              Standard error of e  =   27.88272     | 
| Fit          R-squared            =   .7053067     | 
|              Adjusted R-squared   =   .6706369     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .02655119       .01556610     1.706   .1063   1941.32500 
 C       |     .15169387       .02570408     5.902   .0000   400.160000 
 Constant|   -9.95630645      31.3742491     -.317   .7548 
+----------------------------------------------------+ 
| Residuals    Sum of squares       =   2997.444     | 
|              Standard error of e  =   13.27856     | 
| Fit          R-squared            =   .9135784     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .07794782       .01997330     3.903   .0011   693.210000 
 C       |     .31571819       .02881317    10.957   .0000   121.245000 
 Constant|   -6.18996051      13.5064781     -.458   .6525 
+----------------------------------------------------+ 
| Residuals    Sum of squares       =   1396.836     | 
|              Standard error of e  =   9.064592     | 
| Fit          R-squared            =   .6804076     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
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+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .16237770       .05703645     2.847   .0111   231.470000 
 C       |     .00310174       .02196531      .141   .8894   486.765000 
 Constant|    22.7071160      6.87207605     3.304   .0042 
+----------------------------------------------------+ 
| Residuals    Sum of squares       =   1110.533     | 
|              Standard error of e  =   8.082418     | 
| Fit          R-squared            =   .9521422     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .13145484       .03117234     4.217   .0006   419.865000 
 C       |     .08537427       .10030597      .851   .4065   104.285000 
 Constant|   -8.68554338      4.54516804    -1.911   .0730 
+----------------------------------------------------+ 
| Residuals    Sum of squares       =   1507.403     | 
|              Standard error of e  =   9.416516     | 
| Fit          R-squared            =   .7635009     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .08752720       .06562593     1.334   .1999   149.790000 
 C       |     .12378141       .01706483     7.254   .0000   314.945000 
 Constant|   -4.49953436      11.2893942     -.399   .6952 
+----------------------------------------------------+ 
| Residuals    Sum of squares       =   1773.234     | 
|              Standard error of e  =   10.21312     | 
| Fit          R-squared            =   .7444461     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .05289413       .01570650     3.368   .0037   670.910000 
 C       |     .09240649       .05609897     1.647   .1179   85.6400000 
 Constant|    -.50939018      8.01528894     -.064   .9501 
+----------------------------------------------------+ 
| Residuals    Sum of squares       =   1407.360     | 
|              Standard error of e  =   9.098674     | 
| Fit          R-squared            =   .6655145     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .07538794       .03395227     2.220   .0403   333.650000 
 C       |     .08210356       .02799168     2.933   .0093   297.900000 
 Constant|   -7.72283708      9.35933952     -.825   .4207 
+----------------------------------------------------+ 
| Residuals    Sum of squares       =   20.02673     | 
|              Standard error of e  =   1.085377     | 
| Fit          R-squared            =   .6431578     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .00457343       .02716079      .168   .8683   70.9210000 
 C       |     .43736919       .07958891     5.495   .0000   5.94150000 
 Constant|     .16151857      2.06556414      .078   .9386 
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+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=I        Mean                 =   145.9582     | 
|              Standard deviation   =   216.8753     | 
| WTS=none     Number of observs.   =        200     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =        197     | 
| Residuals    Sum of squares       =   1755850.     | 
|              Standard error of e  =   94.40840     | 
| Fit          R-squared            =   .8124080     | 
|              Adjusted R-squared   =   .8105035     | 
| Model test   F[  2,   197] (prob) = 426.58 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .11556216       .00583571    19.803   .0000   1081.68110 
 C       |     .23067849       .02547580     9.055   .0000   276.017150 
 Constant|   -42.7143694      9.51167603    -4.491   .0000 
? b.  Aggregation test 
REGRESS ; LHS = I ; RHS = F,C,one $ 
CALC    ; SS0=Sumsqdev $ 
CALC    ; List ; Fstat = ((SS0 - SS1)/(9*3)) / (SS0/(n-10*3))  
               ; FC    = Ftb(.95,27,170) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 FSTAT   =      5.131854 
 FC      =      1.551534 
? c.  SUR model 
NAMELIST ; X1=F1,C1,one $ 
NAMELIST ; X2=F2,C2,one $ 
NAMELIST ; X3=F3,C3,one $ 
NAMELIST ; X4=F4,C4,one $ 
NAMELIST ; X5=F5,C5,one $ 
NAMELIST ; X6=F6,C6,one $ 
NAMELIST ; X7=F7,C7,one $ 
NAMELIST ; X8=F8,C8,one $ 
NAMELIST ; X9=F9,C9,one $ 
NAMELIST ; X10=F10,C10,one $ 
NAMELIST ; Y=I1,I2,I3,I4,I5,I6,I7,I8,I9,I10 $ 
SAMPLE ; 1 - 20 $ 
SURE ; Lhs = Y ; Eq1=X1;Eq2=X2;Eq3=X3;Eq4=X4;Eq5=X6;Eq6=X6 
               ; Eq7=X7;Eq8=X8;Eq9=X9;Eq10=X10 
     ; Maxit=0 ; OLS $ 
Criterion function for GLS is log-likelihood. 
Iteration    0, GLS           =   -737.6463 
Iteration    1, GLS           =   -730.1070 
+----------------------------------------------------+ 
| Estimates for equation: I1                         | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F1      |     .12472490       .01490044     8.371   .0000   4333.84500 
 C1      |     .37951869       .02912686    13.030   .0000   648.435000 
 Constant|   -178.611571      65.7890483    -2.715   .0066 
+----------------------------------------------------+ 
| Estimates for equation: I2                         | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F2      |     .16828512       .04057787     4.147   .0000   1971.82500 
 C2      |     .33587688       .10299836     3.261   .0011   294.855000 
 Constant|   -20.3887867      83.2537952     -.245   .8065 
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+----------------------------------------------------+ 
| Estimates for equation: I3                         | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F3      |     .03425481       .00925706     3.700   .0002   1941.32500 
 C3      |     .12538119       .02040101     6.146   .0000   400.160000 
 Constant|   -14.3822597      20.6146424     -.698   .4854 
+----------------------------------------------------+ 
| Estimates for equation: I4                         | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F4      |     .06760969       .01597735     4.232   .0000   693.210000 
 C4      |     .30752805       .02536245    12.125   .0000   121.245000 
 Constant|    1.96954637      11.0026359      .179   .8579 
+----------------------------------------------------+ 
| Estimates for equation: I5                         | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F6      |     .00635232       .02903793      .219   .8268   419.865000 
 C6      |     .12737505       .09456013     1.347   .1780   104.285000 
 Constant|    45.8520779      4.86959707     9.416   .0000 
+----------------------------------------------------+ 
| Estimates for equation: I6                         | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F6      |     .12891587       .01798607     7.168   .0000   419.865000 
 C6      |     .06768693       .06029084     1.123   .2616   104.285000 
 Constant|   -5.77499083      3.44886478    -1.674   .0940 
+----------------------------------------------------+ 
| Estimates for equation: I7                         | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F7      |     .09106397       .04535783     2.008   .0447   149.790000 
 C7      |     .12913287       .01446995     8.924   .0000   314.945000 
 Constant|   -6.71472214      8.72476796     -.770   .4415 
+----------------------------------------------------+ 
| Estimates for equation: I8                         | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F8      |     .05179274       .00835658     6.198   .0000   670.910000 
 C8      |     .04729955       .03473521     1.362   .1733   85.6400000 
 Constant|    4.09249729      5.09237714      .804   .4216 
+----------------------------------------------------+ 
| Estimates for equation: I9                         | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F9      |     .07275469       .02111017     3.446   .0006   333.650000 
 C9      |     .06640816       .02194422     3.026   .0025   297.900000 
 Constant|   -2.16859331      7.30885683     -.297   .7667 
+----------------------------------------------------+ 
| Estimates for equation: I10                        | 
+----------------------------------------------------+ 
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+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F10     |    -.01695668       .01550963    -1.093   .2743   70.9210000 
 C10     |     .37466423       .05739586     6.528   .0000   5.94150000 
 Constant|    2.06101718      1.16003699     1.777   .0756?  
 
c.  Aggregation test according to (10-15) 
MATRIX ; Z=Init(3,3,0) ; J=Iden(3); L=-1*J $ 
MATRIX ; R=[j,z,z,z,z,z,z,z,z,l / 
            z,j,z,z,z,z,z,z,z,l / 
            z,z,j,z,z,z,z,z,z,l / 
            z,z,z,j,z,z,z,z,z,l / 
            z,z,z,z,j,z,z,z,z,l / 
            z,z,z,z,z,j,z,z,z,l / 
            z,z,z,z,z,z,j,z,z,l / 
            z,z,z,z,z,z,z,j,z,l / 
            z,z,z,z,z,z,z,z,j,l ] 
       ; d = R*b ; Vd = R*Varb*R'  
       ; list ; AggF = 1/27 * d'<vd>d $ 
Matrix AGGF     has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   98.53777 
CALC   ; List ; Ftb(.95,27,(200-10*3)) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =      1.551534 
? d.  Using separate OLS regressions, compute LM statistic 
? OLS residuals were saved in matrix EOLS earlier. 
MATRIX ; VEOLS = 1/20*EOLS'EOLS 
       ; VI = Diag(VEOLS) ; SDI = ISQR(VI) 
       ; ROLS = SDI*VEOLS*SDI  
       ; RR = ROLS' *ROLS $ 
CALC   ; List ; LMStat = (20/2)*(Trc(RR)-10)  
              ; Ctb(.95, (9*10/2))$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 LMSTAT  =     97.617948 
 Result  =     61.656233 
 
? Constrained Sur model with one coefficient vector. 
? This is the unconstrained model in (10-19)-(10-21) 
SAMPLE ; 1 - 200 $ 
REGRESS; Lhs = I ; Rhs = F,C,one $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=I        Mean                 =   145.9582     | 
|              Standard deviation   =   216.8753     | 
| WTS=none     Number of observs.   =        200     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =        197     | 
| Residuals    Sum of squares       =   1755850.     | 
|              Standard error of e  =   94.40840     | 
| Fit          R-squared            =   .8124080     | 
|              Adjusted R-squared   =   .8105035     | 
| Model test   F[  2,   197] (prob) = 426.58 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .11556216       .00583571    19.803   .0000   1081.68110 
 C       |     .23067849       .02547580     9.055   .0000   276.017150 
 Constant|   -42.7143694      9.51167603    -4.491   .0000 
TSCS   ; Lhs = I ; Rhs = F,C,one ; Pds=20 ; Model=S2,R0 $ 
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+--------------------------------------------------+ 
| Groupwise Regression Models                      | 
| Estimator =                  2 Step GLS          | 
| Groupwise Het. and Correlated       (S2)         | 
| Nonautocorrelated disturbances      (R0)         | 
| Test statistics against the correlation          | 
| Deg.Fr. =   45 C*(.95) =  61.66 C*(.99) =  69.96 | 
| Test statistics against the correlation          | 
| Likelihood ratio    statistic      =    320.2052 | 
| Log-likelihood function =            -853.084972 | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 F       |     .10806238       .00241169    44.808   .0000 
 C       |     .15079551       .00386063    39.060   .0000 
 Constant|   -20.1588844       .79950153   -25.214   .0000 
CREATE ; WI = (SDI(firm,firm))^2 $ 
REGRESS; Lhs = I ; Rhs = F,C,one ; Wts = WI $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=I        Mean                 =   6.993136     | 
|              Standard deviation   =   18.01824     | 
| WTS=WI       Number of observs.   =        200     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =        197     | 
| Residuals    Sum of squares       =   11690.82     | 
|              Standard error of e  =   7.703521     | 
| Fit          R-squared            =   .8190465     | 
|              Adjusted R-squared   =   .8172094     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 F       |     .07847124       .00459121    17.092   .0000   96.8424912 
 C       |     .09896094       .00761314    12.999   .0000   23.8374846 
 Constant|   -2.96519441       .66964256    -4.428   .0000 
 
 



 

Chapter 11 
 

Nonlinear Regression Models 
 

Exercises 
 
1.  We cannot simply take logs of both sides of the equation as the disturbance is additive rather than 
multiplicative.  So, we must treat the model as a nonlinear regression.  The linearized equation is 
  y ≈ α α α α ββ β β0 0 00 0 0

x x x x+ − + −( ) (log ) (  β0 )
where α0 and β0 are the expansion point.  For given values of α0 and β0, the estimating equation would be 

   ( ) ( )y x + ε* x x x x x x− + + = +α α α α β αβ β β β β0 0 0 00 0 0 0 0
(log ) (log )

or  ( ) ( )y x x x x x+ = +α α β αβ β0 00 0
(log ) (log ) β0

 + ε*. 

Estimates of α and β are obtained by applying ordinary least squares to this equation.  The process is repeated 
with the new estimates in the role of α0 and β0.  The iteration could be continued until convergence.  Starting 
values are always a problem.  If one has no particular values in mind, one candidate would be α0 = y and β0 = 

0 or β0 = 1 and α0 either x′y/x′x or y / x .  Alternatively, one could search directly for the α and β to minimize 
the sum of squares,  S(α,β)  =  Σi (yi - αxβ)2  =  Σi εi

2.  The first order conditions for minimization are 
 ∂S(α,β)/∂α  =  -2Σi (yi - αxβ)xβ  =  0    and    ∂S(α,β)/∂β  =  -2Σi (yi - αxβ)α(lnx)xβ  =  0. 
Methods for solving nonlinear equations such as these are discussed in Appendix E..   
 
2.   The proof can be done by mathematical induction.  For convenience, denote the ith derivative by fi.  The 
first derivative appears in Equation (10-34).  Just by plugging in i=1, it is clear that f1 satisfies the relationship.  
Now, use the chain rule to differentiate f1, 
   f2  =  (-1/λ2)[xλ(lnx) - x(λ)] + (1/λ)[(lnx)xλ(lnx) - f1] 
Collect terms to yield f2  =  (-1/λ)f1 + (1/λ)[xλ(lnx)2 - f1]  =  (1/λ)[xλ(lnx)2 - 2f1]. 
So, the relationship holds for i = 0, 1, and 2.  We now assume that it holds for i = K-1, and show that if so, it 
also holds for i = K.  This will complete the proof.  Thus, assume 
   fK-1  =  (1/λ)[xλ(lnx)K-1 - (K-1)fK-2] 
Differentiate this to give fK  =  (-1/λ)fK-1 + (1/λ)[(lnx)xλ(lnx)K-1 - (K-1)fK-1]. 
Collect terms to give fK  =  (1/λ)[xλ(lnx)K - KfK-1], which completes the proof for the general case. 
Now, we take the limiting value 
   limλ→0 fi  =  limλ→0 [xλ(lnx)i - ifi-1]/λ. 
Use L'Hospital's rule once again. 
   limλ→0 fi  =  limλ→0 d{[xλ(lnx)i - ifi-1]/dλ}/limλ→0 dλ/dλ. 
Then,   limλ→0 fi  =  limλ→0 {[xλ(lnx)i+1 - ifi]} 
Just collect terms,  (i+1)limλ→0 fi  =  limλ→0 [xλ(lnx)i+1] 
or   limλ→0 fi  =  limλ→0 [xλ(lnx)i+1]/(i+1)  =  (lnx)i+1/(i+1).    
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Applications 
  
1.  First, the two simple regressions produce 
    Linear  Log-linear 
  Constant  114.338  1.17064 
     (173.4)  (.3268) 
  Labor           2.33814       .602999 
                         (1.039)      (.1260) 
  Capital        .471043        .37571 
                          (.1124)        (.08535) 
  R2            .9598       .9435 
  Standard Error   469.86          .1884 
In the regression of Y on 1, K, L, and the predicted values from the loglinear equation minus the predictions 
from the linear equation, the coefficient on α is -587.349 with an estimated standard error of 3135.  Since this 
is not significantly different from zero, this evidence favors the linear model.  In the regression of lnY on 1, 
lnK, lnL and the predictions from the linear model minus the exponent of the predictions from the loglinear 
model, the estimate of α is .000355 with a standard error of .000275.  Therefore, this contradicts the preceding 
result and favors the loglinear model.  An alternative approach is to fit the Box-Cox model in the fashion of 
Exercise 4. The maximum likelihood estimate of λ is about -.12, which is much closer to the log-linear model 
than the lonear one.  The log-likelihoods are -192.5107 at the MLE, -192.6266 at λ=0 and -202.837 at λ = 1.  
Thus, the hypothesis that λ = 0 (the log-linear model) would not be rejected but the hypothesis that λ = 1 (the 
linear model) would be rejected using the Box-Cox model as a framework.    
 
2.  The search for the minimum sum of squares produced the following results: 
 

 

   λ  e′e 
-.500   .78477 
-.400   .67033 
-.300   .60587 
-.250   .59479 
-.245   .59451 
-.244   .59447 
-.243   .59444 
-.242   .59441 
-.241   .59439 
-.240   .59438 
-.239   .59437 
-.238   .59436 
-.237   .59437 
-.235   .59440 
-.225   .59492 
-.200   .59897 
-.100   .65598 
0.000   .78143 
 .100   .97742 

  .200  1.24354 
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The sum of squared residuals is minimized at λ = -.238.  At this value, the regression results are as follows: 
  Parameter     Estimate     OLS Std.Error     Correct Std.Error 
  α           2.06092  .07718              .09723 
         βk          .178232        .04638              .04378 
  βl          .737988        .06996              .12560 
  λ          -.238            ----               .07710 
  Estimated Asymptotic Covariance Matrix 
   α        βk        βl        λ 
  α   .00945 
  βk  .00262     .00192 
  βl  .00511    -.00199    .01578 
  λ   .00500   .00037    .00825   .00594 
The output elasticities for this function evaluated at the sample means are 
  ∂lnY/∂lnK  =  βkKλ  =  (.178232).175905-.238    =  .2695 
  ∂lnY/∂lnL  =  βlLλ    =  (.443954).737988-.238    =  .7740. 
The estimates found for Zellner and Revankar's model were .254 and .882, respectively, so these are quite 
similar.  For the simple log-linear model, the corresponding values are .2790 and .927.    
 
3.   The Wald test is based on the unrestricted model.  The statistic is the square of the usual t-ratio, 
W  =  (-.232 / .0771)2  =  9.0546.  The critical value from the chi-squared distribution is 3.84, so the 
hypothesis that λ = 0 can be rejected.  The likelihood ratio statistic is based on both models.  The sum of 
squared residuals for both unrestricted and restricted models is given above.  The log-likelihood is 
lnL  =  -(n/2)[1 + ln(2π) + ln(e′e/n)], so the likelihood ratio statistic is  
 LR   =  n[ln(e′e/n)|λ=0  -  ln(e′e/n)| λ=-.238]  =  nln[(e′e|λ=0) / (e′e|λ=-.238) 
      =  25ln(.78143/.54369) =  6.8406. 
Finally, to compute the Lagrange Multiplier statistic, we regress the residuals from the log-linear regression on 
a constant, lnK, lnL, and (1/2)(bkln2K + blln2L) where the coefficients are those from the log-linear model 
(.27898 and .92731).  The R2 in this regression is .23001, so the Lagrange multiplier statistic is LM  =  nR2  =  
25(.23001)  =  5.7503.  All three statistics suggest the same conclusion, the hypothesis should be rejected.    
 
4.  Instead of minimizing the sum of squared deviations, we now maximize the concentrated log-likelihood 
function,  lnL  =  -(n/2)ln(1+ln(2π)) + (λ - 1)Σi lnYi - (n/2)ln(ε′ε/n). 
The search for the maximum of lnL produced the results on the next page 
The log-likelihood is maximized at λ = .124.  At this value, the regression results are as follows: 
 
  Parameter     Estimate     OLS Std.Error    Correct Std.Error 
  α           2.59465        .1283               .7151 
  βk          .378094        .1070               .3228 
  βl          1.13653        .1117               .4121 
  λ           .124            ----               .2482 
  σ2          .036922         ----               .0179 
   Estimated Asymptotic Covariance Matrix 
                α            βk          βl           λ              σ2 
  α   .5114 
  βk  .2203    .1042 
  βl  .2612    .0951     .1698 
  λ   .1747    .0730     .0953     .0617 
  σ2  .0104    .0044     .0059     .0038     .00032 
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   λ          lnL 
-.200 -13.6284 
-.150 -12.8568 
-.100 -12.2423 
-.050 -11.7764 
0.000 -11.4476 
 .050 -11.2427 
 .100 -11.1480 
 .110 -11.1410 
 .120 -11.1378 
 .121 -11.1377 
 .122 -11.1376 
 .123 -11.1376 
 .124 -11.1375 
 .125 -11.1376 
 .130 -11.1383 
 .140 -11.1423 
 .200 -11.2344 
 .300 -11.6064 
 .400 -12.8371 

  
 
 
The output elasticities for this function evaluated at the sample means, K  = .175905, L  = .737988, Y =  
2.870777,  are   ∂lnY/∂lnK  =  bk(K/Y)λ  =  .2674 
  ∂lnY/∂lnL  =  bl(L/Y)λ   =  .9017. 
These are quite similar to the estimates given above.  The sum of the two output elasticities for the states given 
in the example in the text are given below for the model estimated with and without transforming the 
dependent variable.  Note that the first of these makes the model look much more similar to the Cobb Douglas 
model for which this sum is constant. 
 State      Full Box-Cox Model     lnQ on left hand side 
 Florida  1.2840    1.6598 
  Louisiana 1.2019   1.4239 
 California 1.1574   1.1176 
 Maryland 1.1657   1.0261 
 Ohio  1.1899    .9080 
 Michigan 1.1604    .8506 
 Once again, we are interested in testing the hypothesis that λ = 0.  The Wald test statistic is 
W  =  (.123 / .2482)2  =  .2455.  We would now not reject the hypothesis that λ = 0.  This is a surprising 
outcome.  The likelihood ratio statistic is based on both models.  The sum of squared residuals for the 
restricted model is given above.  The sum of the logs of the outputs is 19.29336, so the restricted 
log-likelihood is  lnL0 =  (0-1)(19.29336) - (25/2)[1 + ln(2π) + ln(.781403/25)]  =  -11.44757.  The likelihood 
ratio statistic is  -2[ -11.13758 - (-11.44757)]  =  .61998.  Once again, the statistic is small.   Finally, to 
compute the Lagrange multiplier statistic, we now use the method described in Example 11.8.  The result is 
LM = 1.5621.  All of these suggest that the log-linear model is not a significant restriction on the Box-Cox 
model.  This rather peculiar outcome would appear to arise because of the rather substantial reduction in the 
log-likelihood function which occurs when the dependent variable is transformed along with the right hand 
side.  This is not a contradiction because the model with only the right hand side transformed is not a 
parametric restriction on the model with both sides transformed.  Some further evidence is given in the next 
exercise.  
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5.   --> nlsq ; lhs = y ; labels = b1,b2 ; fcn=b1*(1 - 1/sqr(1+2*b2*x)) 
     ; start = 500,.0001 ;output=2$ 
Begin NLSQ iterations. Linearized regression. 
Iteration=  1; Sum of squares=  11603.0164    ; Gradient=  11602.9326 
Iteration=  2; Sum of squares=  19821.5463    ; Gradient=  19821.4534 
Iteration=  3; Sum of squares=  331169.005    ; Gradient=  331144.576 
Iteration=  4; Sum of squares=  356630.271    ; Gradient=  356504.582 
Iteration=  5; Sum of squares=  14997.8506    ; Gradient=  14938.8590 
Iteration=  6; Sum of squares=  449.855530    ; Gradient=  442.701921 
Iteration=  7; Sum of squares=  102026.884    ; Gradient=  102026.775 
Iteration=  8; Sum of squares=  12887.7536    ; Gradient=  12886.6539 
Iteration=  9; Sum of squares=  14263101.5    ; Gradient=  14263101.0 
Iteration= 10; Sum of squares=  10203.1920    ; Gradient=  10202.6789 
Iteration= 11; Sum of squares=  144.393444    ; Gradient=  144.338425 
Iteration= 12; Sum of squares=  258.186688    ; Gradient=  258.145522 
Iteration= 13; Sum of squares=  .154284512    ; Gradient=  .113316151 
Iteration= 14; Sum of squares=  .409681292E-01; Gradient=  .129216769E-05 
Iteration= 15; Sum of squares=  .409668370E-01; Gradient=  .439070450E-13 
Iteration= 16; Sum of squares=  .409668370E-01; Gradient=  .211594637E-18 
Iteration= 17; Sum of squares=  .409668370E-01; Gradient=  .107898463E-24 
Convergence achieved 
+----------------------------------------------------+ 
| Nonlinear   least squares regression               | 
| LHS=Y        Mean                 =   43.34071     | 
|              Standard deviation   =   22.80652     | 
| WTS=none     Number of observs.   =         14     | 
| Model size   Parameters           =          2     | 
|              Degrees of freedom   =         12     | 
| Residuals    Sum of squares       =   .4096684E-01 | 
|              Standard error of e  =   .5409439E-01 | 
| Fit          R-squared            =   .9999939     | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 B1      |    636.427250      4.31789336   147.393   .0000 
 B2      |     .00020814     .164134D-05   126.809   .0000 
 
--> nlsq ; lhs = y ; labels = b1,b2 ; fcn=b1*(1 - 1/sqr(1+2*b2*x)) 
 ; start = 600,.0002 ;output=2$ 
Begin NLSQ iterations. Linearized regression. 
Iteration=  1; Sum of squares=  262.456583    ; Gradient=  262.415454 
Iteration=  2; Sum of squares=  .155984704    ; Gradient=  .115016579 
Iteration=  3; Sum of squares=  .409675977E-01; Gradient=  .760690867E-06 
Iteration=  4; Sum of squares=  .409668370E-01; Gradient=  .379981726E-13 
Iteration=  5; Sum of squares=  .409668370E-01; Gradient=  .186919870E-18 
Iteration=  6; Sum of squares=  .409668370E-01; Gradient=  .150578559E-23 
Convergence achieved 
+----------------------------------------------------+ 
| Nonlinear   least squares regression               | 
| LHS=Y        Mean                 =   43.34071     | 
|              Standard deviation   =   22.80652     | 
| Residuals    Sum of squares       =   .4096684E-01 | 
|              Standard error of e  =   .5409439E-01 | 
| Fit          R-squared            =   .9999939     | 
|              Adjusted R-squared   =   .9999944     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 B1      |    636.427250      4.31789336   147.393   .0000 
 B2      |     .00020814     .164134D-05   126.809   .0000 
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Chapter 12 
 

Instrumental Variables Estimation 

 
Exercises 
 
1.  There is no need for a separate proof different from the usual for OLS.  Formally, however, it follows 
from the results at (12-4) that 

  b  =  
1

n n

−′ ′⎛ ⎞ ⎛+ ⎜ ⎟ ⎜
⎝ ⎠ ⎝

X X X ⎞
⎟
⎠

ε
β  

Then, 
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−
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XX

X X Xb b Qε γ  

and 

  ( )
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−
−
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⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

XX
X X Xb b Qε γ  

The large sample distribution of this statistic will be the same as the large sample of the statistic with X′X/n 
replaced with its probablity limit, which is QXX.  Thus, 

  ( ) 1plim n n
n

− ′⎡ ⎤⎛ ⎞− → −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
XX

Xb b Q ε γ  

To deduce the large sample behavior of this statistic, we can invoke the results from chapter 4.  The only 
change here is the nonzero mean (probability limit) of the vector in brackets.  [See (12-3).]  Thus, the same 
proof applies.  The consistency, asymptotic normality and asymptotic covariance matrix equal to 
Asy.Var[b] = σε

2 (X′X)-1  
 
2.  A logical solution to this one is simple.  For y and x*,  
  Cov2(y,x*)/[Var(y)Var(x*)] = β2(σ*

2)2/[(β2σ*
2+σε

2)(σ*
2)] 

  Cov2(y,x) /[Var(y)Var(x)]   = Cov[βx*+ε,x*+u] / [Var(y)Var(x)]  
      = {Cov[y,x*] +Cov[y,u]}2 / [Var(y)Var(x)] . 
The second term is zero, since y=βx*+ε which is uncorrelated with u.  Thus,  
Cov2(y,x) /[Var(y)Var(x)]   = Cov[y,x*] / [Var(y)Var(x)]. 
The numerator is the same.  The denominator is larger, since [Var(y)Var(x)] = Var[y](Var[x*] + Var[u]), 
so the squared correlation must be smaller. If both variables are measured with errors, then we are 
comparing Cov2(y*,x*)/{Var[y*]Var[x*]} to Cov2(y,x)/{Var[y]Var[x]}. 
The numerator is the covariance of (βx* + ε + v) with (x* + u), so the numerator of the fraction is still 
β2(σ*

2)2.  The denominator is still obviously larger, so the same result holds when both variables are 
measured with error. 
 
3.  We work off (12-16), using repeatedly the result Σuu = (σuj)(σuj)′ where j has a 1 in the first 
position and 0 in the remaining K-1.  From (12-16), 
 
plim b = β - [Q* + Σuu]-1Σuuβ.  The vector is Σuuβ equals [σu

2β1,0,...,0]′.  The inverse matrix is 
 

[Q* + Σuu]-1 = ( )
( )

( ) ( )1 1
1

1* * ( )( ) *
1 ( ) * ( )

u u
u u

− −

−

⎡ ⎤
′− σ⎢ ⎥
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Q Q j

j Q j
1−σ j Q  
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This can be simplified since the quadratic form in the denominator just picks off the 1,1 diagonal element.  
Thus, 
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2 *11
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Finally, j equals the first column of (( ) 1* −Q ) 1* −Q  = [q*11, q*21,...,q*k1].  Therefore, the first element, 
given by (12-17a) is 
 

  plim b1 = β1 - 
2

1
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For (12-17b), 

  plim b2 = β2 - 
2

1
2 *111

u

uq
⎡ ⎤σ β
⎢ ⎥+ σ⎣ ⎦

q*k1 

 
 
4.  To obtain the result, note first: 
 plim b = β + QXX

-1γ 
 Asy.Var[b] = (σ2/n)QXX

-1 
 Asy.Var[b2sls] = (σ2/n)QZX

-1QZZQXZ
-1. 
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The mean squared error of the OLS estimator is the variance plus the squared bias, 
  M(b|β)  =  (σ2/n)QXX

-1 + QXX
-1γγ′QXX

-1 
the mean squared error of the 2SLS estimator equals its variance.  For OLS to be more precise then 2SLS, 
we would have to have 
  (σ2/n)QXX

-1 + QXX
-1γγ′QXX

-1  << (σ2/n)QZX
-1QZZQXZ

-1. 
For convenience, let δ = QXX

-1γ so M(b|β)  =  (σ2/n)QXX
-1 + δδ′.  If the mean squared error matrix of the 

OLS estimator is smaller than that of the 2SLS estimator, then its inverse is larger.  Use (A-66) to do the 
inversion.  The result would be 
  [(σ2/n)QXX

-1 + δδ′]-1 >> [(σ2/n)QZX
-1QZZQXZ

-1]-1 
Now, use A-66 

  [(σ2/n)QXX
-1 + δδ′]-1  = (n/σ2) QXX - 2

1
1 ( / )n′+ σ XXQδ δ

(n/σ2) QXXδδ′(n/σ2) QXX 

Reinsert δ = QXX
-1γ and the right hand side above reduces to 

  (n/σ2) QXX - 2

1
1 ( / )n ′+ σ -1

XXQγ γ
(n/σ2)2 γγ′ 

Therefore, if the mean squared error matrix of OLS is smaller, then  

  (n/σ2) QXX - 2

1
1 ( / )n ′+ σ -1

XXQγ γ
(n/σ2)2 γγ′  >>  (n/σ2)QXZQZZ

-1QZX 

Collect the terms, and this implies 

  (n/σ2)[ QXX - QXZQZZ
-1QZX] >> 2

1
1 ( / )n ′+ σ -1

XXQγ γ
(n/σ2)2 γγ′ 

divide both sides by (n/σ2), 

   QXX - QXZQZZ
-1QZX >> 

2

2

( / )
1 ( / )

n
n

σ
′+ σ -1

XXQγ γ
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and divide numerator and denominator of the fraction by n/σ2 

   QXX - QXZQZZ
-1QZX >> 2

1
( / )n ′σ + -1

XXQγ γ
γγ′ 

which is the desired result.  Is it possible?  It is possible, since 
  QXX - QXZQZZ

-1QZX   =  plim (1/n)[X′X - X′Z(Z′Z)-1Z′X] 
     =  plim (1/n) X′MZX 
which is a positive definite matrix.  SInce γ varies independently of Z and X, certainly there is some 
configuration of the data and parameters for which this is the case.  The result is that it is, indeed, possible 
for OLS to be more precise, in the mean squared error sense, than 2SLS. 
 
5.  The matrices are X = [i,x] and Z = [i,z].  For the OLS estimators, we know from chapter 2 that 
 a  =  y bx−  and b = Cov[x,y]/var[x]. 
For the IV estimator, (Z′X)-1Z′y, we obtain the result in detail.  Given the forms, 
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where subscript 1 indicates the mean of the observations for which z equals 1, and n1 is the number of 
observations.  Multiplying the matrix times the vector and cancelling terms produces the solutions 
 

 aIV = 1 1 1

1 1

 and IV IV
x y x y y y

a b
x x x
− −

= =
− − x
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Application 
 
a.  The statement of the problem is actually a bit optimistic.  GIven the way it is stated, it would imply that 
the exogenous variables in the “demand” equation would be, in principle, (Ed, Union, Fem) which are also 
in the supply equation, plus the remainder, (Exp, Exp2, Occ, Ind, South, SMSA, Blk).  The problem is that 
the model as stated would not be identified – the supply equation would, but the demand equation would 
not be.  The way out would be to assume that at least one of (Ed, Union, Fem) does not appear in the 
demand equation.  Since surely education would, that leaves one or both of Union and Fem.  We will 
assume both of them are omitted.  So, our equation is 
 
 lnWageit =  α1 + α2Edit + α3Expit + α4Expit

2 + α5Occit +  
   α6Indit + α7Southit + α8SMSAit + α9Blkit + γ Wksit + uit. 
NAMELIST ; X = one,Ed,Exp,Expsq,Occ,Ind,South,SMSA,Blk,Wks $ 
NAMELIST ; Z = one,Ed,Exp,expsq,Occ,Ind,south,SMSA,Blk,Union,Fem $ 
Regress  ; Lhs = lwage ; Rhs = X $ 
2SLS     ; Lhs = lwage ; Rhs = X ; Inst = Z $ 
REGRESS  ; Lhs = Wks ; Rhs = Z ; cls:b(10)=0,b(11)=0$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   6.676346     | 
|              Standard deviation   =   .4615122     | 
| WTS=none     Number of observs.   =       4165     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =       4155     | 
| Residuals    Sum of squares       =   581.2717     | 
|              Standard error of e  =   .3740280     | 
| Fit          R-squared            =   .3446066     | 
|              Adjusted R-squared   =   .3431870     | 
| Model test   F[  9,  4155] (prob) = 242.74 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    5.13171052       .07238152    70.898   .0000 
 ED      |     .06112766       .00277226    22.050   .0000   12.8453782 
 EXP     |     .04291665       .00229783    18.677   .0000   19.8537815 
 EXPSQ   |    -.00070803     .506204D-04   -13.987   .0000   514.405042 
 OCC     |    -.07814434       .01502100    -5.202   .0000    .51116447 
 IND     |     .09066812       .01247863     7.266   .0000    .39543818 
 SOUTH   |    -.07629062       .01318346    -5.787   .0000    .29027611 
 SMSA    |     .13789225       .01278553    10.785   .0000    .65378151 
 BLK     |    -.26269494       .02304380   -11.400   .0000    .07226891 
 WKS     |     .00484184       .00113470     4.267   .0000   46.8115246 
+----------------------------------------------------+ 
| Two stage   least squares regression               | 
| LHS=LWAGE    Mean                 =   6.676346     | 
|              Standard deviation   =   .4615122     | 
| WTS=none     Number of observs.   =       4165     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =       4155     | 
| Residuals    Sum of squares       =   602.3138     | 
|              Standard error of e  =   .3807377     | 
| Fit          R-squared            =   .3192467     | 
|              Adjusted R-squared   =   .3177722     | 
| Model test   F[  9,  4155] (prob) = 216.50 (.0000) | 
+----------------------------------------------------+ 
| Instrumental Variables: 
|ONE      ED       EXP      EXPSQ    OCC      IND      SOUTH    SMSA 
|BLK      UNION    FEM 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    4.46105888       .27680953    16.116   .0000 
 ED      |     .06167266       .00283031    21.790   .0000   12.8453782 
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 EXP     |     .04207640       .00236282    17.808   .0000   19.8537815 
 EXPSQ   |    -.00068241     .525268D-04   -12.992   .0000   514.405042 
 OCC     |    -.07605669       .01531301    -4.967   .0000    .51116447 
 IND     |     .08348143       .01302032     6.412   .0000    .39543818 
 SOUTH   |    -.08242895       .01364036    -6.043   .0000    .29027611 
 SMSA    |     .13244624       .01319402    10.038   .0000    .65378151 
 BLK     |    -.25212290       .02383132   -10.579   .0000    .07226891 
 WKS     |     .01922950       .00583960     3.293   .0010   46.8115246 
 
This is the test of relevance of the instrumental variables.  In the regression 
of WKS on the full set of exogenous variables, we test the hypothesis that the 
coefficients on the instruments, UNION and FEM are jointly zero.  The results 
show that the hypothesis is rejected.  We conclude that the instruments are 
relevant. 
+----------------------------------------------------+ 
| Linearly restricted regression                     | 
| Ordinary    least squares regression               | 
| LHS=WKS      Mean                 =   46.81152     | 
|              Standard deviation   =   5.129098     | 
| WTS=none     Number of observs.   =       4165     | 
| Model size   Parameters           =          9     | 
|              Degrees of freedom   =       4156     | 
| Residuals    Sum of squares       =   108653.5     | 
|              Standard error of e  =   5.113097     | 
| Fit          R-squared            =   .8138966E-02 | 
|              Adjusted R-squared   =   .6229705E-02 | 
| Model test   F[  8,  4156] (prob) =   4.26 (.0000) | 
| Restrictns.  F[  2,  4154] (prob) =  84.57 (.0000) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    46.6129896       .67547781    69.007   .0000 
 ED      |    -.03787988       .03789322    -1.000   .3175   12.8453782 
 EXP     |     .05840099       .03139904     1.860   .0629   19.8537815 
 EXPSQ   |    -.00178055       .00069145    -2.575   .0100   514.405042 
 OCC     |    -.14509978       .20533021     -.707   .4798    .51116447 
 IND     |     .49950389       .17041135     2.931   .0034    .39543818 
 SOUTH   |     .42663864       .18010107     2.369   .0178    .29027611 
 SMSA    |     .37851979       .17468415     2.167   .0302    .65378151 
 BLK     |    -.73479892       .31481083    -2.334   .0196    .07226891 
 UNION   |    .444089D-15    .182255D-08      .000  1.0000    .36398559 
 FEM     |       .000000    ......(Fixed Parameter)....... 
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Chapter 13 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

Simultaneous Equations Models 
 
 
1.  (a)  Since nothing is excluded from either equation and there are no other restrictions, neither equation 
passes the order condition for identification. 
 (1)  We use (13-12) and the equations which follow it.  For the first equation, [A3′,A5′] = β22, a scalar 
which has rank M-1 = 1 unless β22 = 0.  For the second, [A3′,A5′] = β31. Thus, both equations are identified. 
 (2)  This restriction does not restrict the first equation, so it remains unidentified.  The second 
equation is now identified, as [A3′,A5′] = [β11,β21] has rank 1 if either of the two ceofficients are nonzero. 
 (3)  If γ1 equals 0, the model becomes partially recursive.  The first equation becomes a regression 
which can be estimated by ordinary least squares.  However, the second equation continues to fail the order 
condition.  To see the problem, consider that even with the restriction, any linear combination of the two 
equations has the same variables as the original second eqation.  
 (4)  We know from above that if β32 = 0, the second equation is identifiable.  If it is, then γ2 is 
identified.  We may treat it as known.  As such, γ1 is known.  By regressing y1 - γ1y2 on the xs, we would 
obtain estimates of the remaining parameters, so these restrictions identify the model.  It is instructive to 
analyze this from the standpoint of  false structures as done in the text.  A false structure which incorporates 

the known restrictions would be  × .  If the false structure is to obey the restrictions, 

then f11 - γ f21 = 1, f22 - γ f12 = 1, f21 - γf11 = f12 - γ f22, β31 f12 = 0.  It follows then that f12 = 0 so f11 = 1.  Then, f21 - 
γf 11  =  -γ  or  f21  =  (f11 - 1)γ  so that f11 - γ2(f11 - 1) = 1.  This can only hold for all values of γ if f11 = 1 and, 
then, f21  =  0. Therefore, F = I which establishes identification. 

1
1

0

11 12

21 22

31

−
−
⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

γ
λ

β β
β β
β

f f
f f
11 12

21 22

⎡

⎣
⎢

⎤

⎦
⎥

 (5)  If β31 = 0, the first equation is identified by the usual rank and order conditions.  Consider, then, 
the off-diagonal element of Σ  =  Γ′ΩΓ.  Ω is identified since it is the reduced form covariance matrix.  The 
off-diagonal element is σ12  =  ω11 + ω22 - (γ1 + γ2)ω12  =  0.  Since γ1 is zero, γ2  =  ω12/(ω11 + ω22).  With γ2 
known, the remaining parameters are estimable by least squares regression of (y2 - γ2y1) on the xs.  Therefore, 
the restrictions identify the model. 
 (6)  Since this is only a single restriction, it will not likely identify the entire model.  Consider again 
the false structure.  The restrictions implied by the theory are f11 - γ2f21  =  1,   f22 - γ1f12  =  1,   β21f11 + β22f21  =  
β21f12 + β22f22.  The three restrictions on four unknown elements of F do not serve to pin down any of them.  
This restriction does not even partially identify the model. 
 (7)  The last four restrictions remove x2 and x3 from the model.  The remaining model is not 
identified by the usual rank and order conditions.  From part (5), we see that the first restriction implies σ12  =  
ω11 + ω22 - (γ1 + γ2)ω12  =  0.  But, with neither γ1 nor γ2 specified, this does not identify either parameter. 
 (8)  The first equation is identified by the conventional rank and order conditions.  The second 
equation fails the order condition.  But, the restriction σ12 = 0 provides the necessary additional information 
needed to identify the model.  For simplicity, write the model with the restrictions imposed as 
 y1 = γ1y2 + ε1 and  y2 = γ2y1 + βx + ε2. 
The reduced form is                                  y1 = π1x + v1 and y2 = π2x + v2  
where π1 = γ1β/Δ and π2 = β/Δ with Δ = (1 - γ1γ2), and v1 = (ε1 + γ1ε2)/Δ and v2 = (ε2 + γ2ε1)/Δ.  The reduced 
form variances and covariances are ω11 = (γ1

2σ22 + σ11)/Δ2, ω22 = (γ2
2σ11 + σ22)/Δ2, ω12 = (γ1σ22 + γ2σ11)/Δ2. 

All reduced form parameters are estimable directly by using least squares, so the reduced form is identified in 
all cases.  Now, γ1 = π1/π2.  σ11 is the residual variance in the euqation (y1 - γ1y2) = ε1, so σ11 must be estimable 
(identified) if γ1 is.  Now, with a bit of manipulation, we find that γ1ω12 - ω11 = -σ11/Δ.  Therefore, with σ11 and 
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γ1 "known" (identified), the only remaining unknown is γ2, which is therefore identified.  With γ1 and γ2 in 
hand, β may be deduced from π2.  With γ2 and β in hand, σ22 is the residual variance in the equation (y2 - βx - 
γ2y1) = ε2, which is directly estimable, therefore, identified.   
 
2.  Following the method in Example 13.6, for identification of the investment equation, we require that the 

matrix have rank 5.  Columns (1), (4), (6), (7), and (8) each 

have one element in a different row, so they are linearly independent.  Therefore, the matrix has rank five.  For 

the third equation, the required matrix is .  Columns 

(4), (6), (7), (9), and (10) are linearly independent.    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0

3 3
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⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
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3.  We find [A3′,A5′]′ for each equation. 
 (1)  (2)  (3)  (4) 
γ γ
β β β

β β
β

32 34

12 13 14

43 4

32

1

0
0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,  [ ] ,  ,   0 43 44β β

1 0
1

1 0
0 00

Identification requires that the rank of each matrix be M-1 = 3.  The second is obviously not identified.  In (1), 
none of the three columns can be written as a linear combination of the other two, so it has rank 3.  (Although 
the second and last columns have nonzero elements in the same positions, for the matrix to have short rank, 
we would require that the third column be a multiple of the second, since the first cannot appear in the linear 
combination which is to replicate the second column.)  By the same logic, (3) and (4) are identified.    
 
4.  Obtain the reduced form for the model in Exercise 1 under each of the assumptions made in parts (a) and 
(b1), (b6), and (b9). 
 (1).  The model is y1 = γ1y2 + β11x1 + β21x2 + β31x3 + ε1 
   y2 = γ2y1 + β12x1 + β22x2 + β32x3 + ε2. 

Therefore, Γ =  and B = and Σ is unrestricted.  The reduced form is 
1
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and 
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Ω = (Γ-1)′Σ(Γ-1) = 1
1

2

2

1 2
2

11 1
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1 12

2 11 1 22

1 2 12

2 11 1 22

1 2 12

2
2

11 22

1 12

( )

( )

( )

−

+
+

+
+ +

+
+ +

+
+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

γ γ

σ γ σ
γ σ

γ σ γ σ
γ γ σ

γ σ γ σ
γ γ σ

γ σ σ
γ σ

 

 (6)  The model is y1  =  β11x1 + β21x2 + β31x3  + ε1 
   y2  =  γ2y1  + β12x1 + β22x2 + β32x3  +  ε2 
The first equation is already a reduced form.  Substituting it into the second provides the second reduced form.  

The coefficient matrix is P= , Γ-1 =  so Ω = (Γ-1)′Σ(Γ-1)   =  
β β γ β
β β γ β
β β γ β
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 (9)  The model is 
  y1  =  γ1y2  +  ε1 
  y2  =  γ2y1  +  β12x1  +  ε2 

Then, Π = -BΓ-1 = [β12γ1/(1-γ1γ2)   β12/(1-γ1γ2)] and Ω = .   
σ γ σ γ σ γ σ
γ σ γ σ γ σ σ
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5.   The relevant submatrices are X′X = , X′y1  = , X′y2  = , y1′y1 = 20,  y2′y2  =  10,  

y1′y2  =  6, X′Z1  = , X′Z2  =  Z1′Z1 = , Z2′Z2  = , 

5 2 3
2 10 8
3 8 15

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4
3
5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3
6
7

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 5
6 2
7 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4 2 3
3 10 8
5 8 15

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

10 3
3 5

⎡

⎣
⎢

⎤

⎦
⎥

10 3 5
3 10 8
5 8 15

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 Z1′Z2 = , Z1′y1  = , Z1′y2  = , Z2′y1 = , Z2′y2 = . 
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The two OLS coefficient vectors are 
 d1  =  (X′X)-1X′y1  =  [.439024,.536585] ′ 
 d2  =  (X′X)-1X′y2  =  [.193016,.384127,.19746] ′. 
The two stage least squares estimators are 

 = [Z1′X(X′X)-1X′Z1]-1[Z1′X(X′X)-1X′y1]  =  [.368816,.578711] ′. δ
∧

1

 = [Z2′X(X′X)-1X′Z2]-1[Z2′X(X′X)-1X′y2]  =  [.484375,.367188,.109375] ′. δ
∧

2

 = (y1′y1 - 2y1′Z  + δ ′Z1′Z1 ) / 25  =  .610397,  =  .268384. σ
∧

11 δ
∧

1
∧

1 δ
∧

1 σ
∧

22

 
The estimated asymptotic covariance matrices are 

 Est.Var[ ] = [Z1′X(X′X)-1X′Z1]-1   =  δ
∧

1 σ
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. .
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The three stage least squares estimate is 
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   =  [.368817,.578708,.4706,.306363,.168294]′ . 
The estimated standard errors are the square roots of the diagonal elements of the inverse matrix, 
[.4637,.4466,.3626,.1716,.1628], compared to the 2SLS values,  [.4637,.4466,.3639,.2174,.2081]. 
 To compute the limited information maximum likelihood estimator, we require the matrix of sums of 
squares and cross products of residuals of the regressions of y1 and y2 on x1 and on x1, x2, and x3.  These are 

W0  =  Y′Y  -  Y′x1(x1′x1)-1x1′Y  = , W1  =  Y′Y  -  Y′X(X′X)-1X′Y  =  
165 360
360 8 20
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The two characteristic roots of (W1)-1W0 are 1.53157 and 1.00837.  We carry the smaller one into the k-class 
computation  [see, for example, Theil (1971) or Judge, et al (1985)]; 
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Finally, the two estimates of the reduced form are 
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6. For the model  y1 = γ1y2 + β11x1 + β21x2 + ε1 
   y2 = γ2y1 + β32x3 + β42x4 + ε2 
show that there are two restrictions on the reduced form coefficients.  Describe a procedure for estimating the 
model while incorporating the restrictions. 

 The structure is  [y1 y2]  
1

1 0
0

2

1
1 2 3 4 1 1
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or y′ Γ + x′B  =  ε′.  The reduced form coefficient matrix is 

Π  =  -BΓ-1   =  1
1 1 2

11 2 11

21 2 21

1 32 32
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  =    The two restrictions are π12/π11 = π22/π21 and  

π31/π32  =  π41/π42.  If we write the reduced form as 

π π
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  y1  =  π11x1  +  π21x2  +  π31x3  +  π41x4  +  v1 
  y2  =  π12x1  +  π22x2  +  π32x3  +  π42x4  +  v2. 
We could treat the system as a nonlinear seemingly unrelated regressions model.  One possible way to handle 
the restrictions is to eliminate two parameters directly by making the substitutions 
  π12  =  π11π22/π21   and   π31  =  π32π41/π42. 
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The pair of equations would be 
  y1  =  π11x1  +  π21x2  +  (π32π41/π42)x3  +  π41x4  +  v1 
  y2  =  (π11π22/π21)x1  +  π22x2  +  π32x3  +  π42x4  +  v2. 
This nonlinear system could now be estimated by nonlinear GLS.  The function to be minimized would be 
  Σ i  vi1

2σ11 + vi2
n
=1

2

−

σ22 + 2vi1vi2σ12   =  ntr(Σ-1W). 
Needless to say, this would be quite involved.    
 
7.  We would require that all three characteristic roots have modulus less than one.  An intuitive guess that the 
diagonal element greater than one would preclude this would be correct.  The roots are the solutions to  

det
− − − −

−
− −

⎡

⎣

⎢
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⎢

⎤

⎦

⎥
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. . .
.

. . .

1899 9471 8991
0 10287 0

0656 0791 0952

λ
λ

λ
= 0.  Expanding this produces   -(.1899 + λ)(1.0287 - λ)(.0952 - λ) 

- .0565(1.0287 - λ).8991 = 0.  There is no need to go any further.  It is obvious that λ = 1.0287 is a solution, so 
there is at least one characteristic root larger than 1.  The system is unstable.   
 
8.  Prove plim Yj′ε/T  =  ωj - Ωjjγj.  
  Consistent with the partitioning   y′  =  [yj  Yj′  Yi

*′],  partition Ω into 
    ωjj    ωj′ ω*

j′ 
   Ω  = ωj   Ωjj Ωj′ 
    ω*

j  Ω*
j Ωj

* 

and, as in the equation preceding (13-8), partition the jth column of Γ as Γj  =  .  Since the full set of 

reduced form disturbances is  V  =  EΓ-1,  it follows that   E  =  VΓ.  In particular, the jth column of E is  εj  =  
VΓj.  In the reduced form, now referring to (15-8),  Yj  =  XΠj  +  Vj, where Πj is the Mj columns of Π 
corresponding to the included endogenous variables and Vj is the T×Mj matrix of their reduced form 
disturbances.  Since X is uncorrelated with all columns of E, we have 

1
−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

γ
0

plim Yj′εj/T = plim Vj′ Γj /T = [ωj  Ωjj  Ωj* ]  =   ωj - Ωjjγj as required.   
1
−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

γ
0

 
9.  Prove that an underidentified equation cannot be estimated by two stage least squares. 
 If the equation fails the order condition, then the number of excluded exogenous variables is less than 
the number of included endogenous.  The matrix of instrumental variables to be used for two stage least 

squares is of the form Z =  [XA,Xj], where XA is Mj linear combination of all K columns in X and Xj is Kj 

columns of X.  In total, K = Kj
* + Kj.  If the equation fails the order condition, then Kj

* < Mj, so Z is Mj + Kj 

columns which are linear combinations of K = Kj
* + Kj < Mj + Kj.  Therefore,  cannot have full column 

rank.  In order to compute the two stage least squares estimator, we require ( ′ )-1, which cannot be 
computed.    

∧

∧

Z
∧

Z
∧

Z
∧

 
 

 94



 

Application 
 
?========================================================= 
? Application 13.1 - Simultaneous Equations 
?========================================================= 
? Read the data 
? For convenience, rename the variables so they correspond  
? to the example in the text. 
sample ; 1 - 204 $ 
create ; ct=realcons$ 
create ; it=realinvs$ 
create ; gt=realgovt$ 
create ; rt=tbilrate $ 
? Impose (artifically) the adding up condition on total demand. 
create ; yt=ct+it+gt $ 
create ; ct1=ct[-1] $ 
create ; yt1 = yt[-1] $ 
create ; dyt = yt - yt1 $ 
sample ; 2-204 $ 
names  ; xt = one,gt,rt,ct1,yt1$ 
? Estimate equations by 2sls and save coefficients with 
? the names used in the example. 
2sls   ; lhs = ct ; rhs=one,yt,ct1 ; inst = xt $ 
+----------------------------------------------------+ 
| Two stage   least squares regression               | 
| LHS=CT       Mean                 =   3008.995     | 
|              Standard deviation   =   1456.900     | 
| WTS=none     Number of observs.   =        203     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =        200     | 
| Residuals    Sum of squares       =   75713.32     | 
|              Standard error of e  =   19.45679     | 
| Fit          R-squared            =   .9998208     | 
|              Adjusted R-squared   =   .9998190     | 
| Model test   F[  2,   200] (prob) =******* (.0000) | 
+----------------------------------------------------+ 
| Instrumental Variables: 
|ONE      GT       RT       CT1      YT1 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -13.8657181      5.31536302    -2.609   .0091 
 YT      |     .05843862       .01790473     3.264   .0011   4663.67389 
 CT1     |     .92200662       .02657199    34.698   .0000   2982.97438 
calc   ; a0=b(1) ; a1=b(2) ; a2=b(3) $ 
2sls   ; lhs = it ; rhs=one,rt,dyt ; inst = xt $ 
+----------------------------------------------------+ 
| Two stage   least squares regression               | 
| LHS=IT       Mean                 =   654.5296     | 
|              Standard deviation   =   391.3705     | 
| WTS=none     Number of observs.   =        203     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =        200     | 
| Residuals    Sum of squares       =   .7744227E+08 | 
|              Standard error of e  =   622.2631     | 
| Fit          R-squared            =  -1.540485     | 
|              Adjusted R-squared   =  -1.565889     | 
+----------------------------------------------------+ 
| Instrumental Variables: 
|ONE      GT       RT       CT1      YT1 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -300.699429      125.980850    -2.387   .0170 
 RT      |    56.5192542      15.4643912     3.655   .0003   5.24965517 
 DYT     |    16.5359646      2.02509785     8.166   .0000   39.8236453 
calc   ; b0=b(1) ; b1=b(2) ; b2=b(3) $ 
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? 
? Create the coefficients of the reduced form.  We only need the parts  
? for the dynamics.  These are in the second half of the example. 
calc   ; a=1-a1-b2 $ 
? 
? Construct the matrix that governs the dynamics of the system.  Note that 
? the I equation is static.  It is a function of y(t-1) and c(t-1) but not 
? of I(t-1).  This is the DELTA(1) submatrix in (13-42).  The dominant 
? root is the largest rood of DELTA(1). 
calc   ; list ; C11=(1-b2)/a ; C12=-a1*b2/a ; C21=a2/a ; C22=-b2/a $ 
matrix ; C = [c11,c12 / c21,c22] $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 C11     =       .996253 
 C12     =       .061967 
 C21     =      -.059124 
 C22     =      1.060378 
Matrix ; list ; roots = cxrt(c)$ 
Calc   ; list ; domroot = sqr(roots(1,1)^2 + roots(1,2)^2)$ 
--> Matrix ; list ; roots = cxrt(c)$ 
 
Matrix ROOTS    has  2 rows and  2 columns. 
               1             2 
        +---------------------------- 
       1|    1.02832      -.05134 
       2|    1.02832       .05134 
--> Calc   ; list ; domroot = sqr(roots(1,1)^2 + roots(1,2)^2)$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 DOMROOT =      1.029596 
 
? The largest root is larger than on in absolute value.  The system is unstable. 
 
3sls   ; lhs = ct,it ; eq1=one,yt,ct1 ; eq2=one,rt,dyt ; inst=xt ; maxit=0 $ 
+----------------------------------------------------+ 
| Estimates for equation: CT                         | 
| InstVar/GLS least squares regression               | 
| LHS=CT       Mean                 =   3008.995     | 
| Residuals    Sum of squares       =   73370.06     | 
|              Standard error of e  =   19.15334     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -17.4780776      4.55837624    -3.834   .0001 
 YT      |     .07312129       .01415744     5.165   .0000   4663.67389 
 CT1     |     .90026227       .02103720    42.794   .0000   2982.97438 
+----------------------------------------------------+ 
| Estimates for equation: IT                         | 
| InstVar/GLS least squares regression               | 
| LHS=IT       Mean                 =   654.5296     | 
| Residuals    Sum of squares       =   .9735005E+08 | 
|              Standard error of e  =   697.6749     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -236.744328      122.661644    -1.930   .0536 
 RT      |    30.5417941      12.9861014     2.352   .0187   5.24965517 
 DYT     |    18.3544221      1.93633720     9.479   .0000   39.8236453 
 
 

 96



 

Chapter 14 
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Estimation Frameworks in 
Econometrics 
 

Exercise 
 
1.  A fully parametric model/estimator provides consistent, efficient, and comparatively precise results.  
The semiparametric model/estimator, by comparison, is relatively less precise in general terms. But, the 
payoff to this imprecision is that the semiparametric formulation is more likely to be robust to failures of 
the assumptions of the parametric model.  Consider, for example, the binary probit model of Chapter 21, 
which makes a strong assumption of normality and homoscedasticity.  If the assumptions are correct, the 
probit estimator is the most efficient use of the data.  However, if the normality assumption or the 
homoscedasticity assumption are incorrect, then the probit estimator becomes inconsistent in an unknown 
fashion.  Lewbel’s semiparametric estimator for the binary choice model, in contrast, is not very precise in 
comparison to the probit model. But, it will remain consistent if the normality assumption is violated, and it 
is even robust to certain kinds of heteroscedasticity. 
 

Applications 
 
1.  Using the gasoline market data in Appendix Table F2.2, use the partially linear regression method in 
Section 16.3.3 to fit an equation of the form 
 
      ln(G/Pop)  =  β1ln(Income) + β2lnPnew cars + β3lnPused cars + g(lnPgasoline)  +  ε 
 
crea;gp=lg;ip=ly;ncp=lpnc;upp=lpuc;pgp=lpg$ 
sort;lhs=pgp;rhs=gp,ip,ncp,upp$ 
crea;dgp=.809*gp - .5*gp[-1] - .309*gp[-2]$ 
crea;dip=.809*ip - .5*ip[-1] - .309*ip[-2]$ 
crea;dnc=.809*ncp -.5*ncp[-1]-.309*ncp[-2]$ 
crea;duc=.809*upp -.5*upp[-1]-.309*upp[-2]$ 
samp;3-36$ 
regr;lhs=dgp;rhs=dip,dnc,duc;res=e$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = DGP      Mean=   .9708646870E-02, S.D.=   .4738748109E-01 | 
| Model size: Observations =      34, Parameters =   3, Deg.Fr.=     31 | 
| Residuals:  Sum of squares= .1485994289E-01, Std.Dev.=         .02189 | 
| Fit:        R-squared=  .799472, Adjusted R-squared =          .78653 | 
| Model test: F[  2,     31] =   61.80,    Prob value =          .00000 | 
| Diagnostic: Log-L =     83.2587, Restricted(b=0) Log-L =      55.9431 | 
|             LogAmemiyaPrCrt.=   -7.559, Akaike Info. Crt.=     -4.721 | 
| Model does not contain ONE. R-squared and F can be negative!          | 
| Autocorrel: Durbin-Watson Statistic =   1.34659,   Rho =       .32671 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 DIP          .9629902959       .11631885    8.279   .0000  .14504254E-01 
 DNC         -.1010972781   .87755182E-01   -1.152   .2581  .20153536E-01 
 DUC      -.3197058148E-01  .51875022E-01    -.616   .5422  .35656776E-01 
--> matr;varpl={1+1/(2*2)}*varb$ 
--> matr;stat(b,varpl)$ 
+---------------------------------------------------+ 
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|Number of observations in current sample =      34 | 
|Number of parameters computed here       =       3 | 
|Number of degrees of freedom             =      31 | 
+---------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 B_1          .9629902959       .13004843    7.405   .0000 
 B_2         -.1010972781   .98113277E-01   -1.030   .3028 
 B_3      -.3197058148E-01  .57998037E-01    -.551   .5815 
 
 
2.   
 
+---------------------------------------+ 
| Nonparametric Regression for G        | 
| Observations       =            36    | 
| Points plotted     =            36    | 
| Bandwidth          =       .468092    | 
| Statistics for abscissa values----    | 
| Mean               =      2.316611    | 
| Standard Deviation =      1.251735    | 
| Minimum            =       .914000    | 
| Maximum            =      4.109000    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =    121.084982    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
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3.  A.  Using the probit model and the Klein and Spady semiparametric models, the two sets of coefficient 
estimates are somewhat similar. 
+---------------------------------------------+ 
| Binomial Probit Model                       | 
| Maximum Likelihood Estimates                | 
| Model estimated: Jul 31, 2002 at 05:16:40PM.| 
| Dependent variable                    P     | 
| Weighting variable                 None     | 
| Number of observations              601     | 
| Iterations completed                  5     | 
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| Log likelihood function       -307.2955     | 
| Restricted log likelihood     -337.6885     | 
| Chi squared                    60.78608     | 
| Degrees of freedom                    5     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Hosmer-Lemeshow chi-squared =   5.74742     | 
| P-value=  .67550 with deg.fr. =       8     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 Z2       -.2202376072E-01  .10177371E-01   -2.164   .0305     32.487521 
 Z3        .5990084920E-01  .17086004E-01    3.506   .0005     8.1776955 
 Z5          -.1836462412   .51493239E-01   -3.566   .0004     3.1164725 
 Z7        .3751312008E-01  .32844576E-01    1.142   .2534     4.1946755 
 Z8          -.2729824396   .52473295E-01   -5.202   .0000     3.9317804 
 Constant     .9766647244       .36104809    2.705   .0068 
+---------------------------------------------+ 
| Seimparametric Binary Choice Model          | 
| Maximum Likelihood Estimates                | 
| Model estimated: Jul 31, 2002 at 11:01:24PM.| 
| Dependent variable                    P     | 
| Weighting variable                 None     | 
| Number of observations              601     | 
| Iterations completed                 13     | 
| Log likelihood function       -334.7367     | 
| Restricted log likelihood     -337.6885     | 
| Chi squared                    5.903551     | 
| Degrees of freedom                    4     | 
| Prob[ChiSqd > value] =         .2064679     | 
| Hosmer-Lemeshow chi-squared = 118.69649     | 
| P-value=  .00000 with deg.fr. =       8     | 
| Logistic kernel fn. Bandwidth =  .34423     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Characteristics in numerator of Prob[Y = 1] 
 Z2       -.3284308221E-01  .52254249E-01    -.629   .5297     32.487521 
 Z3           .1089817386   .86483083E-01    1.260   .2076     8.1776955 
 Z5          -.2384951835       .23320058   -1.023   .3064     3.1164725 
 Z7          -.1026067037       .17130225    -.599   .5492     4.1946755 
 Z8          -.1892263132       .21598982    -.876   .3810     3.9317804 
 Constant     .0000000000 ........(Fixed Parameter)........ 
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The probit model produces a set of marginal effects, as discussed in the text.  These cannot be computed 
for the Klein and Spady estimator. 
+-------------------------------------------+ 
| Partial derivatives of E[y] = F[*]   with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used for means are All Obs.  | 
+-------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 Z2       -.6695300413E-02  .30909282E-02   -2.166   .0303     32.487521 
 Z3        .1821006800E-01  .51704684E-02    3.522   .0004     8.1776955 
 Z5       -.5582910069E-01  .15568275E-01   -3.586   .0003     3.1164725 
 Z7        .1140411992E-01  .99845393E-02    1.142   .2534     4.1946755 
 Z8       -.8298761795E-01  .15933104E-01   -5.209   .0000     3.9317804 
 Constant     .2969094977       .11108860    2.673   .0075 
 
These are the various fit measures for the probit model 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Probit   model for variable P          | 
+----------------------------------------+ 
| Proportions P0= .750416   P1= .249584  | 
| N =     601 N0=     451   N1=     150  | 
| LogL =  -307.29545 LogL0 =  -337.6885  | 
| Estrella = 1-(L/L0)^(-2L0/n) = .10056  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .10905 |    .09000  |       .66451  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .10486 |    .17359  |       .09619  | 
+----------------------------------------+ 
| Information  Akaike I.C. Schwarz I.C.  | 
| Criteria        1.04258     652.98248  | 
+----------------------------------------+ 
Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
Threshold value for predicting Y=1 = .5000 
            Predicted 
------  ----------  +  ----- 
Actual      0    1  |  Total 
------  ----------  +  ----- 
  0       437   14  |    451 
  1       130   20  |    150 
------  ----------  +  ----- 
Total     567   34  |    601 
 
These are the fit measures for the probabilities computed for the Klein and Spady model.  The probit model 
fits better by all measures computed. 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Observed = P        Fitted = KSPROBS   | 
+----------------------------------------+ 
| Proportions P0= .750416   P1= .249584  | 
| N =     601 N0=     451   N1=     150  | 
| LogL =  -320.37513 LogL0 =  -337.6885  | 
| Estrella = 1-(L/L0)^(-2L0/n) = .05743  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .05686 |    .05127  |       .64117  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .03897 |    .10295  |       .05599  | 
+----------------------------------------+ 
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The first figure below plots the probit probabilities against the Klein and Spady probabilities.  The models 
are obviously similar, though there is substantial difference in the fitted values. 
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Finally, these two figures plot the predicted probabilities from the two models against the respective index 
functions, b’x. Note that the two plots are based on different coefficient vectors, so it is not possible to 
merge the two figures. 
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Minimum Distance Estimation and The 
Generalized Method of Moments 
 

Exercises 
 
1.       The elements of J are 
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Using the formula given for the moments, we obtain, μ2 = σ2, μ3 = 0, μ4 = 3σ4.  Insert these in the 
derivatives above to obtain 

30 0
.

2 46 0

σ

σ σ

⎡ ⎤−
⎢ ⎥
⎢ ⎥− −−⎣ ⎦

=J  

Since the rows of J are orthogonal, we know that the off diagonal term in JVJ′ will be zero, which 
simplifies things a bit.   Taking the parts directly, we can see that the asymptotic variance of 1b will be σ-6 
Asy.Var[m3], which will be 

Asy.Var[ 1b ]  =  σ-6(μ6 - μ3
2 + 9μ2

3 - 3μ2μ4 - 3μ2μ4). 
The parts needed, using the general result given earlier, are μ6 = 15σ6, μ3 = 0, μ2 = σ2, μ4 = 3σ4.  Inserting 
these in the parentheses and multiplying it out and collecting terms produces the upper left element of JVJ′  
equal to 6, which is the desired result.  The lower right element will be 
 Asy.Var[b2] = 36σ-4 Asy.Var[m2] + σ-8Asy.Var[m4] - 2(6)σ-6Asy.Cov[m2,m4]. 
The needed parts are 
 Asy.Var[m2] = 2σ4 
 Asy.Var[m4] = μ8 - μ4

2 = 105σ8 - (3σ4)2 
 Asy.Cov[m2,m4] = μ6 - μ2μ4  =  15σ6 - σ2(3σ4). 
Inserting these parts in the expansion, multiplying it out and collecting terms produces the lower right 
element equal to 24, as expected. 
 

2. The necessary data are given in Examples 15.5.  The two moments are 1m′=31.278 and =1453.96.  
Based on the theoretical results m1′ = P/λ and m2′ = P(P+1)/λ2, the solutions are P = μ1′2/(μ2′ - μ1′2) and λ = 
μ1′/(μ2′ - μ1′2).  Using the sample moments produces estimates P = 2.05682 and λ = 0.065759.  The matrix 
of derivatives is 

2.m′
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.
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The covariance matrix for the moments is given in Example 18.7; 
24.7051 2307.126

2307.126 229,609.5
⎡ ⎤
⎢ ⎥
⎣ ⎦

Φ =  
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3.  a.  The log likelihood for sampling from the normal distribution is 
 logL  =  (-1/2)[nlog2π + nlogσ2 + (1/σ2)Σi (xi - μ)2] 
write the summation in the last term as Σxi

2 + nμ2 - 2μΣixi.  Thus, it is clear that the log likelihood is of the 
form for an exponential family, and the sufficient statistics are the sum and sum of squares of the 
observations. 
b.  The log of the density for the Weibull distribution is  

logf(x) = logα + logβ + (β-1)logxi - αΣi xi
β. 

The log likelihood is found by summing these functions.  The third term does not factor in the fashion 
needed to produce an exponential family.  There are no sufficient statistics for this distribution.   
 c.  The log of the density for the mixture distribution is 
 logf(x,y) = logθ - (β+θ)yi + xilogβ + xilogyi - log(x!) 
This is an exponential family; the sufficient statistics are Σiyi and Σixi.. 
 
4.  The question is (deliberately) misleading. We showed in Chapter 8 and in this chapter that in the 
classical regression model with heteroscedasticity, the OLS estimator is the GMM estimator.  The 
asymptotic covariance matrix of the OLS estimator is given in Section 8.2.  The estimator of the asymptotic 
covariance matrices are s2(X′X)-1 for OLS and the White estimator for GMM. 
 
5.  The GMM estimator would be chosen to minimize the criterion 
 q = n m′Wm 
where W is the weighting matrix and m is the empirical moment, 
 m  =  (1/n)Σi (yi - Φ(xi′β))xi 
For the first pass, we’ll use W = I and just minimize the sumof squares. This provides an initial set of 
estimates that can be used to compute the optimal weighting matrix.  With this first round estimate, we 
compute 
 W  =  [(1/n2) Σi (yi - Φ(xi′β))2 xi xi′]-1 

then return to the optimization problem to find the optimal estimator.  The asymptotic covariance matrix is 
computed from the first order conditions for the optimization.  The matrix of derivatives is 
 G  =  ∂m/∂β′  =  (1/n)Σi -φ(xi′β)xixi′ 
The estimator of the asymptotic covariance matrix will be 
 V  =  (1/n)[G′WG]-1 

 
6.  This is the comparison between (15-12) and (15-11).  The proof can be done by comparing the inverses 
of the two covariance matrices.  Thus, if the claim is correct, the matrix in (15-11) is larger than that in (15-
12), or its inverse is smaller.  We can ignore the (1/n) as well.  We require, then, that 
 1−′ ′ ′ ′> -1G G G WG[G W WG] G WGΦ Φ  
 
7.  Suppose in a sample of 500 observations from a normal distribution with mean μ and standard deviation σ, 
you are told that 35% of the observations are less than 2.1 and 55% of the observations are less than 3.6.  
Estimate μ and σ. 
 If 35% of the observations are less than 2.1, we would infer that  
  Φ[(2.1 - μ)/σ]  =  .35, or  (2.1 - μ)/σ  =  -.385  ⇒  2.1 - μ  =  -.385σ. 
Likewise, Φ[(3.6 - μ)/σ]  =  .55, or  (3.6 - μ)/σ  =   .126  ⇒  3.6 - μ  =   .126σ. 

The joint solution isμ = 3.2301 andσ = 2.9354.  It might not seem obvious, but we can also derive asymptotic 
standard errors for these estimates by constructing them as method of moments estimators.  Observe, first, that 
the two estimates are based on moment estimators of the probabilities.  Let xi denote one of the 500 
observations drawn from the normal distribution.  Then, the two proportions are obtained as follows:  Let 
zi(2.1) =  1[xi < 2.1] and zi(3.6) = 1[xi < 3.6] be indicator functions.  Then, the proportion of 35% has been 
obtained as 

∧ ∧

z (2.1) and .55 is z (3.6).  So, the two proportions are simply the means of functions of the sample 
observations.  Each zi is a draw from a Bernoulli distribution with success probability π(2.1) = Φ((2.1-μ)/σ) 
for zi(2.1) and π(3.6) = Φ((3.6-μ)/σ) for zi(3.6).  Therefore, E[ z (2.1)] = π(2.1), and E[ z (3.6)] = π(3.6).  The 
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variances in each case are Var[ z (.)] = 1/n[π(.)(1-π(.))].  The covariance of the two sample means is a bit 
trickier, but we can deduce it from the results of random sampling. Cov[ z (2.1), z (3.6)]]  
= 1/n Cov[zi(2.1),zi(3.6)], and, since in random sampling sample moments will converge to their population 
counterparts, Cov[zi(2.1),zi(3.6)] = plim [{(1/n) i(2.1)zi(3.6)}  -  π(2.1)π(3.6)]. But, zi(2.1)zi(3.6) 
must equal [zi(2.1)]2 which, in turn, equals zi(2.1).  It follows, then, that  

z
i
n
=∑ 1

Cov[zi(2.1),zi(3.6)] = π(2.1)[1 - π(3.6)]. Therefore, the asymptotic covariance matrix for the two sample 

proportions is Asy Var p p
n

. [ ( . ), ( . )]
( . )( ( . )) ( . )( ( . ))
( . )( ( . )) ( . )( ( . ))

21 36 1 21 1 21 21 1 36
21 1 36 36 1 36

= =
− −
− −

⎡

⎣
⎢

⎤

⎦
⎥Σ

π π π π
π π π π

.  If we insert our 

sample estimates, we obtain   Now, ultimately, our 

estimates of μ and σ are found as functions of p(2.1) and p(3.6), using the method of moments.  The moment 
equations are 

Est Asy Var p p. . [ ( . ), ( . )]
. .
. .

.21 36
0 000455 0 000315
0 000315 0 000495

= =
⎡

⎣
⎢

⎤

⎦
⎥S

   m
n

zii
n

2 1 1
1 21 21 0. ( . ) .

= ⎡
⎣⎢

⎤
⎦⎥

−⎡
⎣⎢

⎤
⎦⎥=∑   -     =   Φ

μ
σ

, 

   m n zii
n

3 1

1
36

36
0.6 ( . )

.
=
⎡
⎣⎢

⎤
⎦⎥

−⎡
⎣⎢

⎤
⎦⎥=∑   -     =   Φ

μ
σ . 

Now, let Γ = and let G be the sample estimate of Γ.  Then, the estimator of the 

asymptotic covariance matrix of ( , ) is [GS-1G′]-1.  The remaining detail is the derivatives, which are just 

∂ ∂μ ∂ ∂σ
∂ ∂μ ∂ ∂σ

m m
m m

2 1 2 1

3 6 3 61

. .

. .

/ /
/ /

⎡

⎣
⎢

⎤

⎦
⎥

μ
∧

σ
∧

∂m2.1/∂μ = (1/σ)φ((2.1-μ)/σ) and ∂m2.1/∂σ = (2.1-μ)/σ[∂m2.1/∂σ]  and likewise for m3.6.  Inserting our sample 

estimates produces G = .  Finally, multiplying the matrices and computing the 

necessary inverses produces [GS-1G′]-1 = .  The asymptotic distribution would be 

normal, as usual.  Based on these results, a 95% confidence interval for μ would be 3.2301 ± 1.96(.10178)2 = 
2.6048 to 3.8554.   

0 37046 014259
0 39579 0 04987
. .
. .

−⎡

⎣
⎢

⎤

⎦
⎥

010178 012492
012492 016973
. .
. .

−
−
⎡

⎣
⎢

⎤

⎦
⎥
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Chapter 16 
 

Maximum Likelihood Estimation 
 

Exercises 
 
1.  The density of the maximum is 
 
  n[z/θ]n-1(1/θ),  0 < z < θ. 

Therefore, the expected value is E[z] = zndz = [θn+1/(n+1)][n/θn] = nθ/(n+1).  The variance is found 

likewise,  E[z2]  =  z2n(z/n)n-1(1/θ)dz  =  nθ2/(n+2) so Var[z]  =  E[z2] - (E[z])2  =  nθ2/[(n + 1)2(n+2)].  

Using mean squared convergence we see that E[z] = θ  and Var[z] = 0, so that plim z = θ.   

0

θ
∫

0

θ
∫

lim
n→∞

lim
n→∞

2.  The log-likelihood is lnL  =  -nlnθ - (1/θ) .  The maximum likelihood estimator is obtained as the 

solution to ∂lnL/∂θ = -n/θ  + (1/θ2)  =  0, or 

xii
n
=∑ 1

xii
n
=∑ 1

ˆ
MLθ  =  (1/n) 

1

n
ii

x
=∑ = x .  The asymptotic variance of 

the MLE is {-E[∂2lnL/∂θ2]}-1  =  {-E[n/θ2 - (2/θ3) ]}-1.  To find the expected value of this random 

variable, we need E[xi] = θ. Therefore, the asymptotic variance is θ2/n.  The asymptotic distribution is normal 
with mean θ and this variance.   

xii
n
=∑ 1

 
3.  The log-likelihood is lnL = nlnθ - (β+θ)  + lnβ  + yii

n
=∑ 1

xii
n
=∑ 1 1

lnn
i ii

x y
=∑ - 

1
ln( !)n

ii
x

=∑  

The first and second derivatives are  ∂lnL/∂θ    =  n/θ-  yii
n
=∑ 1

     ∂lnL/∂β     =  -  + /β yii
n
=∑ 1

xii
n
=∑ 1

     ∂2lnL/∂θ2   =  -n/θ2 
     ∂2lnL/∂β2   =  -  /β2 xii

n
=∑ 1

     ∂2lnL/∂β∂θ  =  0. 
Therefore, the maximum likelihood estimators are ˆ

MLθ  =  1/ y  and β̂  = /x y  and the asymptotic covariance 

matrix is the inverse of . In order to complete the derivation, we will require the 

expected value of  = nE[xi].   In order to obtain E[xi], it is necessary to obtain the marginal 

distribution of xi, which is f(x)  =  =   This is βx(θ/x!) 

times a gamma integral.  This is f(x)  =  βx(θ/x!)[Γ(x+1)]/(β+θ)x+1.  But, Γ(x+1) = x!, so the expression reduces 
to 

E
n

xii

n
/

/
θ

β

2

1
2

0
0

=∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

xii
n
=∑ 1

θ ββ θe y x dyy x− +
∞

∫ ( ) ( ) / !
0

β θ β θx y xx e y dy( / !) .( )− +
∞

∫0

    f(x)  =  [θ/(β+θ)][β/(β+θ)]x. 
Thus, x has a geometric distribution with parameter π = θ/(β+θ).  (This is the distribution of the number of 
tries until the first success of independent trials each with success probability 1-π.  Finally, we require the 
expected value of xi, which is E[x]  =  [θ/(β+θ)] x[β/(β+θ)]x=  β/θ.  Then, the required asymptotic 

covariance matrix is . 

x=
∞∑ 0

n
n

n
n

/
( / ) /

/
/

θ
β θ β

θ
βθ

2

2

1 20
0

0
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
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 The maximum likelihood estimator of θ/(β+θ) is is  
   /( )θ β + θ =  (1/ y )/[ x / y  + 1/ y ]  =  1/(1 +  x ). 
Its asymptotic variance is obtained using the variance of a nonlinear function 
         V  = [β/(β+θ)]2(θ2/n) + [-θ/(β+θ)]2(βθ/n)  =  βθ2/[n(β+θ)3]. 
The asymptotic variance could also be obtained as [-1/(1 + E[x])2]2Asy.Var[ x ].) 
 For part (c), we just note that γ = θ/(β+θ).  For a sample of observations on x, the log-likelihood 
would be   lnL = nlnγ + ln(1-γ)  xii

n
=∑ 1

   ∂lnL/dγ  =  n/γ - /(1-γ). xii
n
=∑ 1

A solution is obtained by first noting that at the solution, (1-γ)/γ  = x  =  1/γ  -  1.  The solution for γ is, thus, 
γ̂ =  1 / (1 + x ).Of course, this is what we found in part b., which makes sense. 

 For part (d)  f(y|x)  =  f x y
f x
( , )
( )

 = θ β β θ β
θ β

β θe y
x x

y x x− + + +( ) ( ) ( ) ( )
!

.
      

θ

y x y

  Cancelling terms and gathering 

the remaining like terms leaves f(y|x)  = (  so the density has the required form 

with λ = (β+θ).  The integral is .  This integral is a Gamma integral which equals 

Γ(x+1)/λx+1, which is the reciprocal of the leading scalar, so the product is 1.  The log-likelihood function is 

)[( ) ] / !( )β θ β θ β θ+ + − +y e xx y

{ }[ ] / !λ λx x e y d+ −
∞

∫1

0

  lnL  =  nlnλ - λ  + lnλ  - yii
n
=∑ 1

xii
n
=∑ 1

ln !xii
n
=∑ 1  

  ∂lnL/∂λ  =  ( + n)/λ  - . xii
n
=∑ 1

yii
n
=∑ 1

  ∂2lnL/∂λ2  =  -( + n)/λ2. xii
n
=∑ 1

Therefore, the maximum likelihood estimator of λ is (1 +   x )/ y  and the asymptotic variance, conditional on 

the xs is Asy.Var.  =  (λ2/n)/(1 +ˆ⎡ ⎤λ⎣ ⎦ x ) 

 Part (e.)  We can obtain f(y) by summing over x in the joint density.  First, we write the joint density 

as  .  The sum is, therefore, .  The sum is 

that of the probabilities for a Poisson distribution, so it equals 1.  This produces the required result.  The 
maximum likelihood estimator of θ and its asymptotic variance are derived from 

f x y e e y xy y x( , ) ( ) / != − −θ βθ β f y e e y xy y x
x

( ) ( ) / != − −
=

∞∑θ βθ β
0

    lnL  =  nlnθ - θ  yii
n
=∑ 1

    ∂lnL/∂θ  =  n/θ -  yii
n
=∑ 1

    ∂2lnL/∂θ2  =  -n/θ2. 
Therefore, the maximum likelihood estimator is 1/ y  and its asymptotic variance is θ2/n.  Since we found f(y) 
by factoring f(x,y) into f(y)f(x|y) (apparently, given our result), the answer follows immediately.  Just divide 
the expression used in part e. by f(y).  This is a Poisson distribution with parameter βy.  The log-likelihood 
function  and its first derivative are 
   lnL  =  -β  + lnyii

n
=∑ 1

xii
n
=∑ 1  + x yi ii

n
ln=∑ 1  - ln !xii

n
=∑ 1  

   ∂lnL/∂β  =  -  + /β, yii
n
=∑ 1

xii
n
=∑ 1

from which it follows that  ˆ /x yβ = .   
 
4.  The log-likelihood and its two first derivatives are 
  logL  =  nlogα + nlogβ + (β-1)  - α  log xii

n
=∑ 1

xii
n β
=∑ 1

  ∂logL/∂α  =  n/α -  xii
n β
=∑ 1
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  ∂logL/∂β  =  n/β + - α  log xii
n
=∑ 1

(log )x xi ii

n β
=∑ 1

Since the first likelihood equation implies that at the maximum, α̂ =  n / , one approach would be to 

scan over the range of β and compute the implied value of α.  Two practical complications are the allowable 
range of β and the starting values to use for the search. 

xii
n β
=∑ 1

 The second derivatives are 
  ∂2lnL/∂α2  =  -n/α2 
  ∂2lnL/∂β2  =  -n/β2 - α  (log )x xi ii

n 2
1

β
=∑

  ∂2lnL/∂α∂β =  - . (log )x xi ii
n β
=∑ 1

If we had estimates in hand, the simplest way to estimate the expected values of the Hessian would be to 
evaluate the expressions above at the maximum likelihood estimates, then compute the negative inverse.  
First, since the expected value of ∂lnL/∂α is zero, it follows that E[xi

β] = 1/α.  Now, 
   E[∂lnL/∂β]  =  n/β + E[ ] - αE[ ]= 0 log xii

n
=∑ 1

(log )x xi ii
n β
=∑ 1

as well.  Divide by n, and use the fact that every term in a sum has the same expectation to obtain 
   1/β + E[lnxi] - E[(lnxi)xi

β]/E[xi
β] = 0. 

Now, multiply through by E[xi
β] to obtain E[xi

β]  =  E[(lnxi)xi
β] - E[lnxi]E[xi

β] 
or       1/(αβ)  =  Cov[lnxi,xi

β].   ~ 
 
5.  As suggested in the previous problem, we can concentrate the log-likelihood over α.  From ∂logL/∂α = 0, 
we find that at the maximum, α = 1/[(1/n) ].  Thus, we scan over different values of β to seek the 

value which maximizes logL as given above, where we substitute this expression for each occurrence of α.  
Values of β and the log-likelihood for a range of values of β are listed and shown in the figure below.   

xii
n β
=∑ 1

  β           logL 
 0.1     -62.386 

 

 0.2     -49.175 
 0.3     -41.381 
 0.4     -36.051 
 0.5     -32.122 
 0.6     -29.127 
 0.7     -26.829 
 0.8     -25.098 
 0.9     -23.866 
 1.0     -23.101 
 1.05    -22.891 
 1.06    -22.863 
 1.07    -22.841 
 1.08    -22.823 
 1.09    -22.809 
 1.10    -22.800 
 1.11    -22.796 

  1.12    -22.797 
 1.2     -22.984 
 1.3     -23.693 
 
The maximum occurs at β = 1.11.  The implied value of α is 1.179.  The negative of the second derivatives 

matrix at these values and its inverse are  and . I α β
∧ ∧⎛

⎝⎜
⎞
⎠⎟ =

⎡

⎣
⎢

⎤

⎦
⎥,

. .
. .
2555 9 6506

9 6506 27 7552 I-1 α β
∧ ∧⎛

⎝⎜
⎞
⎠⎟
=

−
−
⎡

⎣
⎢

⎤

⎦
⎥,

. .
. .

04506 2673
2673 04148

The Wald statistic for the hypothesis that β = 1 is  W  =  (1.11 - 1)2/.041477 = .276.  The critical value for a 
test of size .05 is 3.84, so we would not reject the hypothesis. 
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 If β = 1, then  =  = 0.88496.  The distribution specializes to the geometric distribution 

if β = 1, so the restricted log-likelihood would be 

α̂ n ii
n/
=∑ 1

x

α
β

  logLr  =  nlogα - α  =  n(logα - 1) at the MLE. xii
n
=∑ 1

logLr at α = .88496 is -22.44435.  The likelihood ratio statistic is  -2logλ = 2(23.10068 - 22.44435)  = 1.3126. 
Once again, this is a small value.  To obtain the Lagrange multiplier statistic, we would compute 

  [ ]∂ ∂α ∂ ∂β
∂ ∂α ∂ ∂α∂β
∂ ∂α∂β ∂ ∂β

∂ ∂
∂ ∂

log / log / log / log /
log / log /

log /
log /

L L L L
L L

L
L

 − −
− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

−2 2 2

2 2 2

1

at the restricted estimates of α = .88496 and β = 1.  Making the substitutions from above, at these values, we 
would have 
  ∂logL/∂α  =  0 

  ∂logL/∂β  =  n + - log xii
n
=∑ 1

1
1x
x xii

n log
=∑ i   =  9.400342 

  ∂2logL/∂α2  =  − nx
2  =  -25.54955 

  ∂2logL/∂β2  =  -n - 1 2
1x
x xi ii

n (log )
=∑ =  -30.79486 

  ∂2logL/∂α∂β  =  =  -8.265. −
=∑ x xii

n log
1 i

The lower right element in the inverse matrix is .041477.  The LM statistic is, therefore, (9.40032)2.041477 = 
2.9095.  This is also well under the critical value for the chi-squared distribution, so the hypothesis is not 
rejected on the basis of any of the three tests.   
 
6.  a.  The full log likelihood is  logL  =  Σ log fyx(y,x|α,β). 
b.  By factoring the density, we obtain the equivalent  logL  =  Σ[ log fy|x (y|x,α,β)  +  log fx (x|α)] 
c.  We can solve the first order conditions in each case.  From the marginal distribution for x, 
   Σ ∂ log fx (x|α)/∂α  =  0   
provides a solution for α.  From the joint distribution, factored into the conditional plus the marginal, we have 
 
    Σ[ ∂log fy|x (y|x,α,β)/∂α  +  ∂log fx (x|α)/∂α   =  0 
    Σ[ ∂log fy|x (y|x,α,β)/∂β        =  0 
 
d.  The asymptotic variance obtained from the first estimator would be the negative inverse of the expected 
second derivative,  Asy.Var[a]  =  {[-E[Σ2∂ log fx (x|α)/∂α2]}-1.  Denote this Aαα

-1.   Now, consider the second 
estimator for α and β jointly.  The negative of the expected Hessian is shown below.  Note that the Aαα from 
the marginal distribution appears there, as the marginal distribution appears in the factored joint distribution. 
 

 
2 0ln

0 0
B B A B BALE
B B B B

+⎡ ⎤ ⎡⎡ ⎤∂
− = + =⎢ ⎥ ⎢⎢ ⎥′ ⎣ ⎦⎣ ⎦ ⎣⎛ ⎞⎛ ⎞

∂ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

αα αβ αα αα αβαα

βα ββ βα ββα α
β β

⎤
⎥
⎦

 

The asymptotic covariance matrix for the joint estimator is the inverse of this matrix.  To compare this to the 
asymptotic variance for the marginal estimator of α, we need the upper left element of this matrix.  Using the 
formula for the partitioned inverse, we find that this upper left element in the inverse is  
 
  [(Aαα+Bαα) - (BαβBββ

-1Bβα)]-1  =  [Aαα  +  (Bαα - BαβBββ
-1Bβα)]-1  

 
which is smaller than Aαα as long as the second term is positive. 
  
e.  (Unfortunately, this is an error in the text.)  In the preceding expression, Bαβ is the cross derivative.  Even if 
it is zero, the asymptotic variance from the joint estimator is still smaller, being [Aαα + Bαα]-1.  This makes 
sense.  If α appears in the conditional distribution, then there is additional information in the factored joint 
likelhood that is not in the marginal distribution, and this produces the smaller asymptotic variance. 
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7.   The log likelihood for the Poisson model is 
 
 LogL  =  -nλ + logλΣi yi - Σi log yi! 
 
The expected value of 1/n times this function with respect to the true distribution is 
 
 E[(1/n)logL]  =  -λ  +  logλ E0[ y ] – E0 (1/n)Σi logyi! 
 
The first expectation is λ0.  The second expectation can be left implicit since it will not affect the solution  
for λ - it is a function of the true λ0.  Maximizing this function with respect to λ produces the necessary 
condition 
 ∂E0 (1/n)logL]/∂λ  =  -1 + λ0/λ = 0 
 
which has solution λ = λ0 which was to be shown. 
 
8.    The log likelihood for a sample from the normal distribution is 
 
 LogL  =  -(n/2)log2π - (n/2)logσ2 – 1/(2σ2) Σi (yi - μ)2. 
 

E0 [(1/n)logL]  =  -(1/2)log2π - (1/2)logσ2 – 1/(2σ2) E0[(1/n) Σi (yi - μ)2]. 
 
The expectation term equals E0[(yi - μ)2]  =  E0[(yi - μ0)2] + (μ0 - μ)2  =  σ0

2 + (μ0 - μ)2 . Collecting terms, 
 
 E0 [(1/n)logL]  =  -(1/2)log2π - (1/2)logσ2 – 1/(2σ2)[ σ0

2 + (μ0 - μ)2] 
 
To see where this is maximized, note first that the term (μ0 - μ)2 enters negatively as a quadratic, so the 
maximizing value of μ is obviously μ0.  Since this term is then zero, we can ignore it, and look for the σ2 
that maximizes -(1/2)log2π - (1/2)logσ2 – σ0

2/(2σ2).  The –1/2 is irrelevant as is the leading constant, so we 
wish to minimize (after changing sign) logσ2 + σ0

2/σ2 with respect to σ2.  Equating the first derivative to 
zero produces 1/σ2 = σ0

2/(σ2)2 or σ2 = σ0
2, which gives us the result. 

 
9. The log likelihood for the classical normal regression model is 
 

LogL =  Σi -(1/2)[log2π + logσ2 + (1/σ2)(yi - xi′β)2] 
 
If we reparameterize this in terms of η = 1/σ and δ = β/σ, then after a bit of manipulation, 
 

LogL =  Σi -(1/2)[log2π - logη2 + (ηyi - xi′δ)2] 
 
The first order conditions for maximizing this with respect to η and δ are 
 
 ∂logL/∂η  =  n/η  -  Σi yi (ηyi - xi′δ)  =  0 
 
 ∂logL/∂δ  =              Σi xi (ηyi - xi′δ)  =  0 
 
Solve the second equation for δ, which produces δ  =  η (X′X)-1X′y  =  η b.  Insert this implicit solution 
into the first equation to produce n/η  =  Σi yi (ηyi - ηxi′b).  By taking η outside the summation and 
multiplying the entire expression by η,  we obtain n = η2 Σi yi (yi - xi′b) or η2  =  n/[Σi yi (yi - xi′b)].  This is 
an analytic solution for η that is only in terms of the data – b is a sample statistic.  Inserting the square root 
of this result into the solution for δ produces the second result we need.  By pursuing this a bit further, you 
canshow that the solution for η2 is just n/e′e from the original least squares regression, and the solution for 
δ is just b times this solution for η.  The second derivatives matrix is 
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∂2logL/∂η2  =  -n/η2  -  Σiyi
2 

 
∂2logL/∂δ ∂δ′  =  -Σi xixi′ 
 
∂2logL/∂δ ∂η  =    Σi xiyi. 

 
We’ll obtain the expectations conditioned on X.  E[yi|xi] is xi′β from the original model, which equals 
xi′δ/η.  E[yi

2|xi]  =  1/η2 (δ′xi)2 + 1/η2.  (The cross term has expectation zero.)  Summing over observations 
and collecting terms, we have, conditioned on X, 
 

E[∂2logL/∂η2|X] =  -2n/η2  -  (1/η2)δ′X′Xδ 
 
E[∂2logL/∂δ ∂δ′|X]  =  -X′X 
 
E[∂2logL/∂δ ∂η|X]  =    (1/η)X′Xδ 

 
The negative inverse of the matrix of expected second derivatives is 
 

 
1' (1/ ) '

. [ , ] 2(1/ ) ' ' (1/ )[2 '

η

η η

−−⎡ ⎤
= ⎢ ⎥

− +⎢ ⎥⎣ ⎦
Asy Var h

n

X X X X
d

X X X X

δ

δ δ δ
 

 
(The off diagonal term does not vanish here as it does in the original parameterization.) 
 
10.   The first derivatives of the log likelihood function are ∂logL/∂μ = -(1/2σ2) Σi -2(yi - μ).  Equating this 
to zero produces the vector of means for the estimator of μ.  The first derivative with respect to σ2 is 
 
∂logL/∂σ2  =  -nM/(2σ2) + 1/(2σ4)Σi (yi - μ)′(yi - μ).  Each term in the sum is Σm (yim - μm)2.  We already 
deduced that the estimators of μm are the sample means.  Inserting these in the solution for σ2 and solving 
the likelihood equation produces the solution given in the problem.  The second derivatives of the log 
likelihood are 
 
 ∂2logL/∂μ∂μ′  =  (1/σ2)Σ i -I 
 
 ∂2logL/∂μ∂σ2  =  (1/2σ4) Σi -2(yi - μ)  
 
 ∂2logL/∂σ2∂σ2  =  nM/(2σ4) - 1/σ6 Σi (yi - μ)′(yi - μ) 
 
The expected value of the first term is (-n/σ2)I.  The second term has expectation zero.  Each term in the 
summation in the third term has expectation Mσ2, so the summation has expected value nMσ2.  Adding 
gives the expectation for the third term of -nM/(2σ4).  Assembling these in a block diagonal matrix, then 
taking the negative inverse produces the result given earlier.   
 For the Wald test, the restriction is 
 
 H0:  μ - μ0i  =  0. 
 
The unrestricted estimator of μ is x .  The variance of x  is given above, so the Wald statistic is simply 
( x  - μ0i )′ Var[( x  - μ0i )]-1( x  - μ0i ).  Inserting the covariance matrix given above produces the suggested 
statistic. 
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11.  The asymptotic variance of the MLE is, in fact, equal to the Cramer-Rao Lower Bound for the variance 
of a consistent, asymptotically normally distributed estimator, so this completes the argument. 
 In example 4.9, we proposed a regression with a gamma distributed disturbance, 
 
    yi = α + xi′β + εi 
where, 
    f(εi)  =  [λP/Γ(P)] εi

P-1 exp(-λεi), εi > 0, λ > 0, P > 2. 
 
(The fact that εi is nonnegative will shift the constant term, as shown in Example 4.9.  The need for the 
restriction on P will emerge shortly.)  It will be convenient to assume the regressors are measured in 
deviations from their means, so Σixi = 0.   The OLS estimator of β remains unbiased and consistent in this 
model, with variance 
 
    Var[b|X] = σ2(X′X)-1 
 
where σ2 = Var[εi|X] = P/λ2.  [You can show this by using gamma integrals to verify that E[εi|X] = P/λ and 
E[εi

2|X] = P(P+1)/λ2.  See B-39 and (E-1) in Section E2.3.  A useful device for obtaining the variance is 
Γ(P) = (P-1)Γ(P-1).]  We will now show that in this model, there is a more efficient consistent estimator of 
β.  (As we saw in Example 4.9, the constant term in this regression will be biased because E[εi|X] = P/λ; a 
estimates α+P/λ.  In what follows, we will focus on the slope estimators. 
 The log likelihood function is 
    Ln L =  

1
ln ln ( ) ( 1) lnn

i ii
P P P

=
λ − Γ + − ε − λε∑  

The likelihood equations are 
 
    ∂ lnL/∂α   =   Σi [-(P-1)/εi + λ] = 0, 
    ∂ lnL/∂β   =   Σi [-(P-1)/εi + λ]xi = 0, 
    ∂ lnL/∂λ    =   Σi [P/λ - εi] = 0, 
    ∂ lnL/∂P    =   Σi [lnλ - ψ(P) - εi] = 0. 
 
The function ψ(P) = dlnΓ(P)/dP is defined in Section E2.3.)  To show that these expressions have 
expectation zero, we use the gamma integral once again to show that E[1/εi] = λ/(P-1).  We used the result 
E[lnεi] = ψ(P)-λ in Example 15.5.  So show that E[∂lnL/∂β] = 0, we only require E[1/εi] = λ/(P-1) because 
xi and εi are independent.  The second derivatives and their expectations are found as follows:  Using the 
gamma integral once again, we find E[1/εi

2] = λ2/[(P-1)(P-2)].  And, recall that Σixi = 0.  Thus, conditioned 
on X, we have 
  -E[∂2lnL/∂α2]     =  E[Σi (P-1)(1/εi

2)] = nλ2/(P-2), 

  -E[∂2lnL/∂α∂β]  =  E[Σi (P-1)(1/εi
2)xi] = 0, 

  -E[∂2lnL/∂α∂λ]  =  E[Σi (-1)]  = -n, 
  -E[∂2lnL/∂α∂P] =  E[Σi (1/εi)]  = nλ/(P-1), 
  -E[∂2lnL/∂β∂β′] =  E[Σi (P-1)(1/εi

2)xixi′] = Σi [λ2/(P-2)]xixi′  = [λ2/(P-2)](X′X), 
  -E[∂2lnL/∂λ∂β]  =  E[Σi (-1)xi]  =  0, 
  -E[∂2lnL/∂P∂β] =  E[Σi (1/εi)xi]  =  0, 
  -E[∂2lnL/∂λ2]  =  E[Σi (P/λ2)]  = nP/λ2, 
  -E[∂2lnL/∂λ∂P]  =  E[Σi (1/λ)]  = n/λ, 
  -E[∂2lnL/∂P2] =  E[Σi ψ′(P)]  = nψ′(P). 
 
Since the expectations of the cross partials witth respect to β and the other parameters are all zero, it 
follows that the asymptotic covariance matrix for the MLE of β is simply 
 
   Asy.Var[ ˆ

MLEβ ]  =  {-E[∂2lnL/∂β∂β′]}-1  =  [(P-2)/λ2](X′X)-1. 
 
Recall, the asymptotic covariance matrix of the ordinary least squares estimator is 
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   Asy.Var[b]  =   [P/λ2](X′X)-1. 
 
(Note that the MLE is ill defined if P is less than 2.)  Thus, the ratio of the variance of the MLE of any 
element of β to that of the corresponding element of b is (P-2)/P which is the result claimed in Example 
4.9. 
 
 
Applications 
 
1. a.  For both probabilities, the symmetry implies that 1 – F(t) = F(-t).  In either model, then, 
 
   Prob(y=1) = F(t) and Prob(y=0) = 1 – F(t) = F(-t). 
 
These are combined in Prob(Y=y) = F[(2yi-1)ti] where ti = xi′β.  Therefore,  
 
   ln L = Σi ln F[(2yi-1)xi′β] 
 

b.    ∂lnL/∂β = 
1

[(2 1) ] (2 1)
[(2 1) ]

n i i
i ii

i i

f y y
F y=

′−
−

′−∑ x x
x
β
β

= 0 

where f[(2yi-1)xi′β] is the density function.  For the logit model, f = F(1-F).  So, for the logit model, 
  ∂lnL/∂β = = 0 

1
{1 [(2 1) ]}(2 1)n

i i i ii
F y y

=
′− − −∑ x xβ

  
Evaluating this expression for yi = 0, we get simply –F(xi′β)xi.  When yi = 1, the term is  
[1- F(xi′β)]xi.  It follows that both cases are [yi - F(xi′β)]xi, so the likelihood equations for the logit model 
are 
  ∂lnL/∂β = = 0. 

1
[ ( )]n

i ii
y

=
′− Λ∑ x xβ i

 
For the probit model, F[(2yi-1)xi′β] = Φ[(2yi-1)xi′β] and f[(2yi-1)xi′β] = φ[(2yi-1)xi′β], which does not 
simplify further, save for that the term 2yi inside may be dropped since φ(t) = φ(-t).  Therefore, 
 

  ∂lnL/∂β = 
1

[(2 1) ] (2 1)
[(2 1) ]

n i i
i ii

i i

y y
y=

′φ −
−

′Φ −∑ x x
x
β
β

= 0 

 
c.  For the logit model, the result is very simple. 
 
  ∂2lnL/∂β∂β′= 

1
( )[1 ( )]n

i ii= i′ ′− Λ − Λ∑ x xβ β x . 
 
For the probit model, the result is more complicated.  We will use the result that 
 
  dφ(t)/dt = -tφ(t). 
 
It follows, then, that d[φ(t)/Φ(t)]/dt = [-φ(t)/Φ(t)][t + φ(t)/Φ(t)].  Using this result directly, it follows that 
 

   ∂2lnL/∂β∂β′= 2
1

[(2 1) ] [(2 1) ](2 1) (2 1)
[(2 1) ] [(2 1) ]

n i i i i
i i i ii

i i i i

y yy y
y y=

′ ′⎛ ⎞⎛ ⎞φ − φ −
i′ ′− −⎜ ⎟⎜ ⎟′ ′Φ − Φ −⎝ ⎠⎝ ⎠

∑ x xx x
x x
β β

β +
β β

− x = 0 

 
This actually simplifies somewhat because (2yi-1)2 = 1 for both values of yi and [(2 1) ]i iy ′φ − x β = ( )i′φ x β  
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d.  Denote by H the actual second derivatives matrix derived in the previous part.  Then, Newton’s method 
is 

   { } 1 ˆln [ ( )]ˆ ˆ ˆ( 1) ( ) ( ) ˆ ( )
L jj j j

j

− ⎡ ⎤∂⎡ ⎤+ = − ⎢ ⎥⎣ ⎦ ∂⎣ ⎦
H β

β β β
β

 

 
where the terms on the right hand side indicate first and second derivatives evaluated at the “previous” 
estimate of β. 
 
e.  The method of scoring uses the expected Hessian instead of the actual Hessian in the iterations.  The 
methods are the same for the logit model, since the Hessian does not involve yi.  The methods are different 
for the probit model, since the expected Hessian does not equal the actual one.  For the logit model 
 

 -[E(H)]-1 =  { } 1

1
( )[1 ( )]n

i ii i

−

=
′ ′Λ − Λ∑ x xβ β x  

 
For the probit model, we need first to obtain the expected value.  Do obtain this, we take the expected 
value, with Prob(y=0) = 1 - Φ and Prob(y=1) = Φ.  The expected value of the ith term in the negative 
hessian is the expected value of the term, 
 

  
[(2 1) ] [(2 1) ](2 1)
[(2 1) ] [(2 1) ]

i i i i
i i i

i i i i

y yy
y y

′ ′⎛ ⎞⎛φ − φ −
i

⎞
′ ′−⎜ ⎟⎜′ ′Φ − Φ −⎝ ⎠⎝

x xx x
x x
β β

β +
β β ⎟

⎠
x  

 
This is 
 

 
[ ] [ ][ ]
[ ] [ ]

i i
i i i i′x x

i i

′ ′⎛ ⎞⎛ ⎞φ φ′ ′Φ − − +⎜ ⎟⎜ ⎟′ ′Φ − Φ −⎝ ⎠⎝ ⎠

x xx x
x x
β β

β β +
β β

[ ] [ ][ ]
[ ] [ ]

i i
i i

i i

′ ′⎛ ⎞⎛ ⎞φ φ
i i′ ′ ′Φ ⎜ ⎟⎜ ⎟′ ′Φ Φ⎝ ⎠⎝ ⎠

x xx x
x x
β β

β β +
β β

x x  

 

 
[ ] [ ][ ]
[ ] [ ]

i i
i i i i

i i

′ ′⎛ ⎞φ φ′ ′ ′= φ −⎜ ⎟′ ′Φ − Φ⎝ ⎠

x xx x + x x
x x
β β

β β + β +
β β i′x  
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( )
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2

2
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[ ] [ ]

1 1[ ]
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i i

i i

i i
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⎛ ⎞
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x

x
 

 
e.   
?==================================================== 
? Application 16.1 
?==================================================== 
Namelist ; x = one,age,educ,hsat,female,married $ 
LOGIT ; Lhs = Doctor ; Rhs = X $ 
Calc ; L1 = logl $ 
+---------------------------------------------+ 
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| Binary Logit Model for Binary Choice        | 
| Dependent variable               DOCTOR     | 
| Number of observations            27326     | 
| Log likelihood function       -16405.94     | 
| Number of parameters                  6     | 
| Info. Criterion: AIC =          1.20120     | 
| Info. Criterion: BIC =          1.20300     | 
| Restricted log likelihood     -18019.55     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Characteristics in numerator of Prob[Y = 1] 
 Constant|    1.82207669       .10763712    16.928   .0000 
 AGE     |     .01235692       .00124643     9.914   .0000   43.5256898 
 EDUC    |    -.00569371       .00578743     -.984   .3252   11.3206310 
 HSAT    |    -.29276744       .00686076   -42.673   .0000   6.78542607 
 FEMALE  |     .58376753       .02717992    21.478   .0000    .47877479 
 MARRIED |     .03550015       .03173886     1.119   .2634    .75861817 
 
f.   
Matr ; bw = b(5:6) ; vw = varb(5:6,5:6) $ 
Matrix ; list ; WaldStat = bw'<vw>bw $ 
Calc ; list ; ctb(.95,2) $ 
LOGIT ; Lhs = Doctor ; Rhs = One,age,educ,hsat $ 
Calc ; L0 = logl $ 
Calc ; List ; LRStat = 2*(l1-l0) $ 
Matrix WALDSTAT has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|  461.43784 
--> Calc ; list ; ctb(.95,2) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =      5.991465 
--> Calc ; L0 = logl $ 
--> Calc ; List ; LRStat = 2*(l1-l0) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 LRSTAT  =    467.336374 
Logit ; Lhs = Doctor ; Rhs = X ; Start = b,0,0 ; Maxit = 0 $ 
+---------------------------------------------+ 
| Binary Logit Model for Binary Choice        | 
| Maximum Likelihood Estimates                | 
| Model estimated: May 17, 2007 at 11:49:42PM.| 
| Dependent variable               DOCTOR     | 
| Weighting variable                 None     | 
| Number of observations            27326     | 
| Iterations completed                  1     | 
| LM Stat. at start values       466.0288     | 
| LM statistic kept as scalar    LMSTAT       | 
| Log likelihood function       -16639.61     | 
| Number of parameters                  6     | 
| Info. Criterion: AIC =          1.21830     | 
|   Finite Sample: AIC =          1.21830     | 
| Info. Criterion: BIC =          1.22010     | 
| Info. Criterion:HQIC =          1.21888     | 
| Restricted log likelihood     -18019.55     | 
| McFadden Pseudo R-squared      .0765802     | 
| Chi squared                    2759.883     | 
| Degrees of freedom                    5     | 
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| Prob[ChiSqd > value] =         .0000000     | 
| Hosmer-Lemeshow chi-squared =  23.44388     | 
| P-value=  .00284 with deg.fr. =       8     | 
+---------------------------------------------+ 
 
 
g.   The restricted log likelihood given with the initial results equals -18019.55.  This is the log 
likelihood for a model that contains only a constant term.  The log likelihood for the model is  
-16405.94.  Twice the difference is about 3,200, which vastly exceeds the critical chi squared 
with 5 degrees of freedom.  The hypothesis would be rejected. 
 
 
2.  We used LIMDEP to fit the cost frontier. The dependent variable is log(Cost/Pfuel).  The regressors are 
a constant, log(Pcapital/Pfuel), log(Plabor/Pfuel), logQ and log2Q.  The Jondrow measure was then 
computed and plotted against output.  There does not appear to be any relationship, though the weak 
relationship such as it is, is indeed, negative. 
+---------------------------------------------+ 
| Limited Dependent Variable Model - FRONTIER | 
| Dependent variable                  LCF     | 
| Number of observations              123     | 
| Log likelihood function        66.86502     | 
| Variances: Sigma-squared(v)=       .01185   | 
|            Sigma-squared(u)=       .02233   | 
|            Sigma(v)        =       .10884   | 
|            Sigma(u)        =       .14944   | 
| Sigma = Sqr[(s^2(u)+s^2(v)]=       .18488   | 
| Stochastic Cost Frontier, e=v+u.            | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Primary Index Equation for Model 
 Constant    -7.494211759       .30737742  -24.381   .0000 
 LPK       .5531289074E-01  .70211904E-01     .788   .4308     .88666047 
 LPL          .2605889758   .67708437E-01    3.849   .0001     5.5808828 
 LQ           .4109789313   .29495035E-01   13.934   .0000     8.1794715 
 LQ2       .6058235980E-01  .43732083E-02   13.853   .0000     35.112527 
          Variance parameters for compound error 
 Lambda       1.373117163       .33353523    4.117   .0000 
 Sigma        .1848750589   .28257115E-01    6.543   .0000 
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Chapter 17 
 

Simulation Based Estimation and 
Inference 
 

Exercises 
 
1.  Exponential:  The pdf is f(x) = θexp(-θx).  The CDF is  

 

 0

1 1( ) exp( ) exp( ) exp( 0) 1 exp( ).
x

F x t dt x x⎡ ⎤⎛ ⎞= θ −θ = θ − −θ − − −θ = − −θ⎜ ⎟⎢ ⎥θ θ⎝ ⎠⎣ ⎦
∫  

We would draw observations from the U(0,1) population, say Fi, and equate these to F(xi).  Inverting the 
function, we find that 1-Fi = exp(-θxi), or –(1/θ)ln(1-Fi) = xi.  If xi has an exponential density, then the density 
of yi = xi

P is 
Weibull.  If the survival function is S(x) = λpexp[-(λx)p], then we may equate random draws from the uniform 
distribution, Si to this function (a draw of Si is the same as a draw of Fi = 1-Si).  Solving for xi, we find 
 lnSi = ln(λp) – (λx)p, so xi = (1/λ)[ln(λp) – lnSi]1/p. 
 
2.  We will need a bivariate sample on x and y to compute the random variable, then average the draws on it.  
The precise method of using a Gibbs sampler to draw this bivaraite sample is shown in Example 18.5.  Once 
the bivariate sample of (x,y) is drawn, a large number of observations on [x2exp(y)+y2exp(x)] is computed and 
averaged.  As noted there, the Gibbs sampler is not much of a simplification for this particular problem.  It is 
simple to draw a sample dircectly from a bivariate normal distribution.  Here is a program that does the 
simulation and plots the estimate of the function 
 
Calc   ; Ran(12345) $ 
Sample ; 1-1000$ 
Create ; xf=rnn(0,1) ; yfb=rnn(0,1) $ 
Matrix ; corr=init(100,1,0) ; function=corr $ 
Calc   ; i=0 $ 
Proc 
Calc   ; i=i+1 $ 
Matrix ; corr(i)=ro $ 
Matrix ; c=[1/ro,1] ; c=chol(c) $ 
Create ; yf = c(2,1)*xf + c(2,2)*yfb $ 
Create ; fr=xf^2*exp(yf)+yf^2*exp(xf) $ 
Calc   ; ef = xbr(fr) ; ro=ro+.02 $ 
Matrix ; function(i)=ef $ 
Endproc $ 
Calc   ; ro=-.99 $ 
Execute; n=100 $ 
Mplot  ; Lhs = corr ; Rhs = Function ; Fill  
       ; Grid ; Endpoints = -1,1 
       ; Title=E[x^2*exp(y)+y^2*exp(x) | rho] $ 
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Application 
 
?================================================================ 
? Application 17.1.  Monte Carlo Simulation 
?================================================================ 
? Set seed of RNG for replicability 
Calc ; Ran(123579) $ 
? Sample size is 50.  Generate x(i) and z(i) held fixed 
Sample ; 1 - 50 $ 
Create ; xi = rnn(0,1) ; zi = rnn(0,1) $ 
Namelist ; X = one,xi,zi ; X0 = one,xi $ 
? Moment Matrices 
Matrix ; XXinv = <X'X> ; X0X0inv = <X0'X0> $ 
Matrix ; Waldi = init(1000,1,0) $ 
Matrix ; LMi = init(1000,1,0) $ 
 
?**************************************************************** 
? Procedure studies the LM statistic 
?**************************************************************** 
Proc = LM (c) $ 
? Three kinds of disturbances 
Create ?; Eps = Rnt(5) ? Nonnormal distribution 
       ; vi=exp(.2*xi) ; eps = vi*rnn(0,1) ? Heteroscedasticity 
       ?;eps= Rnn(0,1) ? Standard normal distribution 
       ; y = 0 + xi + c*zi +eps $ 
Matrix ; b0 = X0X0inv*X0'y $ 
Create ; e0 = y - X0'b0 $ 
Matrix ; g = X'e0 $ 
Calc   ; lmstat = qfr(g,xxinv)/(e0'e0/n) ; i = i + 1 $ 
Matrix ; Lmi (i) = lmstat $ 
EndProc $ 
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Calc ; i = 0 ; gamma = -1 $ 
Exec ; Proc=LM(gamma) ; n = 1000 $ 
samp;1-1000$ 
create;LMv=lmi $ 
create;reject=lmv>3.84$ 
Calc  ; List ; Type1 = xbr(reject) ; pwr = 1-Type1 $ 
 
?**************************************************************** 
? Procedure studies the Wald statistic 
?**************************************************************** 
Proc = Wald(c) $ 
Create ; if(type=1)Eps = Rnn(0,1) ? Standard normal distribution 
       ; if(type=2)vi=exp(.2*xi)   ? eps = vi*rnn(0,1) ? Heteroscedasticity 
       ; if(type=3)eps= Rnt(5)     ? Nonnormal distribution  
       ; y = 0 + xi + c*zi +eps $ 
Matrix ; b0=XXinv*X'y $ 
Create ; e0=y-X'b0$ 
Calc   ; ss0 = e0'e0/(47)  
       ; v0 = ss0*xxinv(3,3) 
       ; wald0=(b0(3))^2/v0 
       ; i=i+1 $ 
Matrix ; Waldi(i)=Wald0 $ 
EndProc $ 
? Set the values for the simulation 
Calc ; i = 0 ; gamma = 0 ; type=1 $ 
Sample ; 1-50 $ 
Exec ; Proc=Wald(gamma) ; n = 1000 $ 
samp;1-1000$ 
create;Waldv=Waldi $ 
create;reject=Waldv > 3.84$ 
Calc  ; List ; Type1 = xbr(reject) ; pwr = 1-Type1 $ 
 

To carry out the simulation, execute the procedure for different values of “gamma” and 
“type.”  Summarize the results with a table or plot of the rejection probabilities as a 
function of gamma. 
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Chapter 18 
 

Bayesian Estimation and Inference 
 

Exercise 
 
a.  The likelihood function is 
 

L(y|λ) = 
1 1 1

exp( ) 1( | ) exp( )
( 1) ( 1

i
i i

y
n n ny

ii i i
i i

f y n
y y
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= = =
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b.  The posterior is 
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The product of factorials will fall out.  This leaves 
 

 

( )

( )

1

0

1

1

0

1

1

0

exp( ) (1/ )( | ,..., )
exp( ) (1/ )

exp( )

exp( )

exp( )

exp( )

i i

i i

i i

i i

y

n y

y

y

ny

ny

np y y
n d

n

n d

n

n d

∞

−

∞ −

−

∞ −

− λ λ λ
λ =

− λ λ λ λ

− λ λ
=

− λ λ λ

− λ λ
=

− λ λ λ

=

∫

∫

∫

 

 

 

                        

                        

                        

Σ

Σ

Σ

Σ

1exp( ) .
( )

ny nyn n
ny

−− λ λ 

Γ

 

 
where we have used the gamma integral at the last step.  The posterior defines a two parameter gamma 
distribution, G(n, ny ). 
 
c.  The estimator of λ is the mean of the posterior.  There is no need to do the integration.  This falls simply 
out of the posterior density, E[λ|y] = ny /n = y . 
 
d.  The posterior variance also drops out simply; it is ny /n2 = y /n. 
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Application 
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The MLE is obtained by setting ∂lnL(θ|y)/∂θ = Σi [Fi/θ - (Ki-Fi)/(1-θ)] = 0.  Multiply both sides by θ(1-θ) 
to obtain 
 
Σi [(1-θ)Fi - θ (Ki-Fi)] = 0  
 
A line of algebra reveals that the solution is θ = (ΣiFi)/(ΣiKi) = 0.651596. 
 

b.  The posterior density is   
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This simplifies considerably.  The combinatorials and gamma functions fall out, leaving 
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The denominator is a beta integral, so the posterior density is 
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The denominator simplifies slightly; 
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c-e.  The posterior distribution is a beta distribution with parameters a*=(a+ΣiFi) and b*=[b+Σi(Ki-Fi)]. 
The mean of this beta random variable is a*/(a*+b*) = (a+ΣiFi)/(a+b+ΣiKi).  In the data, Σi = 49 and ΣiKi = 
75.  For the values given, the posterior means are  
 (a=1,b=1): Result  =       .647668 
 (a=2,b=2): Result  =       .643939 
 (a=1,b=2): Result  =       .639386 
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Chapter 19 
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Serial Correlation 
 

Exercises 
 
1.  For the first order autoregressive model, the autocorrelation is ρ.  Consider the first difference, vt =  
εt - εt-1  which has Var[vt] =  2Var[εt] - 2Cov[(εt,εt-1)]  =  2σu

2[1/(1 - ρ2)  -  ρ/(1 - ρ2)]  =  2σu
2/(1 + ρ) and 

Cov[vt,vt-1] = 2Cov[εt,εt-1] - Var[εt] - Cov[εt,εt-1] = σu
2[1/(1 - ρ2)][2ρ - 1 - ρ2]  =  σu

2[(ρ - 1)/(1 + ρ)].  
Therefore, the autocorrelation of the differenced process is Cov[vt,vt-1] / Var[vt]  =  (ρ - 1) / 2.  As the figure 
below on the left shows, first differencing reduces the absolute value of the autocorrelation coefficient when ρ 
is greater than 1/3.  For economic data, this is likely to be fairly common. 

 

   
 

For the moving average process, the first order autocorrelation is Cov[(εt,εt-1)]/Var[εt]  =  -λ/(1 + λ2).  To 
obtain the autocorrelation of the first difference, write εt - εt-1  = ut - (1 + λ)ut-1 + λut-2 and εt-1 - εt-2 =  
ut-1 - (1 + λ)ut-2 + λut-3.  The variance of the difference is Var[εt - εt-1] = σu

2[(1 + λ)2 + (1 + λ2)].  The 
covariance can be found by taking the expected product of terms with equal subscripts.  Thus, Cov[εt - εt-1,εt-1 
- εt-2] = -σu

2(1 + λ)2.  The autocorrelation is Cov[εt - εt-1,εt-1 - εt-2]/Var[εt - εt-1]   =  - (1 + λ)2/[(1 + λ)2 + (1 + 
λ2)].  A plot of the relationship between the differenced and undifferenced series is shown in the right panel 
above.  The horizontal axis plots the autocorrelation of the original series.  The values plotted are the absolute 
values of the difference between the autocorrelation of the differenced series and the original series.  The 
results are similar to those for the AR(1) model.  For most of the range of the autocorrelation of the original 
series, differencing increases autocorrelation.  But, for most of the range of values that are economically 
meaningful, differencing reduces autocorrelation.  
 
2.  Derive the disturbance covariance matrix for the model yt  =  β′xt + εt,   εt  =  ρεt-1 + ut - λut-1.  What 
parameter is estimated by the regression of the ordinary least squares residuals on their lagged values? 
 Solve the disturbance process in its moving average form.  Write the process as εt - ρεt-1 = ut -  λut-1  
or, using the lag operator,   εt(1 - ρL) = ut - λut-1 or εt  =  ut/(1 - ρL)  -  λut-1/(1 - ρL). After multiplying these 
out, we obtain εt   =  ut + ρut-1 + ρ2ut-2  + ρ3ut-3 + ... - λut-1 - ρλut-2 - ρ2λut-3 - ... 
   =  ut + (ρ-λ)ut-1 + ρ(ρ-λ)ut-2 + ρ2(ρ-λ)ut-3 + ... 
Therefore, Var[εt] =  σu

2(1 + (ρ-λ)2)(1 + ρ2 + ρ4 + ...)  =  σu
2(1 + (ρ-λ)2/(1 - ρ2)) 

   =  σu
2(1 + λ2 - 2ρλ)/(1 - ρ2) 

  Cov[εt,εt-1]  =  ρVar[εt-1] + Cov[εt-1,ut] - λCov[εt-1,ut-1]. 
To evaluate this expression, write 

 122



  εt-1  =  ut-1 + (ρ-λ)ut-2 + ρ(ρ-λ)ut-3 + ρ2(ρ-λ)ut-4+ ... 
Therefore, the middle term is zero and the third is simply λσu

2.  Thus, 
  Cov[εt,εt-1] = σu

2{[ρ(1 + λ2 - 2ρλ)]/(1 - ρ2)  - λ]} = σu
2[(ρ - λ)(1 - λρ)/(1 - ρ2)] 

For lags greater than 1,   Cov[εt,εt-j] = ρCov[εt-1,εt-j] + Cov[εt-j,ut] - λCov[εt-j,ut-1]. 
Since εt-j involves only us up to its current period, εt-j is uncorrelated with ut and ut-1 if j is greater than 1.  
Therefore, after the first lag, the autocovariances behave in the familiar fashion, Cov[εt,εt-j]  =  ρCov[εt,εt-j+1] 
The autocorrelation coefficient of the residuals estimates Cov[εt,εt-1]/Var[εt]  =  (ρ - λ)(1 - ρλ)/(1 + λ2 - 2ρλ).  
 
3.  Since the regression contains a lagged dependent variable, we cannot use the Durbin-Watson statistic 
directly.  The h statistic in (15-34) would be  h = (1 - 1.21/2)[21 / (1 - 21(.182)]1/2  =  3.201.  The 95% critical 
value from the standard normal distribution for this one-tailed test would be 1.645.  Therefore, we would 
reject the hypothesis of no autocorrelation.    
 
4.  It is commonly asserted that the Durbin-Watson statistic is only appropriate for testing for first order 
autoregressive disturbances.  What combination of the coefficients of the model is estimated by the 
Durbin-Watson statistic in each of the following cases:  AR(1), AR(2), MA(1)?  In each case, assume that the 
regression model does not contain a lagged dependent variable.  Comment on the impact on your results of 
relaxing this assumption. 
 In each case,  plim d  =  2 - 2ρ1  where ρ1  =  Corr[εt,εt-1].  The first order autocorrelations are as 
follows: AR(1):  ρ  (see (15-9))  and AR(2):  θ1/(1 - θ2).   For the AR(2), a proof is as follows:  First, εt = θ1εt-1 
+ θ2εt-2 + ut.  Denote Var[εt] as c0 and Cov[εt,εt-1] as c1.  Then, it follows immediately that c1 =  θ1c0 + θ2c1 
since ut is independent of εt-1.  Therefore ρ1  =  c1/c0  =  θ1/(1 - θ2).  For the MA(1):  -λ / (1 + λ2)  (See 
(15-43)).  To prove this, write εt  =  ut - λut-1.  Then, since the us are independent, the result follows just by 
multiplying out ρ1 = Cov[εt,εt-1]/Var[εt]  =  -λVar[ut-1]/{Var[ut] + λ2Var[ut-1]}  =  -λ/(1 + λ2).  
 
 

Applications 
 
1.  Phillips Curve 
 
--> date;1950.1$ 
--> peri;1950.1-2000.4$ 
--> crea;dp=infl-infl[-1]$ 
--> crea;dy=loggdp-loggdp[-1]$ 
--> peri;1950.3-2000.4$ 
--> regr;lhs=dp;rhs=one,unemp$;ar1;res=u$ 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = DP       Mean=  -.1926996283E-01, S.D.=   2.818214558     | 
| Model size: Observations =     202, Parameters =   2, Deg.Fr.=    200 | 
| Residuals:  Sum of squares= 1592.321197    , Std.Dev.=        2.82163 | 
| Fit:        R-squared=  .002561, Adjusted R-squared =         -.00243 | 
| Model test: F[  1,    200] =     .51,    Prob value =          .47449 | 
| Diagnostic: Log-L =   -495.1583, Restricted(b=0) Log-L =    -495.4173 | 
|             LogAmemiyaPrCrt.=    2.084, Akaike Info. Crt.=      4.922 | 
| Autocorrel: Durbin-Watson Statistic =   2.82755,   Rho =      -.41378 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .4918922148       .74047944     .664   .5073 
 UNEMP    -.9013159906E
--> peri;1951.2-2000.4$ 

-01      .12578616    -.717   .4745     5.6712871 

--> regr;lhs=u;rhs=one,u[-1],u[-2]$ 
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+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = U        Mean=  -.3890391012E-01, S.D.=   2.799476915     | 
| Model size: Observations =     199, Parameters =   3, Deg.Fr.=    196 | 
| Residuals:  Sum of squares= 1079.052269    , Std.Dev.=        2.34635 | 
| Fit:        R-squared=  .304618, Adjusted R-squared =          .29752 | 
| Model test: F[  2,    196] =   42.93,    Prob value =          .00000 | 
| Diagnostic: Log-L =   -450.5769, Restricted(b=0) Log-L =    -486.7246 | 
|             LogAmemiyaPrCrt.=    1.721, Akaike Info. Crt.=      4.559 | 
| Autocorrel: Durbin-Watson Statistic =   1.99273,   Rho =       .00363 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant -.5048615289E-01      .16633422    -.304   .7618 
 U[-1]       -.5946344724   .65920584E-01   -9.020   .0000 -.10234931E-01 
 U[-2]       -.3824653303   .65904378E-01   -5.803   .0000 -.14370453E-01 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
--> calc;list;lm=n*rsqrd$ 
    LM      =  .60618960968412850D+02 
+---------------------------------------------+ 
| AR(1) Model:     e(t) = rho * e(t-1) + u(t) | 
| Initial value of rho       =        -.41378 | 
| Maximum iterations         =            100 | 
| Method = Prais - Winsten                    | 
| Iter=  1, SS=   1299.275, Log-L=-474.710175 | 
| Final value of Rho    =            -.413779 | 
| Iter=  1, SS=   1299.275, Log-L=-474.710175 | 
| Durbin-Watson:   e(t) =            2.827557 | 
| Std. Deviation:  e(t) =            2.799716 | 
| Std. Deviation:  u(t) =            2.548799 | 
| Durbin-Watson:   u(t) =            2.340706 | 
| Autocorrelation: u(t) =            -.170353 | 
| N[0,1] used for significance levels         | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .4704274598       .47671946     .987   .3237 
 UNEMP    -.8709854633E-01  .80962277E-01   -1.076   .2820     5.6712871 
 RHO         -.4137785986   .64213081E-01   -6.444   .0000 
 
Regression results are almost unchanged.  Autocorrelation of transformed residuals is -.17, less than -.41 in 
original model. 
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2.   (Improved Phillips curve model)  
 
--> crea;newecon=dmy(1974.1,2000.4)$ 
--> regr;lhs=dp;rhs=one,unemp,newecon;plot$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = DP       Mean=  -.1926996283E-01, S.D.=   2.818214558     | 
| Model size: Observations =     202, Parameters =   3, Deg.Fr.=    199 | 
| Residuals:  Sum of squares= 1586.260338    , Std.Dev.=        2.82332 | 
| Fit:        R-squared=  .006357, Adjusted R-squared =         -.00363 | 
| Model test: F[  2,    199] =     .64,    Prob value =          .53017 | 
| Diagnostic: Log-L =   -494.7731, Restricted(b=0) Log-L =    -495.4173 | 
|             LogAmemiyaPrCrt.=    2.091, Akaike Info. Crt.=      4.928 | 
| Autocorrel: Durbin-Watson Statistic =   2.83473,   Rho =      -.41737 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .5507626279       .74399306     .740   .4600 
 UNEMP    -.9835166981E-01      .12621412    -.779   .4368     5.6712871 
 NEWECON     -2.474910396       2.8382661    -.872   .3843  .49504950E-02 

 
3.  (GARCH Models) 
.a.  We used LIMDEP with the macroeconomics data in table F5.1.  The rate of inflation was computed 
with all observations, then observations 6 to 204 were used to remove the missing data due to lags.  Least 
squares results were obtained first.  The residuals were then computed and squared.  Using observations 15-
204, we then computed a regression of the squared residual on a constant and 8 lagged values.  The chi-
squared statistic with 8 degrees of freedom is 28.24.  The critical value from the table for 95% significance 
and 8 degrees of freedom is 15.51, so at this level of significance, the hypothesis of no GARCH effects is 
rejected. 
crea;pt=100*log(cpi_u/cpi_u[-1])$ 
crea;pt1=pt[-1];pt2=pt[-2];pt3=pt[-3];pt4=pt[-4]$ 
samp;6-204$ 
regr;lhs=pt;rhs=one,pt1,pt2,pt3,pt4;res=et$$ 
crea;vt=et*et$ 
crea;vt1=vt[-1];vt2=vt[-2];vt3=vt[-3];vt4=vt[-4];vt5=vt[-5];vt6=vt[-6];vt7=vt[-
7];vt8=vt[-8]$ 
samp;15-204$ 
regr;lhs=vt;rhs=one,vt1,vt2,vt3,vt4,vt5,vt6,vt7,vt8$ 
calc;list;lm=n*rsqrd$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = PT       Mean=   .9589185961    , S.D.=   .8318268241     | 
| Model size: Observations =     199, Parameters =   5, Deg.Fr.=    194 | 
| Residuals:  Sum of squares= 61.97028507    , Std.Dev.=         .56519 | 
| Fit:        R-squared=  .547673, Adjusted R-squared =          .53835 | 
| Model test: F[  4,    194] =   58.72,    Prob value =          .00000 | 
| Diagnostic: Log-L =   -166.2871, Restricted(b=0) Log-L =    -245.2254 | 
|             LogAmemiyaPrCrt.=   -1.116, Akaike Info. Crt.=      1.721 | 
| Autocorrel: Durbin-Watson Statistic =   1.80740,   Rho =       .09630 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .1296044455   .67521735E-01    1.919   .0564 
 PT1          .2856136998   .69863942E-01    4.088   .0001     .97399582 
 PT2          .1237760914   .70647061E-01    1.752   .0813     .98184918 
 PT3          .2516837602   .70327318E-01    3.579   .0004     .99074774 
 PT4          .1824670634   .69251374E-01    2.635   .0091     .98781131 
 LM      =  .28240022492847690D+02 
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For the second step, we need an estimate of α0, which is the unconditional variance if there are no ARCH 
effects.  We computed this based on the ARCH specification by a regression of et

2 – (8/36)et-1
2 - … - 

(1/36)et-8
2 on just a constant term.  This produces a negative estimate of α0, but this is not the variance, so 

we retain the result.  We note, the problem that this reflects is probably the specific, doubtless unduly 
restrictive, ARCH structure assumed. 
 
samp;6-204$ 
crea;vt=et*et$ 
crea;ht=vt-8/36*vt[-1]-7/36*vt[-2]-6/36*vt[-3]-5/36*vt[-4]-4/36*vt[-5]-
3/36*vt[-6]-2/36*vt[-7]-1/36*vt[-8]$ 
samp;15-204$ 
calc;list;a0=xbr(ht)$ 
samp;6-204$ 
crea;qt=a0+8/36*vt[-1]+7/36*vt[-2]+6/36*vt[-3]+5/36*vt[-4]+4/36*vt[-
5]+3/36*vt[-6]+2/36*vt[-7]+1/36*vt[-8]$ 
samp;15-204$ 
plot;rhs=qt$ 
crea;wt=1/qt$ 
regr;lhs=pt;rhs=one,pt1,pt2,pt3,pt4;wts=wt$ 
regr;lhs=pt;rhs=one,pt1,pt2,pt3,pt4;model=garch(1,1)$ 

 
Once we have an estimate of α0 in hand, we then computed the set of variances according to the ARCH(8) 
model, using the lagged squared residuals.  Finally, we used these variance estimators to compute a 
weighted least squares regression accounting for the heteroscedasticity.  This regression is based on 
observations 15-204, again because of the lagged values.  Finally, using the same sample, a GARCH(1,1) 
model is fit by maximum likelihood. 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = WT       | 
| Dep. var. = PT       Mean=   .8006997687    , S.D.=   .6327877239     | 
| Model size: Observations =     190, Parameters =   5, Deg.Fr.=    185 | 
| Residuals:  Sum of squares= 38.67492770    , Std.Dev.=         .45722 | 
| Fit:        R-squared=  .488964, Adjusted R-squared =          .47791 | 
| Model test: F[  4,    185] =   44.25,    Prob value =          .00000 | 
| Diagnostic: Log-L =   -147.7324, Restricted(b=0) Log-L =    -211.5074 | 
|             LogAmemiyaPrCrt.=   -1.539, Akaike Info. Crt.=      1.608 | 
| Autocorrel: Durbin-Watson Statistic =   1.90310,   Rho =       .04845 | 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .1468553158   .60127085E-01    2.442   .0155 
 PT1       .9760051110E-01  .88469908E-01    1.103   .2714     .77755556 
 PT2          .3328520370   .86772549E-01    3.836   .0002     .76745308 
 PT3          .1428889148   .85420554E-01    1.673   .0961     .76271761 
 PT4          .2878686524   .84090832E-01    3.423   .0008     .74173558 
 
The 8 period ARCH model produces quite a substantial change in the estimates.  Once again, this probably 
results from the restrictive assumption about the lag weights in the ARCH model.  The GARCH model 
follows.
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+---------------------------------------------+ 
| GARCH MODEL                                 | 
| Maximum Likelihood Estimates                | 
| Model estimated: Jul 31, 2002 at 01:19:14PM.| 
| Dependent variable                   PT     | 
| Weighting variable                 None     | 
| Number of observations              190     | 
| Iterations completed                 22     | 
| Log likelihood function       -135.5043     | 
| Restricted log likelihood     -147.6465     | 
| Chi squared                    24.28447     | 
| Degrees of freedom                    2     | 
| Prob[ChiSqd > value] =         .5328953E-05 | 
| GARCH Model, P = 1, Q = 1                   | 
| Wald statistic for GARCH =      521.483     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Regression parameters 
 Constant     .1308478127   .61887183E-01    2.114   .0345 
 PT1          .1749239917   .70912277E-01    2.467   .0136     .98810078 
 PT2          .2532191617   .73228319E-01    3.458   .0005     .98160455 
 PT3          .1552879436   .68274176E-01    2.274   .0229     .97782066 
 PT4          .2751467919   .63910272E-01    4.305   .0000     .97277700 
          Unconditional Variance 
 Alpha(0)  .1005125676E-01  .11653271E-01     .863   .3884 
          Lagged Variance Terms 
 Delta(1)     .8556879884   .89322732E-01    9.580   .0000 
          Lagged Squared Disturbance Terms 
 Alpha(1)     .1077364862   .60761132E-01    1.773   .0762 
          Equilibrium variance, a0/[1-D(1)-A(1)] 
 EquilVar     .2748082674       2.0559946     .134   .8937 
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Chapter 20 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Models with Lagged Variables 
 

Exercises 
 
1.  For the first, the mean lag is  .55(.02)(0) + .55(.15)(1) + ... + .55(.17)(4)  =  1.31 periods. The impact 
multiplier is .55(.02)  =  .011 while the long run multiplier is the sum of the coefficients, .55. 
 For the second, the coefficient on xt is .6, so this is the impact multiplier.  The mean lag is found by 
applying (18-9) to B(L)  =  [.6 + 2L]/[1 - .6L + .5L2]  =  A(L)/D(L).  Then, B′(1)/B(1)  =   
{[D(1)A′(1) - A(1)D′(1)]/[D(1)]2} / [A(1)/D(1)] =  A′(1)/A(1) - D′(1)/D(1)  =  (2/2.6) / (.4/.9)  =  1.731 periods. 
The long run multiplier is B(1)  =  2.6/.9  =  2.888 periods. 
 For the third, since we are interested only in the coefficients on xt, write the model as 
yt  =  α +  βxt[1 + γL + γ2L2 + ...] + δzt

* +  ut.  The lag coefficients on xt are simply β times powers of γ.  
 
2.  We would regress yt on a constant, xt, xt-1, ..., xt-6.  Constrained least squares using 
               1  -5  10  -10    5   -1    0    0                 0 
        R  =   0   1  -5   10  -10    5   -1    0  ,       q   =  0 
               0   0   1   -5   10  -10    5   -1                  0 
would produce the PDL estimates.  
 
3.   The ratio of polynomials will equal  B(L)  =  [.6 + 2L]/[1 - .6L + .5L2].  This will expand to 
B(L)  =  β0 + β1L + β2L2 + ....  Multiply both sides of the equation by (1 - .6L + .5L2) to obtain 
(β0 + β1L + β2L2 + ....)(1 - .6L + .5L2) = .6 + 2L.  Since the two sides must be equal, it follows that 
β0  =  .6 (the only term not involving L)  -.6β0 + β1 = 2 (the only term involving only L.  Therefore, β1  =  2.36.  
All remaining terms, involving L2, L3, ... must equal zero.  Therefore, βj - .6βj-1 + .5βj-2  =  0  for all j > 1,  or βj  
=  .6βj-1 - .5βj-2.  This provides a recursion for all remaining coefficients.  For the specified coefficients, β2  =  
.6(2.36) - .5(.3)  =  1.266.  β3  =  .6(1.266) - .5(2.36)  =  -.4204,  β4  =  .6(-.4204) - .5(1.266)  =  -.88524 and so 
on.  
 
4.  By multiplying through by the denominator of the lag function, we obtain an autoregressive form 
  yt   =  α(1+δ1+δ2) + βxt + γxt-1 - δ1yt-1 - δ2yt-2 + εt + δ1εt-1 + δ2εt-2 
   =  α(1+δ1+δ2) + βxt + γxt-1 - δ1yt-1 - δ2yt-2 + vt 
The model cannot be estimated consistently by ordinary least squares because there is autocorrelation in the 
presence of a lagged dependent variable.  There are two approaches possible.  Nonlinear least squares could 
be applied to the moving average (distributed lag) form.  This would be fairly complicated, though a method 
of doing so is described by Maddala and Rao (1973).  A much simpler approach would be to estimate the 
model in the autoregressive form using an instrumental variables estimator.  The lagged variables xt-2 and xt-3 
can be used for the lagged dependent variables.   ~ 
 
5.  The model can be estimated as an autoregressive or distributed lag equation.  Consider, first, the 
autoregressive form.  Multiply through by (1 - γL)(1 - φL) to obtain 
 yt  =  α(1-γ)(1-φ) + βxt - (βφ)xt-1  + δzt - (δγ)zt-1 + (γ + φ)yt-1 - (γφ)yt-2 + εt -(γ+φ)εt-1 + (γφ)εt-2. 
Clearly, the model cannot be estimated by ordinary least squares, since there is an autocorrelated disturbance 
and a lagged dependent variable.  The parameters can be estimated consistently, but inefficiently by linear 
instrumental variables.  The inefficiency arises from the fact that the parameters are overidentified.  The linear 
estimator estimates seven functions of the five underlying parameters.  One possibility is a GMM estimator.  
Let vt  =  εt -(γ+φ)εt-1 + (γφ)εt-2.  Then, a GMM estimator can be defined in terms of, say, a set of moment 
equations of the form  E[vtwt]  =  0, where wt is current and lagged values of x and z.  A minimum distance 
estimator could then be used for estimation. 
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 The distributed lag approach might be taken, instead.  Each of the two regressors produces a 
recursions xt

*  =  xt  +  γxt-1
*   and  zt

*  =  zt  +  γzt-1
*.  Thus, values of the moving average regressors can be built 

up recursively. Note that the model is linear in 1,  xt
*, and zt

*.  Therefore, an approach is to search a grid of 
values of (γ,φ) to minimize the sum of squares.   ~ 
 

Applications 
 
1.  The long run multiplier is β0 + β1 + ... + β6.  The model is a classical regression, so it can be estimated 
by ordinary least squares.  The estimator of the long run multiplier would be the sum of the least squares 
coefficients.  If the sixth lag is omitted, then the standard omitted variable result applies, and all the 
coefficients are biased.  The orthogonality result needed to remove the bias explicitly fails here, since xt is 
an AR(1) process.  All the lags are correlated.  Since the form of the relationship is, in fact, known, we can 
derive the omitted variable formula.  In particular, by construction, xt will have mean zero.  By implication, 
yt will also, so we lose nothing by assuming that the constant term is zero.   To save some cumbersome 
algebra, we’ll also assume with no loss of generality that the unconditional variance of xt is 1.   Let X1 = 
[xt,xt-1,...,xt-5] and X2 = xt-6.  Then, for the regression of y on X1, we have by the omitted variable formula,  
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We can derive a formal solution to the bias in this estimator.  Note that the column that is to the right of the 
inverse matrix is r times the last column matrix.  Therefore, the matrix product is r times the last column of 
an identity matrix.  This gives us the complete result, 
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Therefore, the first 5 coefficients are unbiased, and the last one is an estimator of β5 + rβ6.  Adding these 
up, we see that when the last lag is omitted from the model, the estimator of the long run multiplier is 
biased downware by (1-r)β6.  For part d, we will use a similar construction.  But, now there are five 
variables in X1 and xt-5 and xt-6 in X2.  The same kind of computation will show that the first four 
coefficients are unbiased while the fifth now estimates β4 + rβ5 + r2β6.  The long run multiplier is estimated 
with downward bias equal to (1-r)β5 + (1-r2)β6. 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 XT           .9726595701       1.9258818     .505   .6141     8.3384522 
 XT1          .7709686332       3.1555811     .244   .8072     8.3301663 
 XT2          .5450409860       3.1761465     .172   .8639     8.3218191 
 XT3         -.6061007409       3.1903388    -.190   .8495     8.3134324 
 XT4         -.2272352746       3.1729930    -.072   .9430     8.3050260 
 XT5         -1.916555094       3.1414210    -.610   .5425     8.2964570 
 XT6          1.218771893       1.8814874     .648   .5179     8.2878393 
Matrix LRM      has  1 rows and  1 columns. 
               1 
        +-------------- 
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       1|      .7575 
 XT           1.101551478       1.9126777     .576   .5653     8.3384522 
 XT1          .6941982792       3.1485851     .220   .8257     8.3301663 
 XT2          .5287939572       3.1712435     .167   .8677     8.3218191 
 XT3         -.7300170198       3.1797815    -.230   .8187     8.3134324 
 XT4         -.5552651191       3.1275848    -.178   .8593     8.3050260 
 XT5         -.2826674399       1.8697065    -.151   .8800     8.2964570 
Matrix LRM      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|      .7566 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 XT           1.077633667       1.9012923     .567   .5715     8.3384522 
 XT1          .7070443138       3.1394606     .225   .8221     8.3301663 
 XT2          .5633400685       3.1549830     .179   .8585     8.3218191 
 XT3         -.6608149939       3.1386871    -.211   .8335     8.3134324 
 XT4         -.9304013056       1.8990464    -.490   .6247     8.3050260 
Matrix LRM      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|      .7568 
--> calc;list;cor(xt,xt1)$ 
    Result  =  .99978740920470700D+00 
The results of the three suggested regressions are shown above.  We used observations 7 - 204 of the 
logged real investment and real GDP data in deviations from the means for all regressions.  Note that 
although there are some large changes in the estimated individual parameters, the long run multiplier is 
almost identical in all cases.  Looking at the analytical results we can see why this would be the case.  The 
correlation between current and lagged log gdp is r =  0.9998.  Therefore, the biases that we found, (1-r)β6 
and (1-r)β5 + (1-r2)β6 are trivial. 
 
2.  Because the model has both lagged dependent variables and autocorrelated disturbances, ordinary least 
squares will be inconsistent.  Consistent estimates could be obtained by the method of instrumental variables.  
We can use xt-1 and xt-2 as the instruments for yt-1 and yt-2. Efficient estimates can be obtained by a two step 
procedure.  We write the model as yt - ρyt-1 =  α(1-ρ) + β(xt - ρxt-1) + γ(yt-1 - ρyt-2) + δ(yt-2 - ρyt-3) + ut.  With a 
consistent estimator of ρ, we could use FGLS.  The residuals from the IV estimator can be used to estimate ρ.  
Then OLS using the transformed data is asymptotically equivalent to GLS.  The method of Hatanaka 
discussed in the text is another possibility. 
 Using the real consumption and real disposable income data in Table F5.1, we obtain the following 
results:  Estimated standard errors are shown in parentheses. (The estimated autocorrelation based on the IV 
estimates is .9172.)  All three sets of estimates are based on the last 201 observations, 1950.4 to 2000.4 
              OLS   IV  2 Step FGLS 

  -1.4946 -64.5073 -4.6614  α
∧

  (3.8291) (46.1075)    (3.2041) 

  .007569 .7003     .3477 β
∧

  (.001662) (.4910)    (.0432) 

  1.1977  .5726      .2332 γ
∧

  (.006921) (.9043)   (.05933) 

  -0.1988 -.3324     .4072 δ
∧

  (.07109) (.4962)  (.05500)    
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Chapter 21 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Time Series Models 
 
There are no exercises or applications in Chapter 21. 
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Chapter 22 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Nonstationary Data 
 

Exercise 
 
1.  The autocorrelations are simple to obtain just by multiplying out vt

2, vtvt-1 and so on. The 
autocovariances are 1+θ1

2 + θ2
2, -θ2(1 - θ2), -θ2, 0, 0, 0... which provides the autocorrelations by division by 

the first of these.  The partial autocorrelations are messy, and can be obtained by the Yule Walker 
equations.  Alternatively (and much more simply), we can make use of the observation in Section 21.2.3 
that the partial autocorrelations for the MA(2) process mirror tha autocorrelations for an AR(2).  Thus, the 
results in Section 21.2.3 for the AR(2) can be used directly. 
 

Applications 
 
1.  ADF Test 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = R        Mean=   8.212678571    , S.D.=   .7762719558     | 
| Model size: Observations =      56, Parameters =   6, Deg.Fr.=     50 | 
| Residuals:  Sum of squares= .9651001703    , Std.Dev.=         .13893 | 
| Fit:        R-squared=  .970881, Adjusted R-squared =          .96797 | 
| Model test: F[  5,     50] =  333.41,    Prob value =          .00000 | 
| Diagnostic: Log-L =     34.2439, Restricted(b=0) Log-L =     -64.7739 | 
|             LogAmemiyaPrCrt.=   -3.846, Akaike Info. Crt.=     -1.009 | 
| Autocorrel: Durbin-Watson Statistic =   1.91589,   Rho =       .04205 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .2565690959       .47172815     .544   .5889 
 T         .4401352136E-03  .25092142E-02     .175   .8615     32.500000 
 R1           .9653227410   .48183346E-01   20.034   .0000     8.2305357 
 DR1          .5600009441       .14342088    3.905   .0003 -.12321429E-01 
 DR2         -.1739775168       .14781417   -1.177   .2448 -.20535714E-01 
 DR3      -.7792177815E-03      .11072916    -.007   .9944 -.11607143E-01 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
--> wald;fn1=b_r1-1$ 
 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =       .51796     | 
| Prob. from Chi-squared[ 1] =       .47171     | 
+-----------------------------------------------+ 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 Fncn(1)  -.3467725900E-01  .48183346E-01    -.720   .4717 
 
The unit root hypothesis is definitely not rejected. 
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2.  Macroeconomic Model 
 
--> samp;1-204$ 
--> crea;c=log(realcons);y=log(realdpi)$ 
--> crea;c1=c[-1];c2=c[-2]$ 
--> samp;3-204$ 
--> regr;lhs=c;rhs=one,y,c1,c2$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = C        Mean=   7.889033683    , S.D.=   .5102401315     | 
| Model size: Observations =     202, Parameters =   4, Deg.Fr.=    198 | 
| Residuals:  Sum of squares= .1519097328E-01, Std.Dev.=         .00876 | 
| Fit:        R-squared=  .999710, Adjusted R-squared =          .99971 | 
| Model test: F[  3,    198] =********,    Prob value =          .00000 | 
| Diagnostic: Log-L =    672.4019, Restricted(b=0) Log-L =    -150.2038 | 
|             LogAmemiyaPrCrt.=   -9.456, Akaike Info. Crt.=     -6.618 | 
| Autocorrel: Durbin-Watson Statistic =   1.89384,   Rho =       .05308 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant  .8165780259E-03  .10779352E-01     .076   .9397 
 Y         .7869591065E-01  .29020268E-01    2.712   .0073     7.9998985 
 C1           .9680839747   .72732869E-01   13.310   .0000     7.8802520 
 C2       -.4701660339E-01  .70076193E-01    -.671   .5030     7.8714299 
--> crea;e1=e[-1];e2=e[-3];e3=e[-3]$ 
--> crea;e1=e[-1];e2=e[-2];e3=e[-3]$ 
--> regr;lhs=e;rhs=one,e1,e2,e3$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = E        Mean=  -.6947138134E-15, S.D.=   .8693502258E-02 | 
| Model size: Observations =     202, Parameters =   4, Deg.Fr.=    198 | 
| Residuals:  Sum of squares= .1339943625E-01, Std.Dev.=         .00823 | 
| Fit:        R-squared=  .117934, Adjusted R-squared =          .10457 | 
| Model test: F[  3,    198] =    8.82,    Prob value =          .00002 | 
| Diagnostic: Log-L =    685.0763, Restricted(b=0) Log-L =     672.4019 | 
|             LogAmemiyaPrCrt.=   -9.581, Akaike Info. Crt.=     -6.743 | 
| Autocorrel: Durbin-Watson Statistic =   1.85371,   Rho =       .07314 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant  .2437121418E-04  .57884755E-03     .042   .9665 
 E1       -.2553462753E-01  .70917392E-01    -.360   .7192 -.21497022E-04 
 E2           .3385045374   .66904365E-01    5.060   .0000 -.56959898E-04 
 E3        .6894158132E-01  .71101163E-01     .970   .3334 -.81793147E-04 
 
--> calc;list;chisq=n*rsqrd$ 
    CHISQ   =  .23822731697405480D+02 
 
Matrix Result   has  2 rows and  2 columns. 
               1             2 
        +---------------------------- 
       1|     1.0688     .0000000D+00 
       2|    19.8378     .0000000D+00 
Short run multiplier is β = .07869.  Long run is β/(1-γ1 - γ2) = 12.669.  (Not very plausible.) 
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3.  ADF Test. To carry out the test, the rate of inflation is regressed on a constant, a time trend, the 
previous year’s value of the rate of inflation, and three lags of the first difference.  The test statistic for the 
ADF is (0.7290534455-1)/.011230759 = -2.373.  The critical value in the lower part of Table 20.4 with 
about 100 observations is -3.45.  Since our value is large than this, it follows that the hypothesis of a unit 
root cannot be rejected. 
 
4.  Reestimated model in example 13.1. 
--> samp;1-204$ 
--> crea;ddp1=infl[-1]-infl[-2]$ 
--> crea;ddp2=ddp1[-1]$ 
--> crea;ddp3=ddp1[-2]$ 
--> crea;dp=infl[-1]$ 
--> samp;97-204$ 
--> crea;t=trn(1,1)$ 
--> regr;lhs=infl;rhs=one,t,dp,ddp1,ddp2,ddp3$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = INFL     Mean=   4.907672727    , S.D.=   3.617392978     | 
| Model size: Observations =     108, Parameters =   6, Deg.Fr.=    102 | 
| Residuals:  Sum of squares= 608.5020156    , Std.Dev.=        2.44248 | 
| Fit:        R-squared=  .565403, Adjusted R-squared =          .54410 | 
| Model test: F[  5,    102] =   26.54,    Prob value =          .00000 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     2.226039717       1.1342702    1.963   .0524 
 T        -.1836785769E-01  .11230759E-01   -1.635   .1050     54.500000 
 DP           .7290534455       .11419140    6.384   .0000     4.9830886 
 DDP1        -.4744389916       .12707255   -3.734   .0003 -.58569323E-01 
 DDP2        -.4273030624       .11563482   -3.695   .0004 -.46827528E-01 
 DDP3        -.22484
--> wald;fn1=b_dp-1$ 

32703   .98954483E-01   -2.272   .0252 -.86558444E-02 

+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 Fncn(1)     -.27
--> samp;1-204$ 

09465545       .11419140   -2.373   .0177 

--> crea;ct=realcons;yt=realgdp;gt=realgovt;rt=tbilrate$ 
--> crea;ct1=ct[-1];yt1=yt[-1]$ 
--> samp;2-204$ 
--> samp;1-204$ 
--> crea;ct=realcons;yt=realgdp;gt=realgovt;rt=tbilrate;it=realinvs$ 
--> crea;ct1=ct[-1];yt1=yt[-1]$ 
--> crea;dy=yt-yt1$ 
--> samp;2-204$ 
--> name;x=one,rt,ct1,yt1,gt$ 
--> 2sls;lhs=ct;rhs=one,yt,ct1;inst=x;res=ec$ 
--> 2sls;lhs=it;rhs=one,rt,dy;inst=x;res=ei$ 
--> iden;rhs=ec;pds=10$ 
--> iden;rhs=ei;pds=10$ 
+-----------------------------------------------------------------------+ 
| Two stage   least squares regression    Weighting variable = none     | 
| Dep. var. = CT       Mean=   3008.995074    , S.D.=   1456.900152     | 
| Model size: Observations =     203, Parameters =   3, Deg.Fr.=    200 | 
| Residuals:  Sum of squares= 96595.67529    , Std.Dev.=       21.97677 | 
| Fit:        R-squared=  .999771, Adjusted R-squared =          .99977 | 
|             (Note:  Not using OLS.  R-squared is not bounded in [0,1] | 
| Model test: F[  2,    200] =********,    Prob value =          .00000 | 
| Diagnostic: Log-L =   -913.8005, Restricted(b=0) Log-L =   -1766.2087 | 
|             LogAmemiyaPrCrt.=    6.195, Akaike Info. Crt.=      9.033 | 
| Autocorrel: Durbin-Watson Statistic =   1.61078,   Rho =       .19461 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
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+---------+--------------+----------------+--------+---------+----------+ 
 Constant     6.666079115       8.6211817     .773   .4394 
 YT       -.2932041745E-01  .35260653E-01    -.832   .4057     4577.1882 
 CT1          1.051478712   .51482187E-01   20.424   .0000     2982.9744 
 
+-----------------------------------------------------------------------+ 
| Two stage   least squares regression    Weighting variable = none     | 
| Dep. var. = IT       Mean=   654.5295567    , S.D.=   391.3705005     | 
| Model size: Observations =     203, Parameters =   3, Deg.Fr.=    200 | 
| Residuals:  Sum of squares= 54658669.31    , Std.Dev.=      522.77466 | 
| Fit:        R-squared= -.793071, Adjusted R-squared =         -.81100 | 
|             (Note:  Not using OLS.  R-squared is not bounded in [0,1] | 
| Diagnostic: Log-L =  -1557.1409, Restricted(b=0) Log-L =   -1499.3832 | 
|             LogAmemiyaPrCrt.=   12.533, Akaike Info. Crt.=     15.371 | 
| Autocorrel: Durbin-Watson Statistic =   1.49055,   Rho =       .25473 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -141.8297176       103.57113   -1.369   .1709 
 RT           52.04340559       12.971223    4.012   .0001     5.2499007 
 DY           13.80361384       1.7499250    7.888   .0000     37.898522 
Time series identification for EC 
Box-Pierce Statistic =    40.8498      Box-Ljung Statistic  =    41.7842 
Degrees of freedom   =         10      Degrees of freedom   =         10 
Significance level   =      .0000      Significance level   =      .0000 
* => |coefficient| > 2/sqrt(N) or > 95% significant. 
PACF is computed using Yule-Walker equations. 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Lag |  Autocorrelation Function     |Box/Prc|    Partial Autocorrelations   X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
  1 | .194*|           |**          |  7.65*| .194*|            |**         X 
  2 | .264*|           |***         | 21.82*| .236*|            |***        X 
  3 | .273*|           |***         | 36.93*| .207*|            |**         X 
  4 | .067 |           |*           | 37.85*|-.063 |          * |           X 
  5 | .054 |           |*           | 38.44*|-.068 |          * |           X 
  6 | .073 |           |*           | 39.52*| .018 |            |*          X 
  7 | .009 |           |*           | 39.53*| .003 |            |*          X 
  8 |-.078 |          *|            | 40.78*|-.109 |          * |           X 
  9 | .019 |           |*           | 40.85*| .023 |            |*          X 
 10 | .002 |           |*           | 40.85*| .050 |            |*          X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Time series identification for EI 
Box-Pierce Statistic =    27.4753      Box-Ljung Statistic  =    28.3566 
Degrees of freedom   =         10      Degrees of freedom   =         10 
Significance level   =      .0022      Significance level   =      .0016 
* => |coefficient| > 2/sqrt(N) or > 95% significant. 
PACF is computed using Yule-Walker equations. 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Lag |  Autocorrelation Function     |Box/Prc|    Partial Autocorrelations   X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
  1 | .244*|           |***         | 12.13*| .244*|            |***        X 
  2 | .143*|           |**          | 16.27*| .096 |            |*          X 
  3 | .037 |           |*           | 16.55*|-.019 |          * |           X 
  4 |-.001 |          *|            | 16.55*|-.017 |          * |           X 
  5 |-.066 |          *|            | 17.42*|-.078 |          * |           X 
  6 | .003 |           |*           | 17.43*| .043 |            |*          X 
  7 |-.042 |          *|            | 17.79*|-.033 |          * |           X 
  8 |-.107 |          *|            | 20.10*|-.107 |          * |           X 
  9 | .108 |           |*           | 22.46*| .194*|            |**         X 
 10 | .157*|           |**          | 27.48*| .142*|            |**         X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
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Chapter 23 

Models for Discrete Choice 
 

Exercises 
 
1.  The log-likelihood is 
lnL  =  Σ0,0lnProb[y=0,d=0] + Σ0,1lnProb[y=0,d=1] + Σ1,0lnProb[y=1,d=0] + Σ1,1lnProb[y=1,d=1] 
where Σi,j indicates the sum over observations for which y = i and d = j.  Since there are no other regressors, 
this reduces to lnL  =  24ln(1 - F(α)) + 32ln(1 - F(δ)) + 28lnF(α) + 16lnF(δ).  Although it is straightforward to 
maximize the log-likelihood directly in terms of α and δ, an alternative, convenient approach is to estimate 
F(α) and F(δ).  These functions can then be inverted to estimate the original parameters.  The invariance of 
maximum likelihood estimators to transformation will justify this approach.  One virtue of this approach is 
that the same procedure is used for both probit and logit models.   Let A = F(α) and D = F(δ).  Then, the log 
likelihood is simply lnL  =  24ln(1 - A) + 32ln(1 - D) + 28lnA + 16lnD.  The necessary conditions are 
   ∂lnL/∂A  =  -24/(1 - A) + 28/A  =  0 
   ∂lnL/∂D  =  -32/(1 - D) + 16/D  =  0. 
Simple manipulations produce the two solutions  A = 28/(24+28) = .539 and D = 16/(32+16) = .333.  Then, 
these functions can be inverted to produce the MLEs of α and β.  Thus, α̂ = F-1(A) and  =  F-1(D) - .  The 
two inverse functions are Φ-1(A) for the probit model, which must be approximated, and ln[F/(1-F)] for the 
logit model.  The estimates are, 

β̂ α̂

   Probit    Logit 
  α          .098      .156 
  δ         -.431     -.694 
  β         -.529     -.850 
 (Notice the proportionality relationship, .156/.098 = 1.592 and -.848/-.529 = 1.607.) 
 We will compute the asymptotic covariance matrix for α̂ and β̂ directly using (19-24) for the probit 
model and (19-22) for the logit model. We will require hi  =  ∂2lnL/∂(α+βd)2 for the four cells.  For the 
computation, we will require φ(c)/Φ(c) and -φ(c)/[1-Φ(c)].  These are listed in the table below. 
                                                   λ1      λ0  
y       d       α+βd     Φ      φ    φ/Φ  -φ/(1-Φ)   λ0λ1  
0       0       .098   .539   .397    .737  -.861      -.636 
1       0       .098   .539   .397    .737  -.861      -.636 
0       1      -.431   .333   .364  1.093  -.546     -.597 
1       1      -.431   .333   .364  1.093  -.546     -.597 
The estimated asymptotic covariance matrix is the inverse of the estimate of -E[H]. 
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.  The asymptotic standard errors are the square roots 

of the diagonal elements, which are .1739 and .2552, respectively.  To test the hypothesis that β = 0, we would 
refer z  =  -.529 / .2552 = -2.073 to the standard normal table.  This is larger than the 1.96 critical value, so we 
would reject the hypothesis.  To compute the likelihood ratio statistic, we will require the two log-likelihoods.  
The restricted log-likelihood (for both the probit and logit models) is given in (19-28).  This would be 
lnL0  =  100[.44ln.44 + .56ln.56]  =  -68.593.  Let the predicted values above be denoted 
  P00 = Prob[y=0,d=0]  =  .461  (i.e., 1 - .539) 
  P10 = Prob[y=1,d=0]  =  .539 
  P01 = Prob[y=0,d=1]  =  .667 
  P11 = Prob[y=0,d=1]  =  .333 

 136



and let nij equal the number of observations in each cell Then, the unrestricted log-likelihood is 
lnL  =  24ln.461 + 28ln.539 + 32ln.667 + 16ln.333  =  -66.442.   The likelihood ratio statistic would be 
 λ  =  -2(-66.6442 - (-68.593))  =  4.302.  The critical value from the chi-squared distribution with one degree 
of freedom is 3.84, so once again, the test statistic is slightly larger than the table value. 
 We now compute the Hessian for the logit model.   The predicted probabilities are 
  Prob[y = 0 , d = 0] = P00  =  1/(1 + e.156)   =  .462 
  Prob[y = 1 , d = 0] = P10  =  1 - P00  =  .538 
  Prob[y = 0 , d = 1] = P01  =  1/(1 + e-.431)   =  .667 
  Prob[y = 1 , d = 1] = P11  =  1 - P01         =  .333. 
Notice that in spite of the quite different coefficients, these are identical to the results for the probit model.  
Remember that we originally estimated the probabilities, not the parameters, and these were independent of 
the distribution.   Then, the Hessian is computed in the same manner as for the probit model using 
hij  =  Fij(1-Fij) instead of λ0λ1 in each cell.  The asymptotic covariance matrix is the inverse of 

(28+24)(.462)(.538) +(32+16)(.667)(.333) .  The standard errors are .2782 and .4137.  For 

testing the hypothesis that β equals zero, the t-statistic is z  =  -.850/.4137  =  -2.055, which is almost the same 
as that for the probit model.  The unrestricted log-likelihood is lnL = 24ln.4285 + ... + 16ln.3635  =  -66.442  
(again).  The chi-squared statistic is 4.302, as before.    
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2. Using the usual regression statistics, we would have a= y bx− , 2( )( ) / (i i i i ib x x y y x x= Σ − − Σ − ) . 
For data in which y is a binary variable, we can decompose the numerator somewhat further.  First, divide 
both numerator and denominator by the sample size.  Second, since only one variable need be in deviation 
form, drop the deviation in x.  That leaves [ ] 2( ) / / ( ) /i i i i ib x y y n x x n⎡ ⎤= Σ − Σ −⎣ ⎦ .  The denominator is the 

sample variance of x.  Since yi is only 0s and 1s, y is the proportion of 1s in the sample, P.  Thus, the 
numerator is 
(1/n)Σi xiyi - (1/n)Σi xi y =  (1/n)Σ1xi - P x =  (n1/n) 1x  - P[P x  + (1-P) 0x ]  =  P(1 - P)( 1x  - 0x ). 
Therefore, the regression is essentially measuring how much the mean of x varies across the two groups of 
observations.  The constant term does not simplify into any intuitively useful form.   
 
3.  The model was estimated using Newton's method as described in the text.  The estimated coefficients and 
their standard are shown below:  =  -.51274  +  .15964X ˆ *y
               (1.042)       (.202) 
     Log-likelihood = -6.403  Restricted log-likelihood = -6.9315. 
The t-ratio for testing the hypothesis is .15964/.202 = .79.  The chi-squared for the likelihood ratio test is 
1.057.  Neither is large enough to lead to rejection of the hypothesis.  
 
4.  The derivatives of the log-likelihood are given in (23-18)-(23-21).  If all coefficients except the constant 
term are zero, then the first order condition for maximizing the log-likelihood would be  
∂lnL/∂β  =  Σi(yi - λ)(1) = 0 since with no regressors, λi will not vary with i.  This leads to the constrained 
maximum =  Σi yi/n  =  P, which might be expected.  Thus, we estimate the constant term such that   P  =  λ̂

ˆexp( )
ˆ1 exp( )

α
+ α

, or =  logit(P). The LM statistic based on the BHHH estimator of the covariance matrix of the 

first derivatives would be  LM  =  [Σigi]′[Σigigi′]-1[Σigi]   where   gi  =  Σi(yi - P)xi. In full, the statistic is 

α̂

   LM  =  [Σi(yi - P)xi]′[Σi(yi - P)2xixi′]-1[Σi(yi - P)xi]. 
 The actual (and expected) Hessian can be used instead by replacing (yi - P)2 with P(1 - P) in the 
inverse matrix.  The statistic could then be written 
   LM  =  [X′(y - Pi)]′[(X′X)-1][X′(y - Pi)]/P(1 - P)  =  e′X(X′X)-1X′e/P(1 - P) 
In the preceding, e′e  =  Σi(yi - P)2   =  nP(1 - P).  Therefore,  LM  = n[e′X(X′X)-1X′e/e′e], which establishes 
the result.  To compute the statistic, we regress (yi - P) on the xs, then carry nR2 into the chi-squared table.    
5.  Since there is no regressor, we may write the log-likelihood as 
  lnL =  50lnΦ(-α) + 40ln[Φ(μ1-α) - Φ(-α)] + 45ln[Φ(μ2-α) - Φ(μ1-α)] + 
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   80ln[Φ(μ3-α) - Φ(μ2-α)] + 35ln[1 - Φ(μ3-α)]. 
There are four unknown parameters to estimate and four free probabilities.  Suppose, then, we treat Φ(-α), 
Φ(μ1-α), Φ(μ2-α), and Φ(μ3-α) as the unknown parameters, π0, π1, π2, and π3, respectively.  If we can find 
estimators of these, we can solve for the underlying parameters.  We may write the log-likelihood as 
  lnL = 50lnπ0 + 40ln(π1 - π0) + 45ln(π2 - π1) + 80ln(π3 - π2) + 35ln(1 - π3). 
The necessary conditions are 
  ∂lnL/∂π0  =  50/π0 - 40/(π1-π0)             =  0 
  ∂lnL/∂π1  =  40/(π1 - π0) - 45/(π2 - π1)   =  0 
  ∂lnL/∂π2  =  45/(π2 - π1) - 80/(π3 - π2)   =  0 
  ∂lnL/∂π3  =  80/(π3 - π2) - 35/(1 - π3)    =  0. 
By a simple rearrangement, these can be recast as a set of linear equations.  Thus, 
   90π0 -  50π1                    =    0 
   45π0 -  85π1 + 40π2            =    0 
    80π1 - 125π2 +   45π3   =    0 
         -   35π2 + 115π3   =  80 

or    
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The solution (as might be expected) is 
   π0  =  .2      (50/250) 
   π1  =  .36   ((50+40)/250) 
   π2  =  .54   ((50+40+45)/250) 
   π3  =  .86   ((50+40+45+80)/250). 
Now, we can solve for the underlying parameters. 
     -α =  Φ-1(.2)  =  -.841, so  α = .841. 
  μ1-α =  Φ-1(.36) =  -.358, so μ1 = .483 
  μ2-α =  Φ-1(.54) =   .101, so μ2 = .942 
  μ3-α =  Φ-1(.86) =  1.081, so μ3 = 1.922.  
 
6.  To estimate the coefficients, we will use a two step FGLS procedure.  Ordinary least squares estimates 
based on Section 19.4.3 are consistent, but inefficient.  The OLS regression produces 
    Φ-1(Pi) = =  -2.18098  +  .0098898T ˆiz
                 (.7404)     (.002883). 
The predicted values from this regression can then be used to compute the weights in (21-39).  The weighted 
least squares regression produces =     -2.3116  +  .010646T ˆiz
                (.8103)     (.003322) 
In order to achieve a predicted proportion of 95%, we will require zi = 1.645.  The T required to achieve this is 
    T  =  (1.645 + 2.3116) / .010646  =  372. 
 The zi which corresponds to 90% is 1.282.  Doing the same calculation as above, this requires T = 
338 trucks. At $20,000 per truck, this requires $6.751 million, so the budget is inadequate. 
 The marginal effect is  ∂Φi/∂T  =  .010646φ(zi).  At T = 300, zi = .8822, so φ(zi) = .2703 and the 
marginal effect is .00288. 
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7.   This is similar to Exercise 1.  It is simplest to prove it in that framework.  Since the model has only a 
dummy variable, we can use the same log likelihood as in Exercise 1.  But, in this exercise, there are no 
observations in the cell (y=1,x=0).  The resulting log likelihood is, therefore, 
  lnL  =  Σ0,0lnProb[y=0,x=0] + Σ0,1lnProb[y=0,x=1] + Σ1,1lnProb[y=1,x=1] 
or  lnL  =  n3lnProb[y=0,x=0] + n2lnProb[y=0,x=1] + n1lnProb[y=1,x=1]. 
Now, let δ = α + β.  The log likelihood function is lnL  =  n3ln(1 - F(α)) + n2ln(1 - F(δ)) + n1lnF(δ).   For 
estimation, let A = F(α) and D = F(δ).  We can estimate A and D, then α  =  F-1(A)  and  β  =  F-1(D) - α.  The 
first order condition for estimation of A is  ∂lnL/∂A  =  -n3/(1 - A)  =  0,  which obviously has no solution.  If A 
cannot be estimated then α cannot either, nor, in turn, can β.  This applies to both probit and logit models.   
 
8.  We’ll do this more generally for any model F(α).  Since the ‘model’ contains only a constant, the log 
likelihood is logL = Σ0log[1-F(α)] + Σ1logF(α) = n0log[1-F(α)]+n1logF(α) . The likelihood equation is 
∂logL/∂α = Σ0[-f(α)/[1-F(α)] + Σ1f(α)/F(α) = 0 where f(α) is the density (derivative of F(α) so that at the 
solution, n0f(α)/[1-F(α)] = n1f(α)/F(α). Divide both sides of this equation by f(α) and solve it for F(α) = 
n1/(n0+n1), as might be expected.  You can then insert this solution for F(α) back into the log likelihood, 
and (23-28) follows immediately. 
 
9.  Look at the two cases.  Neither case has an estimator which is consistent in both cases.  In both cases, 
the unconditional fixed effects effects estimator is inconsistent, so the rest of the analysis falls apart.  This 
is the incidental parameters problem at work.  Note that the fixed effects estimator is inconsistent because 
in both models, the estimator of the constant terms is a function of 1/T.  Certainly in both cases, if the fixed 
effects model is appropriate, then the random effects estimator is inconsistent, whereas if the random 
effects model is appropriate, the maximum likelihood random effects estimator is both consistent and 
efficient.  Thus, in this instance, the random effects satisfies the requirements of the test.  In fact, there does 
exist a consistent estimator for the logit model with fixed effects - see the text.  However, this estimator 
must be based on a restricted sample observations with the sum of the ys equal to zero or T muust be 
discarded, so the mechanics of the Hausman test are problematic.  This does not fall into the template of 
computations for the Hausman test. 
 
  

Applications 
 
1.  Binary Choice for Extramarital Affairs using Redbook data 
?======================================================== 
? Application 23.1 
?======================================================== 
? 
Create ; A = (Yrb > 0) $ 
Namelist ; X = one,v1,v2,v5,v6 $ 
Probit ; Lhs = A ; Rhs = X ; marginal Effects $ 
Logit  ; Lhs = A ; Rhs = X ; marginal Effects $ 
+---------------------------------------------+ 
| Binomial Probit Model                       | 
| Maximum Likelihood Estimates                | 
| Dependent variable                    A     | 
| Number of observations             6366     | 
| Log likelihood function       -3547.865     | 
| Number of parameters                  5     | 
| Info. Criterion: AIC =          1.11620     | 
| Info. Criterion: BIC =          1.12151     | 
| Restricted log likelihood     -4002.530     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Index function for probability 
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 Constant|    1.43453507       .15493583     9.259   .0000 
 V1      |    -.42595261       .01807583   -23.565   .0000   4.10964499 
 V2      |     .02797013       .00254409    10.994   .0000   29.0828621 
 V5      |    -.20942202       .02015534   -10.390   .0000   2.42617028 
 V6      |    -.03522668       .00801808    -4.393   .0000   14.2098649 
+-------------------------------------------+ 
| Partial derivatives of E[y] = F[*]   with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used for means are All Obs.  | 
+-------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]|Elasticity| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+ 
 Constant|     .27876593       .01081795    25.769   .0000 
 V1      |    -.14911732       .00634679   -23.495   .0000  -2.01181601 
 V2      |     .00979177       .00088860    11.019   .0000    .93487672 
 V5      |    -.07331438       .00703451   -10.422   .0000   -.58393740 
 V6      |    -.01233214       .00280535    -4.396   .0000   -.57528664 
+---------------------------------------------+ 
| Binary Logit Model for Binary Choice        | 
| Maximum Likelihood Estimates                | 
| Dependent variable                    A     | 
| Number of observations             6366     | 
| Log likelihood function       -3549.741     | 
| Number of parameters                  5     | 
| Info. Criterion: AIC =          1.11679     | 
| Info. Criterion: BIC =          1.12210     | 
| Restricted log likelihood     -4002.530     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Characteristics in numerator of Prob[Y = 1] 
 Constant|    2.41622262       .26160831     9.236   .0000 
 V1      |    -.70802698       .03091557   -22.902   .0000   4.10964499 
 V2      |     .04624150       .00426119    10.852   .0000   29.0828621 
 V5      |    -.35139771       .03413337   -10.295   .0000   2.42617028 
 V6      |    -.05899324       .01354756    -4.355   .0000   14.2098649 
+-------------------------------------------+ 
| Partial derivatives of probabilities with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used are All Obs.            | 
+-------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]|Elasticity| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Marginal effect for variable in probability 
 Constant|     .50898166       .05554126     9.164   .0000 
 V1      |    -.14914716       .00650799   -22.918   .0000  -2.03205673 
 V2      |     .00974086       .00089378    10.898   .0000    .93918419 
 V5      |    -.07402256       .00714156   -10.365   .0000   -.59539053 
 V6      |    -.01242703       .00285019    -4.360   .0000   -.58542862 
 
 
2.  Ordered Choice For Self Reported Marriage Rating 
+---------------------------------------------+ 
| Ordered Probability Model                   | 
| Maximum Likelihood Estimates                | 
| Dependent variable             MARRIAGE     | 
| Weighting variable                 None     | 
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| Number of observations             6366     | 
| Iterations completed                 15     | 
| Log likelihood function       -7720.145     | 
| Number of parameters                 12     | 
| Info. Criterion: AIC =          2.42920     | 
| Info. Criterion: BIC =          2.44194     | 
| Restricted log likelihood     -7926.487     | 
| Underlying probabilities based on Normal    | 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Ordered Probability Model                   | 
| Cell frequencies for outcomes               | 
|  Y Count Freq  Y Count Freq  Y Count Freq   | 
|  0    99 .015  1   348 .054  2   993 .155   | 
|  3  2242 .352  4  2684 .421                 | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Index function for probability 
 Constant|    1.87997564       .12760529    14.733   .0000 
 YRB     |    -.09669427       .00649907   -14.878   .0000    .70537389 
 V2      |    -.00624520       .00471646    -1.324   .1855   29.0828621 
 V3      |    -.00952932       .00506534    -1.881   .0599   9.00942507 
 V4      |    -.05879586       .01520251    -3.868   .0001   1.39687402 
 V5      |     .10524384       .01624338     6.479   .0000   2.42617028 
 V6      |     .02526318       .00727002     3.475   .0005   14.2098649 
 V7      |     .02069865       .01614318     1.282   .1998   3.42412818 
 V8      |     .02725715       .01072244     2.542   .0110   3.85014138 
---------+Threshold parameters for index 
 Mu(1)   |     .71088354       .02219910    32.023   .0000 
 Mu(2)   |    1.47186849       .01737814    84.697   .0000 
 Mu(3)   |    2.46392113       .01923976   128.064   .0000 
 
+-------------------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Model (probit)      | 
+-------------------------------------------------------------------------+ 
Variable|    Y=00    Y=01    Y=02    Y=03    Y=04    Y=05    Y=06    Y=07 | 
--------------------------------------------------------------------------+ 
YRB         .0031   .0087   .0167   .0093  -.0377 
V2          .0002   .0006   .0011   .0006  -.0024 
V3          .0003   .0009   .0016   .0009  -.0037 
V4          .0019   .0053   .0101   .0056  -.0229 
V5         -.0033  -.0095  -.0182  -.0101   .0411 
V6         -.0008  -.0023  -.0044  -.0024   .0099 
V7         -.0007  -.0019  -.0036  -.0020   .0081 
V8         -.0009  -.0025  -.0047  -.0026   .0106 
+---------------------------------------------------------------------------+ 
|   Cross tabulation of predictions. Row is actual, column is predicted.    | 
|   Model = Probit    .  Prediction is number of the most probable cell.    | 
+-------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
| Actual|Row Sum|  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  | 
+-------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
|      0|     99|    0|    0|    0|   68|   31| 
|      1|    348|    2|    0|    5|  170|  171| 
|      2|    993|    7|    0|    7|  453|  526| 
|      3|   2242|    3|    0|   10|  674| 1555| 
|      4|   2684|    2|    0|    5|  593| 2084| 
+-------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
|Col Sum|   6366|   14|    0|   27| 1958| 4367|    0|    0|    0|    0|    0| 
+-------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
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Chapter 24 

Truncation, Censoring and Sample 
Selection 
 

Exercises 
 
1.  The sample mean of all 20 observations is 4.18222.  For the 14 nonzero observations, the mean is 
(20/14)4.18222 = 5.9746.  Both of these should overestimate μ.  In the first case, all negative values have been 
transformed to zeroes.  Therefore,  if we had had the original data, our estimator would include the negative 
values as well as the positive ones.  Since we have only the zeroes, instead, our estimator includes, for every 
negative y* a number which is larger than the true y*.  This will inflate the estimate.  Likewise, for the 
truncated mean, whereas a complete sample might include some negative values, the observed one will not.  
Once again, this will serve to inflate the estimator of the mean.  
 
2.    The log-likelihood for the Tobit model is given in (24-13).  With only a constant term, this is 
   lnL  =  (-n1/2)[ln(2π) + lnσ2] - (1/(2σ2))Σ1(yi - μ)2 + Σ0lnΦ(-μ/σ) 
In terms of γ and θ, this is lnL  =  (-n1/2)[ln(2π) - lnθ2] - (1/2)Σ1(θyi - γ)2 + Σ0lnΦ(-γ) 
          =  (-n1/2)ln(2π) + n1lnθ - (1/2)Σ1(θyi - γ)2 + Σ0lnΦ(-γ). 
The necessary conditions for maximizing this with respect to γ and θ are 
  ∂lnL/∂γ  =  Σ1(θyi - γ)  -  Σ0φ(-γ)/Φ(-γ)  =  θΣ1yi - n1γ  -  n0[φ(-γ)/Φ(γ)]  =  0 
  ∂lnL/∂θ  =  n1/θ - Σ1yi(θyi - γ)  =  n1/θ - θΣ1yi

2 + γΣ1yi  =  0. 
There are a few different ways one might solve these two equations.  A grid search over the values of γ and θ 
is a possibility.  A direct maximum likelihood estimator for the tobit model is the simpler choice if one is 
available.  The model with only a constant term is otherwise the same as the usual model.  Using the data 
above, the tobit maximum likelihood estimates are μ̂ =  3.2731, σ̂   =  5.0303. 
 
3.  The log-likelihood for the truncated regression with only a constant term is 
  lnL  =  (-n/2)[ln(2π) + lnσ2] - (1/(2σ2))Σ1(yi - μ)2 - ΣilnΦ(μ/σ) 
Once again transforming to γ and σ, this is 
  lnL  =  -(n/2)ln(2π) + nlnθ - (1/2)Σi(θyi - γ)2 - nlnΦ(γ). 
The necessary conditions for maximizing this are 
  ∂lnL/∂γ  =  Σi(θyi - γ) - nφ(γ)/Φ(γ)  =  0 
  ∂lnL/∂θ  =  n/θ - Σiyi(θyi - γ) 
The first of the two equations can be y =  γ/θ + λ/θ,  where λ =  φ(γ)/Φ(γ).  Now, reverting back to μ and σ, 
this is y =  μ  +  σλ which is (24-6).  The second equation can be manipulated to produce Σyi

2/n - μ y  =  σ2.  
Once again, trial and error could be used to find a solution.  As before, estimating the model as a truncated 
regression with only a constant term will also produce a solution.  The solution by this method is =  3.3439, 

=  5.6368.   With the data of the first problem, we would have the following: Estimated Prob[y* > 0]  =  
14/20  =  .7.  This is an estimate of Φ(μ/σ), so we would have μ/σ = Φ-1(.7)  =  .525  or  μ  =  .525σ.  Now, we 
can use the relationship  E[y|y > 0]  =  μ  +  σφ(μ/σ)/Φ(μ/σ)   =  μ  +  σλ.  Since μ/σ is now known, we have  
λ  =  φ(.525) / Φ(.525)  =  .496 so a second equation is 5.9746  =  μ  +  .496σ.  The joint solution is 

μ̂
σ̂

μ̂ =  
3.0697, =  5.8470.  The three solutions are surprisingly close.  σ̂
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4.   Using Theorem 24.5, we have  1 - Φ(αz)  =  14/35  =  .4, αz  =  Φ-1(.6)  =  .253, λ(αz) = .9659,   
δ(αz)  =  .6886.  The two moment equations are based on the mean and variance of y in the observed data, 
5.9746 and 9.869, respectively.  The equations would be 5.9746  =  μ  +  σ(.7)(.9659) and 9.869   =  σ2(1 - 
.72(.6886)).  The joint solution is =  3.3651, μ̂ σ̂ =  3.8594. 
 
5.    The conditional mean function is E[y|x] = Φ(β′xi/σi)β′xi + σiΦ(β′xi/σi) using the equation before (24-
12).  Suppose that σi = σexp(α′xi) for the same vector xi.  (We’ll relax that assumption shortly.)  Now, 
differentiate this expression with respect to x.  We differentiate the two parts, first with respect to β′x then 
with respect to σi. 
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After collecting the terms, we obtain ∂E[yi|xi]/∂xi  =  Φ(ai)β + σiφ(ai)α where ai = β′xi/σi.  Thus, the 
marginal effect has two parts. one for β and one for α.  Now, if a variable appears in σi but not in xi, then 
only the second term appears while if a variable appears only in xi and not in σi, then only the first term 
appears in the marginal effect. 
 
6.    The transformed log likelihood function is 
 
 logL = Σy > 0 (-1/2)[log2π  - logθ2 + (θy - x′γ)2]  +  Σy=0 log[1-Φ(x′γ)] 
 
It will be convenient to define ai = xi′γ.  Note also that 1 - Φ(ai) = Φ(-ai).  The first derivatives and Hessian 
in the transformed parameters are 
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The second derivatives can be collected in a matrix format: 
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where δi is the last scalar term in ∂2logL/∂δ∂γ′.  By Theorem 22.2 (see (24-4)), we know that δi is negative. 
Thus, all three parts of the matrix are negative semidefinite. Assuming the data are not linearly dependent 
and there are more than K observations, the Hessian will have full rank and be negative definite. 
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Applications 
 
1.  Tobit model for Redbook data 
?============================================================ 
? Applications in Chapter 24 
?============================================================ 
? 1.  Tobit, Scaled Tobit, Probit and Truncated Regression. 
?     In principle, all are estimating the same paramter. 
? For consistency and convenience, we are going to use the 
? sample with YRB <= 5 only. 
?============================================================ 
Sample ; All $ 
Reject ; YRB > 5 $ 
Namelist ; X = one,v1,v2,v3,v4,v5$ 
Tobit ; Lhs = yrb ; Rhs = x ; marginal $ 
Matrix ; list ;  scaled_b = 1/s * b $         
Probit ; Lhs = a ; Rhs = x $ 
reject ; yrb <= 0 $ 
Truncation ; Lhs = yrb ; Rhs = x $ 
 
+---------------------------------------------+ 
| Limited Dependent Variable Model - CENSORED | 
| Maximum Likelihood Estimates                | 
| Dependent variable                  YRB     | 
| Weighting variable                 None     | 
| Number of observations             6217     | 
| Iterations completed                  6     | 
| Log likelihood function       -6118.089     | 
| Number of parameters                  7     | 
| Info. Criterion: AIC =          1.97043     | 
|   Finite Sample: AIC =          1.97044     | 
| Info. Criterion: BIC =          1.97802     | 
| Info. Criterion:HQIC =          1.97306     | 
| Threshold values for the model:             | 
| Lower=     .0000     Upper=+infinity        | 
| LM test [df] for tobit=    622.887[  6]     | 
| Normality Test, LM    =    150.850[  2]     | 
| ANOVA  based fit measure =    .293201       | 
| DECOMP based fit measure =    .438743       | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Primary Index Equation for Model 
 Constant|    4.13828429       .31908252    12.969   .0000 
 V1      |    -.80415431       .03782416   -21.260   .0000   4.12272800 
 V2      |    -.06923599       .01229186    -5.633   .0000   29.1829661 
 V3      |     .10402446       .01325380     7.849   .0000   9.12329098 
 V4      |    -.02190617       .03898707     -.562   .5742   1.41499115 
 V5      |    -.43110692       .04356398    -9.896   .0000   2.43670581 
---------+Disturbance standard deviation 
 Sigma   |    2.27697641       .04212836    54.049   .0000 
+-------------------------------------------+ 
| Partial derivatives of expected val. with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used for means are All Obs.  | 
| Conditional Mean at Sample Point    .3941 | 
| Scale Factor for Marginal Effects   .2796 | 
+-------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
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+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.15697490       .09110678    12.699   .0000 
 V1      |    -.22482418       .01048093   -21.451   .0000   4.12272800 
 V2      |    -.01935689       .00342807    -5.647   .0000   29.1829661 
 V3      |     .02908299       .00367661     7.910   .0000   9.12329098 
 V4      |    -.00612449       .01090115     -.562   .5742   1.41499115 
 V5      |    -.12052818       .01207702    -9.980   .0000   2.43670581 
 Sigma   |       .000000    ......(Fixed Parameter)....... 
Matrix SCALED_B has  6 rows and  1 columns. 
               1 
        +-------------- 
       1|    1.81745 
       2|    -.35317 
       3|    -.03041 
       4|     .04569 
       5|    -.00962 
       6|    -.18933 
+---------------------------------------------+ 
| Binomial Probit Model                       | 
| Maximum Likelihood Estimates                | 
| Dependent variable                    A     | 
| Weighting variable                 None     | 
| Number of observations             6217     | 
| Iterations completed                  5     | 
| Log likelihood function       -3310.310     | 
| Number of parameters                  6     | 
| Info. Criterion: AIC =          1.06685     | 
| Info. Criterion: BIC =          1.07335     | 
| Restricted log likelihood     -3830.126     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Index function for probability 
 Constant|    2.03641060       .15678428    12.989   .0000 
 V1      |    -.41449474       .01860450   -22.279   .0000   4.12272800 
 V2      |    -.03568737       .00593540    -6.013   .0000   29.1829661 
 V3      |     .07215336       .00640693    11.262   .0000   9.12329098 
 V4      |    -.00241124       .01891503     -.127   .8986   1.41499115 
 V5      |    -.21212886       .02089864   -10.150   .0000   2.43670581 
+---------------------------------------------+ 
| Limited Dependent Variable Model - TRUNCATE | 
| Maximum Likelihood Estimates                | 
| Dependent variable                  YRB     | 
| Weighting variable                 None     | 
| Number of observations             1904     | 
| Iterations completed                  8     | 
| Log likelihood function       -2437.473     | 
| Number of parameters                  7     | 
| Info. Criterion: AIC =          2.56772     | 
| Info. Criterion: BIC =          2.58813     | 
| Threshold values for the model:             | 
| Lower=     .0000     Upper=+infinity        | 
| Observations after truncation      1904     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Primary Index Equation for Model 
 Constant|    5.22651388       .94010948     5.559   .0000 
 V1      |    -.45753380       .10715203    -4.270   .0000   3.65388655 
 V2      |    -.04779763       .03766086    -1.269   .2044   30.9776786 
 V3      |    -.25376184       .04622853    -5.489   .0000   11.6919643 
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 V4      |    -.37961397       .12878071    -2.948   .0032   1.81407563 
 V5      |    -.22780476       .13328147    -1.709   .0874   2.28308824 
---------+Disturbance standard deviation 
 Sigma   |    2.38479704       .13327563    17.894   .0000 
 
 
2.  Two part Model. 
 
The three estimated models appear above.  The test statistic is 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 TEST2   =    740.610758 
 
This is much larger than the chi squared critical value for 5 degrees of freedom.  We conclude that the 
participation equation (probit) is different from the intensity equation (yrb). 
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Chapter 25 
 

Models for Event Counts and Duration 
 

Exercises 
 
 
1.  a.  Conditional variance in the ZIP model.  The essential ingredients that are needed for this derivation 
are 
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[See, e.g., Winkelmann (2003, pp. 33-34).].  We found the conditional mean in the text to be 
 

 E[yi|xi,wi]  =  
1 exp( )

i i

i

F λ
− −λ

 =  Fi Ei* 

 
To obtain the variance, we will use the variance decomposition, 
 
 Var[yi|xi,wi] = Ez[Var[yi|xi,z]] + Varz[E[yi|xi,z]]. 
 
The expectation of the conditional variance is 
 

 Ez[Var[yi|xi,z]]  =  (1 – Fi)×0 + Fi× 1
1 exp( ) exp( ) 1

i

i i

⎛ ⎞⎛λ λ
−⎜ ⎟⎜ i ⎞

⎟− −λ λ −⎝ ⎠⎝ ⎠
 = Fi × Ei* × Vi* 

The variance of the conditional mean is 
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           =  Fi(1 – Fi)Ei*2. 
 
The unconditional variance is thus, Fi Ei* [Vi* + (1 – Fi)Ei*].   To obtain τi we divide by the conditional 
mean, which is Fi Ei*, so τi = [Vi* + (1 – Fi)Ei*].  Is this greater than Ei*?  Not necessarily.  The figure 
below plots Fi(1 – Fi)Ei*2

 for Fi = .9 and various values of λ from .1 to about 12.  There is a large range 
over which the function is less than one. 
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b.  Partial Effects.  The mean is Fi Ei*.  We suppose that wi and xi are the same for the moment. 
 
  ∂Ei/∂xi = Ei*∂Fi/∂xi + Fi ∂Ei*/∂xi. 
 
The first term is Ei*×fi×γ.  The second term is Fi ∂Ei*/∂λi λiβ.  The missing element is 
 
  ∂Ei*/∂λi = λi/[1-exp(-λi)] × [1 – exp(-λi)/[1-exp(-λi)]. 
 
Comnbining terms produces the marginal effects. 
 
2.  Let y* denote the unobserved random variable that is distributed as Poisson with probability  
  Prob(y* = j|x) = P(j) = exp(-λ)λj/j!. 
The observed random variable before the censoring is is y = y*|y*>0.  The probabilities are 
  Prob(y = j|x)   =  P(j)/[1 – P(0)]. 
Let yc = the censored random variable.  Then, yc = y for y = 1,2,3,4.  yc = 5 when y > 5.  The probabilities 
associated with the observed yc are 
  Prob(yc = 1|x) = Prob(y = 1|x)  =  P(1)/[1-P(0)] 
  Prob(yc = 2|x) = Prob(y = 2|x)  =  P(2)/[1-P(0)] 
  Prob(yc = 3|x) = Prob(y = 3|x)  =  P(3)/[1-P(0)] 
  Prob(yc = 4|x) = Prob(y = 4|x)  =  P(4)/[1-P(0)] 
  Prob(yc = 5|x) = Prob(y = 5|x) + Prob(y = 6|x) + Prob(y = 7|x) + ... 
The last term is an infinite sum.  But,  
  Prob(y = 5|x) + Prob(y = 6|x) + Prob(y = 7|x) + ...  
   = 1 - Prob(y = 1|x) - Prob(y = 2|x) - Prob(y = 3|x) - Prob(y = 4|x) 
Therefore, 
  Prob(yc = 5|x) = [1 – P(1) – P(2) – P(3) – P(4)]/[1 – P(0)]. 
These are the probabilities used to construct the log likelihood function for the observed values of yc, 
1,2,3,4,5. 
 
3.  The hazard function is easily obtained as h(t) = -dlnS(t)/dt.  For the Weibull model, lnS(t) = -(λt)P to the 
hazard function is (λp)(λt)P-1.  The median survival time occurs where the survival function equals .5.  
Thus, 
  exp(-(λt)P) = .5 
  -(λt)P = ln .5 
  (λt)P = -ln.5 = ln2 
  P*ln(λ) + P lnt = ln ln 2 
  P ln t = ln ln 2 – P lnλ 
  ln t = (1/P)[ln ln 2 – P lnλ] 
  t  =  exp[(1/P)[ln ln 2 – P ln λ]. 
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Applications 
 
1. 
?=================================================== 
? Application 25.1 
?=================================================== 
Namelist ;x = age,educ,hhninc,hsat $ 
Poisson ; Lhs = HospVis ; Rhs = One,X  
        ; Marginal effects $ 
Calc    ; Lp = logl $ 
Regress ; Lhs = HospVis ; Rhs = One,X $  
Negbin  ; Lhs = HospVis ; Rhs = One,X  
        ; Marginal effects $ 
Calc    ; Ln = logl $ 
Calc    ; List ; LRstat = 2*(ln - lp) $ 
 
?=================================================== 
? Application 25.2 
?=================================================== 
Sample  ; All $ 
Regress ; Lhs = one ; Rhs = one ; Str = ID ; Panel $ 
Poisson ; Lhs = HospVis ; Rhs = One,X  
        ; Marginal effects  
        ; Pds = _Groupti $ 
Poisson ; Lhs = HospVis ; Rhs = One,X  
        ; Marginal effects  
        ; Pds = _Groupti ; Random $ 
 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Maximum Likelihood Estimates                | 
| Dependent variable              HOSPVIS     | 
| Weighting variable                 None     | 
| Number of observations            27326     | 
| Iterations completed                  9     | 
| Log likelihood function       -12636.40     | 
| Number of parameters                  5     | 
| Info. Criterion: AIC =           .92523     | 
| Info. Criterion: BIC =           .92673     | 
| Restricted log likelihood     -13433.21     | 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Chi- squared =124476.35621  RsqP=   .1947   | 
| G  - squared = 20025.66932  RsqD=   .0737   | 
| Overdispersion tests: g=mu(i)  :  5.279     | 
| Overdispersion tests: g=mu(i)^2:  5.468     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .12613692       .12567036     1.004   .3155 
 AGE     |    -.00340754       .00149685    -2.276   .0228   43.5256898 
 EDUC    |    -.05295428       .00834958    -6.342   .0000   11.3206310 
 HHNINC  |     .39889043       .08982355     4.441   .0000    .35208362 
 HSAT    |    -.24901310       .00634000   -39.277   .0000   6.78542607 
+-------------------------------------------+ 
| Partial derivatives of expected val. with | 
| respect to the vector of characteristics. | 
| Effects are averaged over individuals.    | 
| Observations used for means are All Obs.  | 
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| Conditional Mean at Sample Point    .1383 | 
| Scale Factor for Marginal Effects   .1383 | 
+-------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .01743926       .02183573      .799   .4245 
 AGE     |    -.00047111       .00025979    -1.813   .0698   43.5256898 
 EDUC    |    -.00732128       .00149415    -4.900   .0000   11.3206310 
 HHNINC  |     .05514924       .01579375     3.492   .0005    .35208362 
 HSAT    |    -.03442771       .00220148   -15.638   .0000   6.78542607 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=HOSPVIS  Mean                 =   .1382566     | 
|              Standard deviation   =   .8843390     | 
| WTS=none     Number of observs.   =      27326     | 
| Model size   Parameters           =          5     | 
|              Degrees of freedom   =      27321     | 
| Residuals    Sum of squares       =   21121.96     | 
|              Standard error of e  =   .8792630     | 
| Fit          R-squared            =   .1159150E-01 | 
|              Adjusted R-squared   =   .1144679E-01 | 
| Model test   F[  4, 27321] (prob) =  80.10 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .49839670       .04097910    12.162   .0000 
 AGE     |    -.00064393       .00048945    -1.316   .1883   43.5256898 
 EDUC    |    -.00619390       .00241633    -2.563   .0104   11.3206310 
 HHNINC  |     .04936160       .03122845     1.581   .1140    .35208362 
 HSAT    |    -.04117251       .00240443   -17.124   .0000   6.78542607 
+---------------------------------------------+ 
| Negative Binomial Regression                | 
| Dependent variable              HOSPVIS     | 
| Number of observations            27326     | 
| Iterations completed                  9     | 
| Log likelihood function       -10044.46     | 
| Number of parameters                  6     | 
| Info. Criterion: AIC =           .73560     | 
| Info. Criterion: BIC =           .73740     | 
| Restricted log likelihood     -12636.40     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .10394982       .12631220      .823   .4105 
 AGE     |    -.00369348       .00143149    -2.580   .0099   43.5256898 
 EDUC    |    -.05795593       .00826247    -7.014   .0000   11.3206310 
 HHNINC  |     .38542430       .09259876     4.162   .0000    .35208362 
 HSAT    |    -.23323713       .00651715   -35.788   .0000   6.78542607 
---------+Dispersion parameter for count data model 
 Alpha   |    6.70461029       .17537071    38.231   .0000 
+-------------------------------------------+ 
| Partial derivatives of expected val. with | 
| respect to the vector of characteristics. | 
| Effects are averaged over individuals.    | 
| Observations used for means are All Obs.  | 
| Conditional Mean at Sample Point    .1367 | 
| Scale Factor for Marginal Effects   .1367 | 
+-------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
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+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .01421398       .02120646      .670   .5027 
 AGE     |    -.00050504       .00024071    -2.098   .0359   43.5256898 
 EDUC    |    -.00792483       .00146645    -5.404   .0000   11.3206310 
 HHNINC  |     .05270247       .01588312     3.318   .0009    .35208362 
 HSAT    |    -.03189257       .00226820   -14.061   .0000   6.78542607 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 LRSTAT  =   5183.862874 
 
2. 
+---------------------------------------------+ 
| Panel Model with Group Effects              | 
| Dependent variable              HOSPVIS     | 
| Weighting variable                 None     | 
| Number of observations            27326     | 
| Log likelihood function       -4198.145     | 
| Number of parameters                  4     | 
| Info. Criterion: AIC =           .30756     | 
| Info. Criterion: BIC =           .30876     | 
| Unbalanced panel has    7293 individuals.   | 
| Missing or sumY=0, Skipped  5640 groups.    | 
| Poisson      Regression -- Fixed Effects    | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 AGE     |    -.00020613       .00705126     -.029   .9767   43.5256898 
 EDUC    |    -.04033708       .09220144     -.437   .6618   11.3206310 
 HHNINC  |     .49927712       .18484588     2.701   .0069    .35208362 
 HSAT    |    -.16686419       .01027579   -16.239   .0000   6.78542607 
+-------------------------------------------+ 
| Partial derivatives of expected val. with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used for means are All Obs.  | 
| Conditional Mean at Sample Point    .1383 | 
| Scale Factor for Marginal Effects   .1383 | 
+-------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 AGE     |   -.284995D-04      .00097488     -.029   .9767   1.00000000 
 EDUC    |    -.00557687       .01274746     -.437   .6618   43.5256898 
 HHNINC  |     .06902836       .02555616     2.701   .0069   11.3206310 
 HSAT    |    -.02307008       .00142070   -16.239   .0000    .35208362 
+---------------------------------------------+ 
| Panel Model with Group Effects              | 
| Dependent variable              HOSPVIS     | 
| Number of observations            27326     | 
| Log likelihood function       -10200.91     | 
| Number of parameters                  6     | 
| Info. Criterion: AIC =           .74705     | 
| Info. Criterion: BIC =           .74885     | 
| Unbalanced panel has    7293 individuals.   | 
| Poisson      Regression -- Random Effects   | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    -.22178663       .13617622    -1.629   .1034 
 AGE     |    -.00170639       .00145901    -1.170   .2422   43.5256898 
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 EDUC    |    -.05399730       .01001912    -5.389   .0000   11.3206310 
 HHNINC  |     .40499179       .06938275     5.837   .0000    .35208362 
 HSAT    |    -.20075292       .00400154   -50.169   .0000   6.78542607 
 Alpha   |    3.59227655       .11685254    30.742   .0000 
+-------------------------------------------+ 
| Partial derivatives of expected val. with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used for means are All Obs.  | 
| Conditional Mean at Sample Point    .1383 | 
| Scale Factor for Marginal Effects   .1383 | 
+-------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    -.03066347       .01882726    -1.629   .1034 
 AGE     |    -.00023592       .00020172    -1.170   .2422   43.5256898 
 EDUC    |    -.00746548       .00138521    -5.389   .0000   11.3206310 
 HHNINC  |     .05599279       .00959262     5.837   .0000    .35208362 
 HSAT    |    -.02775542       .00055324   -50.169   .0000   6.78542607 
 
3.  Ship Accidents 
 
Create ; logmth = log(months) $ 
Name ; X=logmth,one,ta,tb,tc,td,t6064,t6569,t7074,o6074$ 
Reject ; acc < 0 $ 
Pois ; lhs = acc ; Rhs = x $ 
Pois ; lhs = acc ; Rhs = x ; Rst = 1,9_b $ 
Negb ; lhs = acc ; Rhs = x ; Rst = 1,9_b,alpha $ 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Dependent variable                  ACC     | 
| Number of observations               34     | 
| Log likelihood function       -67.99930     | 
| Number of parameters                 10     | 
| Info. Criterion: AIC =          4.58819     | 
| Info. Criterion: BIC =          5.03712     | 
| Restricted log likelihood     -356.2029     | 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Chi- squared =    39.70580  RsqP=   .9491   | 
| G  - squared =    38.13211  RsqD=   .9380   | 
| Overdispersion tests: g=mu(i)  :   .853     | 
| Overdispersion tests: g=mu(i)^2:  -.760     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 LOGMTH  |     .90617018       .10174566     8.906   .0000   7.04925451 
 Constant|   -4.61752968       .72938865    -6.331   .0000 
 TA      |    -.26966656       .24189066    -1.115   .2649    .20588235 
 TB      |    -.62826604       .32582681    -1.928   .0538    .20588235 
 TC      |   -1.03179604       .34039236    -3.031   .0024    .20588235 
 TD      |    -.40106977       .30540945    -1.313   .1891    .20588235 
 T6064   |    -.36146212       .24726698    -1.462   .1438    .23529412 
 T6569   |     .30035782       .21325393     1.408   .1590    .29411765 
 T7074   |     .39874282       .20053445     1.988   .0468    .29411765 
 O6074   |    -.36986273       .11821010    -3.129   .0018    .41176471 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Maximum Likelihood Estimates                | 
| Dependent variable                  ACC     | 
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| Number of observations               34     | 
| Log likelihood function       -68.41456     | 
| Number of parameters                  9     | 
| Info. Criterion: AIC =          4.55380     | 
| Info. Criterion: BIC =          4.95783     | 
| Restricted log likelihood     -356.2029     | 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Chi- squared =    42.44145  RsqP=   .9456   | 
| G  - squared =    38.96262  RsqD=   .9366   | 
| Overdispersion tests: g=mu(i)  :   .934     | 
| Overdispersion tests: g=mu(i)^2:  -.613     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 LOGMTH  |    1.00000000    ......(Fixed Parameter)....... 
 Constant|   -5.25351861       .24642858   -21.319   .0000 
 TA      |    -.32052881       .23575203    -1.360   .1740    .20588235 
 TB      |    -.86524026       .19852119    -4.358   .0000    .20588235 
 TC      |   -1.00929327       .33950071    -2.973   .0030    .20588235 
 TD      |    -.39483795       .30680184    -1.287   .1981    .20588235 
 T6064   |    -.44497064       .23323916    -1.908   .0564    .23529412 
 T6569   |     .25087485       .20875483     1.202   .2295    .29411765 
 T7074   |     .37248476       .19930193     1.869   .0616    .29411765 
 O6074   |    -.38385913       .11826046    -3.246   .0012    .41176471 
 
There is no evidence of overdispersion.  The tests from the Poisson model are 
both insignificant, and the estimate of α in the negative binomial model is 
essentially zero. 
 
+---------------------------------------------+ 
| Negative Binomial Regression                | 
| Dependent variable                  ACC     | 
| Weighting variable                 None     | 
| Number of observations               34     | 
| Log likelihood function       -68.42007     | 
| Number of parameters                 10     | 
| Info. Criterion: AIC =          4.61295     | 
|   Finite Sample: AIC =          4.89428     | 
| Info. Criterion: BIC =          5.06188     | 
| Info. Criterion:HQIC =          4.76604     | 
| NegBin form 2; Psi(i) = theta               | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 LOGMTH  |    1.00000000    ......(Fixed Parameter)....... 
 Constant|   -5.25074235       .26830333   -19.570   .0000 
 TA      |    -.32296435       .39695609     -.814   .4159    .20588235 
 TB      |    -.86731524       .20092395    -4.317   .0000    .20588235 
 TC      |   -1.01171406       .24980570    -4.050   .0001    .20588235 
 TD      |    -.39875463       .23889734    -1.669   .0951    .20588235 
 T6064   |    -.44585250       .31679943    -1.407   .1593    .23529412 
 T6569   |     .25060358       .27552926      .910   .3631    .29411765 
 T7074   |     .37073607       .25504806     1.454   .1461    .29411765 
 O6074   |    -.38364155       .15800844    -2.428   .0152    .41176471 
---------+Dispersion parameter for count data model 
 Alpha   |    .648724D-04      .02406424      .003   .9978 
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4.  Strikes.  There are 9 years of data. The number of strikes is 8,6,11,3,3,2,19,2,9.  The Poisson regression 
is shown below.  It does appear that the number of strikes is significantly related to the PROD variable.  
However, with only 9 observations, use of the asymptotic distribution for the test is probably overly 
optimistic.  The result is probably borderline. 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Dependent variable             _GROUPTI     | 
| Weighting variable                 None     | 
| Number of observations                9     | 
| Log likelihood function       -28.99317     | 
| Number of parameters                  2     | 
| Info. Criterion: AIC =          6.88737     | 
| Info. Criterion: BIC =          6.93120     | 
| Restricted log likelihood     -31.19884     | 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Chi- squared =    25.08061  RsqP=   .2317   | 
| G  - squared =    26.13767  RsqD=   .1444   | 
| Overdispersion tests: g=mu(i)  :  1.954     | 
| Overdispersion tests: g=mu(i)^2:  2.618     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.90854253       .12998621    14.683   .0000 
 PROD    |    5.16576744      2.51306610     2.056   .0398   -.00302000 
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Appendix A  
 

Matrix Algebra 
 

1.  For the matrices  A =  and B =  compute AB, A′B′, and BA. 
2 4
1 5
6 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 3 3
2 4 1
⎡
⎣⎢

⎤
⎦⎥

AB = ,  BA = ,  A′B′  =  (BA)′  = . 
23 25
14 30
⎡
⎣⎢

⎤
⎦⎥

10 22 10
11 23 8
10 26 20

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

10 11 10
22 23 26
10 8 20

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
2.  Prove that tr(AB) = tr(BA) where A and B are any two matrices that are conformable for both 
multiplications.  They need not be square. 
 The ith diagonal element of AB is .  Summing over i produces tr(AB) = .  

The jth diagonal element of BA is .  Summing over i produces tr(BA) = .  

aijb jij∑ aijb jiii ∑∑

b ji aijj∑ b ji aijji ∑∑

3.   Prove that tr(A′A) = .   aijji
2∑∑

 The jth diagonal element of A′A is the inner product of the jth column of A, or   Summing 

over j produces tr(A′A)  =  .   

aiji
2 .∑

aijij aijji
2 2∑∑ = ∑∑

 
4.  Expand the matrix product X = {[AB + (CD)′][(EF)-1 + GH]}′.  Assume that all matrices are square and E 
and F are nonsingular. 
 In parts, (CD)′ = D′C′ and (EF)-1 = F-1E-1.  Then, the product is  
 {[AB + (CD)′][(EF)-1 + GH]}′   =  (ABF-1E-1 + ABGH + D′C′F-1E-1 + D′C′GH)′ 
     =  (E-1)′(F-1)′B′A′ + H′G′B′A′ + (E-1)′(F-1)′CD + H′G′CD.   
 
5.  Prove for that for K×1 column vectors, xi i = 1,...,n, and some nonzero vector, a,  

( )( ) ( )( )1
' 'n

i ii
n

=
′− − = + − −∑ 0x a x a X M X x a x a . 

 Write xi - a as [( x -i x ) + ( x - a)].  Then, the sum is 

i

n

=∑ 1
[( xi - x ) + ( x - a)] [(xi - x ) + ( x - a)]′  =   

  ( xi -i

n

=∑ 1
x )( xi - x )′ + (

i

n

=∑ 1
x  - a) ( x - a)′ 

    + ( xi -i

n

=∑ 1
x )( x  - a)′ +  (

i

n

=∑ 1
x  - a) (xi - x )′ 

Since ( x - a) is a vector of constants, it may be moved out of the summations. Thus, the fourth term is  

( x - a)  (xi -i

n

=∑ 1
x )′  =  0.  The third term is likewise.  The first term is X′M0X by the definition while the 

second is n( x - a) ( x - a)′.    
 
6.  Let A be any square matrix whose columns are [a1,a2,...,aM] and let B be any rearrangement of the columns 
of the M×M identity matrix.  What operation is performed by the multiplication AB?  What about BA? 
 B is called a permutation matrix.  Each column of B, say, bi, is a column of an identity matrix.  The 
jth column of the matrix product AB is A bi which is the jth column of A.  Therefore, post multiplication of A 
by B simply rearranges (permutes) the columns of A (hence the name).  Each row of the product BA is one of 
the rows of A, so the product BA is a rearrangement of the rows of A.  Of course, A need not be square for us 
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to permute its rows or columns.  If not, the applicable permutation matrix will be of different orders for the 
rows and columns.    

7.  Consider the 3×3 case of the matrix B in Exercise 6.  For example,    B   =    Compute B2 and 

B3.  Repeat for a 4×4 matrix.  Can you generalize your finding? 

0 0 1
0 1 0
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    B2  =  B3  =  . 
0 0 1
1 0 0
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Since each power of B is a rearrangement of I, some power of B will equal I.  If n is this power, we also find, 
therefore, that Bn-1 = B-1.  This will hold generally.   
 

8.  Calculate |A|, tr(A) and A-1 for A = . 
1 4 7
3 2 5
5 2 8

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  |A| =  1(2)(8)+4(5)(5)+3(2)(7)-5(2)(7)-1(5)(2)-3(4)(8) = -18, 
  tr(A) =  1 + 2 + 8 = 11 

 A-1 = − −

⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
18

2 5
2 8

4 7
2 8

3 5
5 8

1 7
5 8

1 7
3 5

3 2
5 2

1 4
5 2

1 4
3 2

det det det

det det

det det det

4 7
2 5

  det

 

 = .     
− −
− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

6 18 18 18 6 18
1 18 27 18 16 18

4 18 18 18 10 18

/ / /
/ / /

/ / /

 

9.   Obtain the Cholesky decomposition of the matrix  A  =  
25 7
7 13

⎡
⎣⎢

⎤
⎦⎥
.

 Recall that the Cholesky decomposition of a matrix, A, is the matrix product LU = A where L is a 

lower triangular matrix and U = L′.  Write the decomposition as  =    By 

direct multiplication, 25 =   so  λ11 = 5.  Then, λ11λ21= 7, so λ21 = 7/5 = 1.4.  Finally,  = 13, so 
λ22 = 3.322.    

25 7
7 13

⎡

⎣⎢
⎤

⎦⎥
.

λ
λ λ

11

21 22

0⎡

⎣
⎢

⎤

⎦
⎥.

λ λ
λ

11 21

220
⎡

⎣
⎢

⎤

⎦
⎥.

λ11
2 λ λ21

2
22
2+

 
10.  A symmetric positive definite matrix, A, can also be written as A = UL, where U is an upper triangular 
matrix and L = U′.  This is not the Cholesky decomposition, however. Obtain this decomposition of the matrix 
in Exercise 9. 

 Using the same logic as in the previous problem,   =    Working 

from the bottom up, 

25 7
7 13

⎡
⎣⎢

⎤
⎦⎥
.

μ μ
μ

11 12

220
⎡

⎣
⎢

⎤

⎦
⎥.

μ
μ μ

11

12 22

0⎡

⎣
⎢

⎤

⎦
⎥.

μ 22 13=  = 3.606.  Then, 7 = μ12μ22 so μ12 = 7/ 13  = 1.941.  Finally, 25 =  

 so  = 25 - 49/13 = 21.23, or μ11 = 4.61.    μ μ11
2

12
2+ μ11

2

 
11.  What operation is performed by postmultiplying a matrix by a diagonal matrix?  What about 
premultiplication? 
 The columns are multiplied by the corresponding diagonal element.  Premultiplication multiplies the 
rows by the corresponding diagonal element.    
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12.  Are the following quadratic forms positive for all values of x?  
 (a)   y = x x  x x1

2
1 2 2

228 11− + ( ),

 (b)   y = 5 7  4 6 81
2

2
2

3
2

1 2 1 3 2 3x x x x x x x x x+ + + + + ?

 The first may be written [ ] .  The determinant of the matrix is 121 - 196 

= -75, so it is not positive definite.  Thus, the first quadratic form need not be positive.  The second uses the 

matrix .  There are several ways to check the definiteness of a matrix.  One way is to check the 

signs of the principal minors, which must be positive.  The first two are 5 and 5(1)-2(2)=1, but the third, the 
determinant, is -34.  Therefore, the matrix is not positive definite.  Its three characteristic roots are 11.1, 2.9, 
and -1. It follows, therefore, that there are values of , , and for which the quadratic form is negative.   

x x
x
x1 2

1 14
14 11

1
2

  
−

−
⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

5 2 3
2 1 4
3 4 7

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x1 x2 x3

 
13.   Prove that tr(A⊗B) = tr(A)tr(B). 
  The jth diagonal block of the product is ajjB.  Its ith diagonal element is ajjbii.  If we sum in the jth 
block, we obtain  = a .  Summing down the diagonal blocks gives the trace, = 

tr(A)tr(B).   

a bjj iii∑ bjj iii∑ a bjj iiij ∑∑

 
14.  A matrix, A, is nilpotent if = 0.  Prove that a necessary and sufficient condition for a symmetric 

matrix to be nilpotent is that all of its characteristic roots be less than one in absolute value.    

lim
k

k

→∞
A

 Use the spectral decomposition to write A as CΛC′ where Λ is the diagonal matrix of characteristic 
roots.  Then, the Kth power of A is CΛKC′.  Sufficiency is obvious. Also, since if some λ is greater than one, 
ΛK must explode, the condition is necessary as well.  
 

15.  Compute the characteristic roots of  A =  . 
2 4 3
4 8 6
3 6 5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 The roots are determined by |A - λ I| = 0.  For the matrix above, this is 
 |A - λI|  = (2-λ)(8-λ)(5-λ) + 72 + 72 - 9(8-λ) - 36(2-λ) - 16(5-λ) 
                    =  -λ3 + 15λ2 - 5λ  =  -λ (λ2- 15λ + 5) = 0. 
One solution is obviously zero.  (This might have been apparent.  The second column of the matrix is twice 
the first, so it has rank no more than two, and therefore no more than two nonzero roots.)  The other two roots 
are (15 205 2± /)

)

) iji

 = .341 and 4.659.    

 
16.  Suppose A = A(z) where z is a scalar.  What is ∂x′Ax/∂z?  Now, suppose each element of x is also a 
function of z.   Once again, what is ∂x′Ax/∂z? 
 The quadratic form is , so  x x ai j ijji∑∑
              ∂x′A(z)x/∂z = = x′(∂A(z)/∂z)x where ∂A(z)/∂z is a matrix of partial derivatives. x x a zi j ijji

( /∂ ∂∑∑
Now, if each element of x is also a function of z, then, 

∂x′Ax/∂z = + x x a zi j ijji
( /∂ ∂∑∑ ( / )∂ ∂x z x ai j j∑∑  + x x z ai j ijji ( / )∂ ∂∑∑  

          = x′(∂A(z)/∂z)x +  (∂x(z)/∂z)′A(z)x(z) + x(z)′A(z)(∂x(z)/∂z) 
If A is symmetric, this simplifies a bit to x′(∂A(z)/∂z)x + 2(∂x(z)/∂z)′A(z)x(z).   
 
17.  Show that the solutions to the determinantal equations   |B - λA| = 0 and |A-1B - λI| = 0   are the same.  
How do the solutions to this equation relate to those of the equation |B-1A - μI| = 0?    
 Since A is assumed to be nonsingular, we may write 
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   B - λA  =  A(A B - λI).  Then,  |B - λA|  =  |A|×|A-1B - λI|. −1

 The determinant of A is nonzero if A is nonsingular, so the solutions to the two determinantal equations must 
be the same. B-1A is the inverse of A-1B, so its characteristic roots must be the reciprocals of those of A-1B.  
There might seem to be a problem here since  these two matrices need not be symmetric, so the roots could be 
complex.  But, for the application noted, both A and B are symmetric and positive definite.  As such, it can be 
shown  tat the solution is the same as that of a third determinantal equation involving a symmetric matrix.    
 
18.  Using the matrix A in Exercise 9, find the vector x that minimizes y = x′Ax + 2x1 + 3x2 - 10.  What is the 
value of y at the minimum?  Now, minimize y subject to the constraint x1 + x2 = 1.  Compare the two 
solutions. 
 The solution which minimizes y = x′Ax + b′x + d will satisfy ∂y∂x = 2Ax + b = 0.  For this problem, 

A = , b = , and A-1 = , so the solution is x1 =-5/552  
25 7
7 13

⎡

⎣
⎢

⎤

⎦
⎥

2
3
⎡

⎣
⎢
⎤

⎦
⎥

13 276 7 276
7 276 25 276
/ /
/ /

−
−
⎡

⎣
⎢

⎤

⎦
⎥

= -.0090597 and x2 = -61/552 = -.110507. 
 The constrained maximization problem may be set up as a Lagrangean,  
L* = x′Ax + b′x + d + λ (c′x - 1) where c = [1,1]′.  The necessary conditions for the solution are 
   ∂L*/∂x = 2Ax + b + λc  = 0  
   ∂L*/∂λ = c′x - 1 = 0, 

or,   . 
2

0 1
A c
c

x -
'

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥   

λ
b

Inserting A, b, and c produces the solution   The solution to the three equations 

is obtained by premultiplying the vector on the right by the inverse of the matrix on the left.  The solutions are 
0.27083, 0.72917, and, -25.75.  The function value at the constrained solution is 4.240, which is larger than 
the unconstrained value of -10.00787.   

50 14 1
14 26 1
1 1 0

2
3

1

1

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  =  
x
x
λ

.

 
19.   What is the Jacobian for the following transformations?   
  y1  = x1 /x2 ,  
  lny2  = ln x1- lnx2 + lnx3, 
and  y3 = x1x2x3. 
 Let capital letters denote logarithms.  Then, the three transformations can be written as 
  Y1 = X1 - X2 
  Y2 = X1 - X2 + X3 
  Y3  = X1 + X2 +X3. 

This linear transformation is Y = .  The inverse transformation is  
1 1 0
1 1 1
1 1 1

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 X  =   JX

X =  =  .  In terms of the original variables, then, x1 = y1(y2/y3)1/2 , x2 = (y3/y2)1/2, 

and 

1 1 2 1 2
0 1 2 1 2
1 1 0

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

/ /
/ /  Y J Y−1

x3 = y1y2.  The matrix of partial derivatives can be obtained directly, but an algebraic shortcut will prove useful 
for obtaining the Jacobian.  Note first that  ∂xi/∂yj = (xi/yj)(∂logxi/∂logyj).  Therefore, the elements of the 
partial derivatives of the inverse transformations are obtained by multiplying the ith row by xi, where we will 
substitute the expression for xi in terms of the ys, then multiplying the jth column by (1/yj).  Thus, the result of 
Exercise 11 will be useful here.  The matrix of partial derivatives will be 
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 =   
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

x y x y x y
x y x y x y
x y x y x y

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

/ / /
/ / /
/ / /

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x
x

x

1

2

3

0 0
0 0
0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 2 1 2
0 1 2 1 2
1 1 0

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

/ /
/ /

1 0 0
0 1 0
0 0 1

1

2

3

/
/

/
.

y
y

y

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The determinant of the product matrix is the product of the three determinants.  The determinant of the center 
matrix is -1/2.  The determinants of the diagonal matrices are the products of the diagonal elements. 
Therefore, the Jacobian is J =  abs(|∂x/∂y′|)= ½(x1x2x3)/(y1y2y3) = 2(y1/y2) (after making the substitutions for 
xi).  
 
20.  Prove that exchanging two columns of a square matrix reverses the sign of its determinant.  (Hint: use a 
permutation matrix. See Exercise 6.) 
 Exchanging the first two columns of a matrix is equivalent to postmultiplying it by a permutation 
matrix B = [e2,e1,e3,e4,...] where ei is the ith column of an identity matrix.  Thus, the determinant of the matrix 
is |AB| = |A| |B|.  The question turns on the determinant of B. Assume that A and B have n columns. To obtain 
the determinant of B, merely expand it along the first row. The only nonzero term in the determinant is (-1)|In-

1 | = -1, where In-1 is the (n-1) (n-1) identity matrix.  This completes the proof.  ×
  
21.   Suppose x=x(z) where z is a scalar.  What is ∂[(x′Ax)/(x′Bx)]/z? 
 The required derivatives are given in Exercise 16.  Let g = ∂x/∂z and let the numerator and 
denominator be a and b, respectively. Then, 
 ∂(a/b)/∂ z    =  [b(∂a/∂z) - a(∂b/∂z)]/b2 
        =  [x′Bx(2x′Ag) - x′Ax(2x′Bg)] / (x′Bx) 2=  2[x′Ax/x′Bx][x′Ag/x′Ax - x′Bg/x′Bx].  
 
22.  Suppose y is an n×1 vector and X is an n×K matrix.  The projection of y into the column space of X is 
defined in the text after equation (2-55), = Xb.  Now, consider the projection of y* = cy into the column 
space of X* = XP where c is a scalar and P is a nonsingular K

ŷ
× K matrix.  Find the projection of y* into the 

column space of X*.  Prove that the cosine of the angle between y* and its projection into the column space of 
X* is the same as that between y and its projection into the column space of X.  How do you interpret this 
result? 
 The projection of y* into the column space of X* is X*b* where b* is the solution to the set of 
equations X*′y*  =  X*′X*b*  or  P′X′(cy)  =  P′X′XPb*.  Since P is nonsingular, P′ has an inverse.  
Premultiplying the equation by (P′)-1, we have cX′y  =  X′X(Pb*)  or  X′y  =  X′X[(1/c)Pb*].  Therefore, in 
terms of the original y and X, we see that b  =  (1/c)Pb*  which implies b*  =  cP-1 b.  The projection is X*b*  =  
(XP)(cP-1b)  =  cXb.  We conclude, therefore, that the projection of y* into the column space of X* is a 
multiple c of the projection of y into the space of X.  This makes some sense, since, if P is a nonsingular 
matrix, the column space of X* is exactly the same as the same as that of X.  The cosine of the angle between 
y* and its projection is that between cy and cXb.  Of course, this is the same as that between y and Xb since 
the length of the two vectors is unrelated to the cosine of the angle between them.  Thus,  
cosθ = (cy) ′(cXb))/(||cy||×||cXb||)  =  (y′Xb))/(||y||×||Xb||).   
 

23.   For the matrix X′  = , compute P  =  X(X ′X)-1X′ and M = (I - P).  Verify that MP = 0.  

Let   Q  =   (Hint:  Show that M and P are idempotent.) 

1 1 1 1
4 2 3 5− −
⎡

⎣
⎢

⎤

⎦
⎥

1 3
2 8
⎡

⎣
⎢

⎤

⎦
⎥

(a)  Compute the P and M based on XQ instead of X. 
(b)  What are the characteristic roots of M and P? 

 First,  X′X  =  , (X ′X)-1 =  ,  
4 0
0 54
⎡

⎣
⎢

⎤

⎦
⎥

1 4 0
0 1 54
/

/
⎡

⎣
⎢

⎤

⎦
⎥
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X(X ′X)-1X ′ =   =  

1 4
1 2
1 3
1 5

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 4 0
0 1 54
/

/
⎡

⎣
⎢

⎤

⎦
⎥

1 1 1 1
4 2 3 5− −
⎡

⎣
⎢

⎤

⎦
⎥

1
108

59 11 51 13
11 35 15 47
51 15 45 3
13 47 3 77

−

−
− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  =  P 

 M  =  I - P  = 1
108

49 11 51 13
11 73 15 47
51 15 63 3

13 47 3 31

− −
− −
− −

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−
 

 (a)  There is no need to recompute the matrices M and P for XQ, they are the same.  Proof:  The 
counterpart to P is (XQ)[(XQ) ′(XQ)]-1(XQ) ′ = XQ[Q ′X ′XQ]-1Q ′X ′ =  
XQQ-1(X ′X)-1(Q ′)-1Q ′X ′ = X(X′X)-1X ′.  The M matrix would be the same as well.  This is an application 
of the result found in the previous exercise.  The P matrix is the projection matrix, and, as we found, the 
projection into the space of X is the same as the projection into the space of XQ. 
 (b)  Since M and P are idempotent, their characteristic roots must all be either 0 or 1.  The trace of 
the matrix equals the sum of the roots, which tells how many are 1 and 0.  For the matrices above, the traces of 
both M and P are 2, so each has 2 unit roots and 2 zero roots.   
 
24.  Suppose that A is an n×n matrix of the form A = (1-ρI) + ρii′, where i is a column of 1s and 0 < ρ < 1.  
Write out the format of A explicitly for n = 4.  Find all of the characteristic roots and vectors of A.  (Hint: 
There are only two distinct characteristic roots, which occur with multiplicity 1 and n-1.  Every c of a certain 
type is a characteristic vector of A.)  For an application which uses a matrix of this type, see Section 14.5 on 
the random effects model. 

 For n = 4, A =  .  There are several ways to analyze this matrix.  Here is a simple 

shortcut. The characteristic roots and vectors satisfy [(1-ρ)I + ρii′]c  =  λc.  Multiply this out to obtain 

1
1

1
1

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(1-ρ)c + ρii′c = λc or ρii′c = [λ- (1-ρ)]c.  Let μ= λ - (1-ρ), so ρii′c=μc.  We need only find the characteristic 
roots of ρii′,μ.  The  characteristic roots of the original matrix are just λ = μ + (1-ρ).   Now, ρii′ is a matrix 
with rank one, since every column is identical.  Therefore, n-1 of the μs are zero.  Thus, the original matrix 
has n-1 roots equal to 0 + (1-ρ) = (1 -ρ).  We can find the remaining root by noting that the sum of the roots of 
ρii′ equals the trace of ρii′.  Since ρii′ has only one nonzero root, that root is the trace, which is nρ.  Thus, the 
remaining root of the original matrix is (1 - ρ+ nρ).  The characteristic vectors satisfy the equation  ρii′c  =  
μc.  For the nonzero root, we have ρii′c  =  nρc.  Divide by nρ to obtain  i(1/n)i′c  =  c.  This equation states 
that for each element in the vector, ci  =  (1/n) cii∑ .   This implies that every element in the characteristic 

vector corresponding to the root (1-ρ+nρ) is the same, or c is a multiple of a column of ones.  In particular, so 
that it will have unit length, the vector is ( / )1 n i.  For the remaining zero roots, the characteristic vectors 
must satisfy ρi(i′c)  =  0c = 0.  If the characteristic vector is not to be a column of zeroes, the only way to 
make this an equality is to require i′c to be zero.  Therefore, for the remaining n-1 characteristic vectors, we 
may use any set of orthogonal vectors whose elements sum to zero and whose inner products are one.  There 
are an infinite number of such vectors.  For example, let D be any arbitrary set of n-1 vectors containing n 
elements.  Transform all columns of D into deviations from their own column means.  Thus, we let F  =  M0D 
where M0 is defined in Section 2.3.6.  Now, let C  =  F(F′F)-2.  C is a linear combination of the columns of F, 
so its columns sum to zero.  By multiplying it out and using the results of Section 2.7.10, you will find that 
C′C = I, so the columns are orthogonal and have unit length.    
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25.  Find the inverse of the matrix in Exercise 24. [Hint:  Use (A-66).] 
 Using the hint, the inverse is 

 
( ) ( )[( ) ] [( ) ] [ ' ][( ) ]

'[( ) ]
{ [ / ( )] '1 1 1

1 1
1

1
11

1 1

1
−

− −

+ − −
− +−

− −

−
ρ

ρ ρ ρ

ρ ρ ρ ρ
ρ ρ ρI I ii I

i I i
I i  -     =    -  n }i  

 
26.  Prove that every matrix in the sequence of matrices Hi+1  =  Hi  +  didi′, where H0 = I, is positive definite.   
For an extension, prove that every matrix in the sequence of matrices in (E-22) is positive definite if H0 = I. 
 By repeated substitution, we find Hi+1  =  I + .  A quadratic form in Hi+1 is, therefore d dj jj

i '
=∑ 1

  x′Hi+1x =  x′x  +    = x′x  +   (x d )(d x)' 'j jj
i
=∑ 1 (x d )2' jj

i
=∑ 1

This is obviously positive for all x.  A simple way to establish this for the matrix in (E-22) is to note that in 
spite of its complexity, it is of the form  Hi+1  =  Hi  +  didi′  +  fifi′.  If this starts with a positive definite 
matrix, such as I, then the identical argument establishes its positive definiteness.  
 

27.  What is the inverse matrix of   P  =  ?  What are the characteristic roots of P? 
cos( ) sin( )
sin( ) cos( )

x x
x x−

⎡

⎣
⎢

⎤

⎦
⎥

 The determinant of P is cos2(x) + sin2(x) = 1, so the inverse just reverses the signs of the two off 
diagonal elements. The two roots are the solutions to |P-λI| = 0, which is cos2(x) + sin2(x) - 2λcos(x) + λ2 = 0.  
This simplifies because cos2(x) + sin2(x) = 1.  Using the quadratic formula, then, λ=  cos(x)  (cos2(x) - 1)1/2.  
But, cos2(x) - 1 = -sin2(x).  Therefore, the imaginary solutions to the resulting quadratic are λ1,λ2 = cos(x) ± 
isin(x).   

±

 
28.  Derive the off diagonal block of A-1 in Section B.6.4. 
 For the simple 2×2 case, F2 is derived explicitly in the text, as F2 = (x′M0x)-1  = 21/ ( )ii

x x−∑ . 

Using (2-74), the off diagonal element is just F2( xii∑ )/n  =  2/ ( )ii
x x x−∑ .  To extend this to a matrix 

containing a constant and K-1 variables, use the result at the end of the section.  The off diagonal vector in A-1 
when there is a constant and K-1 other variables is -F2A21(A11)-1  =  [X′M0X]-1 x   .  In all cases, A11 is just n, 
so (A11)-1 is 1/n.   
 
29.  (This requires a computer.)  For the X′X matrix at the end of Section 2.4.1, 
 (a)  Compute the characteristic roots of X′X. 
 (b)  Compute the condition number of X′X.  (Do not forget to scale the columns of the matrix so that 
            the diagonal elements are 1.) 

 The matrix is   

15000 120 00 19 310 11179 99 770
120 00 1240 0 164 30 10359 87560
19 310 164 30 25218 148 98 13122
11179 10359 148 98 94386 799 02
99 770 87560 13122 799 02 716 67

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Its characteristic roots are 2486, 72.96, 19.55, 2.027, and .007354.  To compute the condition number, we first 
extract D = diag(15,1240,25.218,943.86,716.67).  To scale the matrix, we compute V  =  D-2X′XD-2. 

The resulting matrix is . 

1 8798823 992845 939515 962265
879883 1 929119 957532 928828
992845 929119 1 965648 976079
939515 957532 965648 1 971503
962265 928828 976079 971503 1

. . . .
. . .
. . . .
. . . .
. . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

.

The characteristic roots of this matrix are 4.801, .1389, .03716, .02183, and .0003527.  The square root of the 
largest divided by the smallest is 116.675.  These data are highly collinear by this measure. 
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Appendix B 
 

Probability and Distribution Theory 
 
1.  How many different 5 card poker hands can be dealt from a deck of 52 cards? 

 There are = (52×51×51...×1)/[(5×4×3×2×1)(47×46×...×1)] = 2,598,960 possible hands.   
52
5

⎛
⎝
⎜

⎞
⎠
⎟

 
2.  Compute the probability of being dealt 4 of a kind in a poker hand. 
 There are 48(13) possible hands containing 4 of a kind and any of the remaining 48 cards.  Thus, 
given the answer to the previous problem, the probability of being dealt one of these hands is 48(13)/2598960 
=.00024, or less than one chance in 4000.    
 
3.  Suppose a lottery ticket costs $1 per play.  The game is played by drawing 6 numbers without replacement 
from the numbers 1 to 48. If you guess all six numbers, you win the prize.  Now, suppose that N = the number 
of tickets sold and P = the size of the prize.  N and P are related by 
     N  =  5  +  1.2P 
     P  =  1  +   .4N 
N and P are in millions.  What is the expected value of a ticket in this game? (Don't forget that you might have 
to share the prize with other winners.) 
 The size of the prize and number of tickets sold are jointly determined.  The solutions to the two 
equations are N = 11.92 million tickets and P = $5.77 million.  The number of possible combinations of 48 

numbers without replacement is = (48×47×46...×1)/[(6×5×4×3×2×1)(42×41×...×1)] = 12,271,512 so the 

probability of making the right choice is 1/12271512 = .000000081.  The expected number of winners is the 
expected value of a binomial random variable with N trials and this success probability, which is N times the 
probability, or 11.92/12.27 = .97, or roughly 1.  Thus, one would not expect to have to share the prize.  Now, 
the expected value of a ticket is  Prob[win](5.77 million - 1) + Prob[lose](-1) . -53 cents.  

48
6

⎛
⎝
⎜

⎞
⎠
⎟

 
4.  If x has a normal distribution with mean 1 and standard deviation 3, what are 
 (a)  Prob[|x| > 2]. 
 (b)  Prob[x > -1 | x < 1.5]. 
 Using the normal table, 
 (a)  Prob[|x| > 2]   = 1 - Prob[|x| < 2]  
                           = 1 - Prob[-2 < x < 2] 
     = 1 - Prob[(-2-1)/3 < z < (2-1)/3] 
    = 1 - [F(1/3) - F(-1)] = 1 - .6306 + .1587 = .5281 
 (b)  Prob[x > -1 | x < 1.5]   =  Prob[-1 < x < 1.5] / Prob[x < 1.5] 
        Prob[-1 < x < 1.5]  =  Prob[(-1-1)/3 < z < (1.5-1)/3)] 
          =  Prob[z < 1/6] - Prob[z < -2/3] 
          = .5662 - .2525 = .3137. 
The conditional probability is .3137/.5662 = .5540.   
 
5.  Approximately what is the probability that a random variable with chi-squared distribution with 264 
degrees of freedom is less than 297?  
 We use the approximation in (3-37), z = [2(297)]2 - [2(264) - 1]2  =  1.4155, so the probability is 
approximately .9215.  To six digits, the approximation is .921539 while the correct value is .921559.  
 
6.  Chebychev Inequality  For the following two probability distributions, find the lower limit of the 
probability of the indicated event using the Chebychev inequality and the exact probability using the 
appropriate table: 
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 (a)  x ~ Normal[0,32], and -4 < x < 4. 
 (b)  x ~ chi-squared, 8 degrees of freedom, 0 < x < 16. 
 The inequality given in (3-18) states that Prob[|x - μ| < kσ] > 1 - 1/k2.  Note that the result is not 
informative if k is less than or equal to 1. 
 (a)  The range is 4/3 standard deviations, so the lower limit is 1 - (3/4)2 or 7/16 = .4375.  From the 
standard normal table, the actual probability is 1 - 2Prob[z < -4/3] = .8175. 
 (b)  The mean of the distribution is 8 and the standard deviation is 4.  The range is, therefore, μ ± 2σ.  
The lower limit according to the inequality is 1 - (1/2)2 = .75.  The actual probability is the cumulative 
chi-squared(8) at 16, which is a bit larger than .95. (The actual value is .9576.)    
 
7.  Given the following joint probability distribution, 
                  X 
          |  0      1     2 
        --+------------------ 
         0|  .05    .1    .03 
   Y     1|  .21    .11   .19 
         2|  .08    .15   .08 
 (a)  Compute the following probabilities: Prob[Y < 2], Prob[Y < 2, X > 0], Prob[Y = 1, X > 1]. 
 (b)  Find the marginal distributions of X and Y. 
 (c)  Calculate E[X], E[Y], Var[X], Var[Y], Cov[X,Y], and E[X2Y 3]. 
 (d)  Calculate Cov[Y,X2]. 
 (e)  What are the conditional distributions of Y given X = 2 and of X given Y > 0? 
 (f)  Find E[Y|X] and Var[Y|X].  Obtain the two parts of the variance decomposition 
       Var[Y]  =  Ex[Var[Y|X]]  +  Varx[E[Y|X]]. 
 We first obtain the marginal probabilities.  For the joint distribution, these will be 
   X:  P(0) = .34, P(1) = .36, P(2) = .30 
 Y:  P(0) = .18, P(1) = .51, P(2)  = .31 
Then, 
 (a)  Prob[Y < 2] = .18 + .51 = .69. 
                      Prob[Y < 2, X > 0] = .1 + .03 + .11 + .19 = .43. 
        Prob[Y = 1, X $ 1] = .11 + .19 = .30. 
 (b)  They are shown above. 
 (c)  E[X]  = 0(.34) + 1(.36) + 2(.30) = .96 
       E[Y]  = 0(.18) + 1(.51) + 2(.31) = 1.13 
       E[X2]  = 02(.34) + 12(.36) + 22(.30)  = 1.56 
       E[Y2]  = 02(.18) +  12(.51) + 22(.31)  = 1.75 
       Var[X]   =  1.56 - .962  = .6384 
       Var[Y]   =  1.75 - 1.132 = .4731 
       E[XY]    =  1(1)(.11)+1(2)(.15)+2(1)(.19)+2(2)(.08)  =  1.11 
       Cov[X,Y]  = 1.11 - .96(1.13) = .0252 
       E[X2Y 3]  = .11 + 8(.15) + 4(.19) + 32(.08) = 4.63. 
 (d)  E[YX2]   = 1(12).11+1(22).19+2(12).15+2(22).08 = 1.81 
       Cov[Y,X2]  = 1.81 - 1.13(1.56) = .0472. 
 (e)  Prob[Y = 0 * X = 2]  = .03/.3 = .1 
        Prob[Y = 1 * X = 2]  = .19/.3 = .633 
       Prob[Y = 1 * X = 2]  = .08/.3 = .267 
       Prob[X = 0 * Y > 0]  = (.21 + .08)/(.51 + .31) = .3537 
       Prob[X = 1 * Y > 0]  = (.11 + .15)/(.51 + .31) = .3171 
       Prob[X = 2 * Y > 0]  = (.19 + .08)/(.51 + .31) = .3292. 
 (f)  E[Y * X=0]   =  0(.05/.34)+1(.21/.34)+2(.08/.34) = 1.088 
      E[Y2 * X=0]  =  12(.21/.34)+22(.08/.34) = 1.559 
      Var[Y* X=0]    =  1.559 - 1.0882 = .3751 
      E[Y*X=1]   =  0(.1/.36)+1(.11/.36)+2(.15/.36) =  1.139 
      E[Y2*X=1]  =  12(.11/.36)+22(.15/.36) = 1.972 
      Var[Y*X=1]    =  1.972 - 1.1392 = .6749 
      E[Y*X=2]   =  0(.03/.30)+1(.19/.30)+2(.08/.30) =  1.167 
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      E[Y2*X=2]  =  12(.19/.30)+22(.08/.30) =  1.700 
      Var[Y*X=2]    =  1.700 - 1.1672 = .6749 = .3381 
       E[Var[Y*X]]  = .34(.3751)+.36(.6749)+.30(.3381) = .4719 
      Var[E[Y*X]]  = .34(1.0882)+.36(1.1392)+.30(1.1672) - 1.132 = 1.2781 - 1.2769 = .0012 
      E[Var[Y*X]] + Var[E[Y*X]] = .4719 + .0012 = .4731 =  Var[Y].   ~ 
 
8.  Minimum mean squared error predictor.  For the joint distribution in Exercise 7, compute  
E[y - E[y|x]]2.  Now, find the a and b which minimize the function E[y - a - bx]2.  Given the solutions, verify 
that E[y - E[y|x]]2  <  E[y - a - bx]2.  The result is fundamental in least squares theory.  Verify that the a and b 
which you found satisfy (3-68) and (3-69). 
                                (x=0)               (x=1)              (x=2) 
E[y - E[y|x]]2 =  (y=0)          .05(0 - 1.088)2 + .10(0 - 1.139)2  + .03(0 - 1.167)2 
  (y=1)      + .21(1 - 1.088)2 + .11(1 - 1.139)2  + .19(1 - 1.167)2 
  (y=2)      + .08(2 - 1.088)2 + .15(2 - 1.139)2  + .08(2 - 1.167)2 
          =  .4719  =  E[Var[y|x]]. 
The necessary conditions for minimizing the function with respect to a and b are 
   ∂E[y - a - bx]2/∂a = 2E{[y - a - bx](-1)} = 0 
   ∂E[y - a - bx]2/∂b = 2E{[y - a - bx](-x)} = 0. 
First dividing by -2, then taking expectations produces 
   E[y] - a - bE[x]           = 0 
   E[xy] - aE[x] - bE[x2] = 0. 
Solve the first for a = E[y] - bE[x] and substitute this in the second to obtain 
    E[xy] - E[x](E[y] - bE[x]) - bE[x2] = 0 
or   (E[xy] - E[x]E[y])                            = b(E[x2] - (E[x])2) 
or         b  =  Cov[x,y] / Var[x]  =  -.0708 / .4731  =  -.150 
and        a  =  E[y] - bE[x] = 1.13 - (-.1497)(.96)    =  1.274. 
The linear function compared to the conditional mean produces 
            x=0      x=1     x=2 
   E[y|x]         1.088    1.139   1.167 
   a + bx          1.274    1.124    .974 
Now, repeating the calculation above using a + bx instead of E[y|x] produces 
           (x=0)             (x=1)            (x=2) 
E[y - a - bx]2 =   (y=0)        .05(0 - 1.274)2 + .10(0 - 1.124)2 + .03(0 - .974)2 
   (y=1)      + .21(1 - 1.274)2 + .11(1 - 1.124)2 + .19(1 - .974)2 
   (y=2)      + .08(2 - 1.274)2 + .15(2 - 1.124)2 + .08(2 - .974)2 
         =  .4950  >  .4719.   
 
9.  Suppose x has an exponential distribution,  f(x)  =  θe-θx,  x > 0.  Find the mean, variance, skewness, and 
kurtosis of x. The Gamma integral will be useful for finding the raw moments.) 

 In order to find the central moments, we will use the raw moments, E[x r ]  = .   These 

can be obtained by using the gamma integral.  Making the appropriate substitutions, we have 

θ θx e dxr x−
∞

∫   

0

    E[xr]  =  [θΓ(r+1)]/θr+1  =  r!/θ r. 
The first four moments are: E[x]   =  1/θ, E[x2]  =  2/θ2,  E[x3]  =  6/θ3, and E[x4]  =  24/θ4.  The mean is, thus, 
1/θ and the variance is 2/θ2 - (1/θ)2 = 1/θ2.  For the skewness and kurtosis coefficients, we have  
   E[x - 1/θ]3 = E[x3] - 3E[x2]/θ + 3E[x]/θ2 - 1/θ3 = 2/θ3. 
The normalized skewness coefficient is 2.  The kurtosis coefficient is 
   E[x - 1/θ]4 = E[x4] - 4E[x3]/θ + 6E[x2]/θ2 - 4E[x]/θ3 + 1/θ4  =  9/θ4. 
The degree of excess is 6.    
 
10.  For the random variable in Exercise 9, what is the probability distribution of the random variable y = e-x?  
What is E[y]?  Prove that the distribution of this y is a special case of the beta distribution in (3-40). 
 If y = e-x, then x = -lny, so the Jacobian is |dx/dy| = 1/y.  The distribution of y is, therefore, 
   f(y)  =  θe-θ(-lny)(1/y)  =  (θyθ)/y = θyθ-1 for 0 < y < 1. 
This is in the form of (3-40) with y instead of x, c = 1, β = 1, and α= θ.   
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11.  If the probability density of y is αy2(1-y)3 for y between 0 and 1, what is α?  What is the probability that y 
is between .25 and .75? 
 This is a beta distribution of the form in (3-40) with α = 3 and β = 4.  Therefore, the constant is 
Γ(3+4)/(Γ(3)Γ(4)) = 60.  The probability is  

 60y2(1-y)3dy =  60 (y2 - 3y3 + 3y4 - y5)dy  =  60(y3/3 - 3y4/4 + 3y5/5 - y6/6)| .
.    = .79296. 

.

.

25

75
∫ .

.

25

75
∫ 25

75

 
12.    Suppose x has the following discrete probability distribution:  X                1    2    3    4 
       Prob[X = x]    .1   .2   .4   .3. 
Find the exact mean and variance of X.  Now, suppose Y  =  1/X.  Find the exact mean and variance of Y.  Find 
the mean and variance of the linear and quadratic approximations to Y = f(X).  Are the mean and variance of 
the quadratic approximation closer to the true mean than those of the linear approximation? 
 We will require a number of moments of x, which we derive first: 
  E[x]   =  .1(1) + .2(2) + .4(3) + .3(4)  = 2.9 =  μ 
  E[x2]  =  .1(1) + .2(4) + .4(9) + .3(16)  = 9.3 
  Var[x] =  9.3 - 2.92  =  .89                =  σ2. 
For later use, we also obtain 
  E[x - μ]3  =  .1(1 - 2.9)3 + ...    =  -.432 
  E[x - μ]4  =  .1(1 - 2.9)4 + ...    =  1.8737. 
The approximation is y = 1/x.  The exact mean and variance are 
 E[y]   =   .1(1) + .2(1/2) + .4(1/3) + .3(1/4) = .40833 
 Var[y] =  .1(12) + .2(1/4) + .4(1/9) + .3(1/16) - .408332  =  .04645. 
The linear Taylor series approximation around μ is y ≈ 1/μ + (-1/μ2)(x - μ).  The mean of the linear 
approximation is 1/μ = .3448 while its variance is (1/μ4)Var[x-μ] = σ2/μ4 = .01258.  The quadratic 
approximation is  y  ≈   1/μ + (-1/μ2)(x - μ) + (1/2)(2/μ3)(x - μ)2 
              =  1/μ  -  (1/μ2)(x - μ) + (1/μ3)(x - μ)2. 
The mean of this approximation is  E[y] ≈ 1/μ + σ2/μ3 = .3813 while the variance is approximated by the 
variance of the right hand side, 
  (1/μ4)Var[x - μ] + (1/μ6)Var[x - μ]2 - (2/μ5)Cov[(x-μ),(x-μ)2]  
    =  (1/μ4)σ2 + (1/μ6)(E[x - μ]4 - σ4] - (2/μ5)E[x - μ]3   
    =  .01498. 
Neither approximation provides a close estimate of the variance.  Note that in both cases, it would be possible 
simply to evaluate the approximations at the four values of x and compute the means and variances directly.  
The virtue of the approach above is that it can be applied when there are many values of x, and is necessary 
when the distribution of x is continuous.   
 
13.  Interpolation in the chi-squared table.  In order to find a percentage point in the chi-squared table 
which is between two values, we interpolate linearly between the reciprocals of the degrees of freedom. The 
chi-squared distribution is defined for noninteger values of the degrees of freedom parameter [see (3-39)], but 
your table does not contain critical values for noninteger values.  Using linear interpolation, find the 99% 
critical value for a chi-squared variable with degrees of freedom parameter 11.3.   
 The 99% critical values for 11 and 12 degrees of freedom are 24.725 and 26.217.  To interpolate 
linearly between these values for the value corresponding to 11.3 degrees of freedom, we use 

    c  =  26.217 +   ( . / )
( / / )
1113 1 12
1 11 1 12

−
−

 (24.725 - 26.217) = 25.2009.   

 
14.  Suppose x has a standard normal distribution.  What is the pdf of the following random variable? 

y e y
x

= < <
−1

2
0 1

2

2

2
π π

, .  [Hints:  You know the distribution of z = x2 from (C-30).  The density of this z 

is given in (C-39).  Solve the problem in terms of y = g(z).] 
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 We know that z = x2 is distributed as chi-squared with 1 degree of freedom.  We seek the density of y 
= ke-z/2 where k = (2π)-2. The inverse transformation is z = 2lnk - 2lny, so the Jacobian is |-2/y| = 2/y. The 
density of z is that of Gamma with parameters 1/2 and 1/2.  [See (C-39) and the succeeding discussion.]  Thus, 

    f(z)  =  ( / )
( / )

, .
/

/ /1 2
1 2

0
1 2

2 1 2

Γ
e z zz− − >  

Note, Γ(1/2) = π .  Making the substitution for z and multiplying by the Jacobian produces 

   f(y) = ( / )
( / )

( ln ln )
/

( / )( ln ln ) /1 2
1 2

2 2 2
1 2

1 2 2 2 1 2

Γ y
e kk y− − −− y  

The exponential term reduces to y/k.  The scale factor is equal to 2k/y.  Therefore, the density is simply 
f(y)  =  2(2lnk - 2lny)-1/2 = 2 (lnk - lny)-1/2  =  {2/[ln(1/(y(2π)1/2))]}, 0 < y < (2π)-1/2.   
 
15.  The fundamental probability transformation.  Suppose that the continuous random variable x has 
cumulative distribution F(x).  What is the probability distribution of the random variable y = F(x)?  
(Observation: This result forms the basis of the simulation of draws from many continuous distributions.) 
 The inverse transformation is x(y) = F-1(y), so the Jacobian is dx/dy = F-1′(y) = 1/f(x(y)) where f(.) is 
the density of x.  The density of y is  f(y)  =  f [F-1(y)] × 1/f (x(y)) = 1, 0 < y < 1.  Thus, y has a continuous 
uniform distribution.  Note, then, for purposes of obtaining a random sample from the distribution, we can 
sample y1,...,yn from the distribution of y, the continuous uniform, then obtain x1 = x1(y1), ... xn = xn(yn).  
 
16.  Random number generators. Suppose x is distributed uniformly between 0 and 1, so f(x) = 1, 0 < x < 1.  
Let θ be some positive constant.  What is the pdf of y = -(1/θ)lnx.  (Hint: See Section 3.5.)  Does this suggest 
a means of simulating draws from this distribution if one has a random number generator which will produce 
draws from the uniform distribution?  To continue, suggest a means of simulating draws from a logistic 
distribution, f(x) =  e-x/(1+e-x)2. 
 The inverse transformation is x = e-θy so the Jacobian is dx/dy = θe-θy.  Since f(x) = 1, this Jacobian is 
also the density of y.  One can simulate draws y from any exponential distribution with parameter θ by 
drawing observations x from the uniform distribution and computing y = -(1/θ)lnx.  Likewise, for the logistic 
distribution, the CDF is F(x)  =  1/(1 + e-x).  Thus, draws y from the uniform distribution may be taken as 
draws on F(x).   Then, we may obtain x as  x  =  ln[F(x)/(1 - F(x)]  =  ln[y/(1 - y)].  
 
17.  Suppose that x1 and x2 are distributed as independent standard normal.  What is the joint distribution of y1 
= 2 + 3x1 + 2x2 and y2 = 4 + 5x1?  Suppose you were able to obtain two samples of observations from 
independent standard normal distributions.  How would you obtain a sample from the bivariate normal 
distribution with means 1 and 2 variances 4 and 9 and covariance 3? 
 We may write the pair of transformations as 

   y     =     =     =   b  +  Ax. 
y
y

1

2

⎡

⎣
⎢

⎤

⎦
⎥

2
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⎦
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⎣
⎢
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⎡

⎣
⎢

⎤

⎦
⎥ +   

x
x

The problem also states that  x ~ N[0,I].  From (C-103), therefore, we have y ~ N[b + A0, AIAN] where 

E[y]  =  b + A0  =  b  =  , Var[y]  =  AA′  =  . 
2
4
⎡

⎣
⎢
⎤

⎦
⎥

13 15
15 25
⎡

⎣
⎢

⎤

⎦
⎥

 For the second part of the problem, using our result above, we would require the A and b such that 

b + A0 = (1,2)′  and  AA′   =  .  The vector is obviously  b = (1,2)′.  In order to find the elements of A, 

there are a few ways to proceed.  The Cholesky factorization used in Exercise 9 is probably the simplest.  Let 
y1  =  1 + 2x1. Thus, y1 has mean 1 and variance 4 as required.  Now, let y2  =  2 + w1x1 + w2x2.  The covariance 
between y1 and y2 is 2w1, since x1 and x2 are uncorrelated. Thus, 2w1 = 3, or w1 = 1.5.  Now, Var[y2] = 

= 9, so =  9 - 1.52  =  6.75. The transformation matrix is, therefore, A   =  .  This is 

the Cholesky factorization of the desired AA′ above.  It is worth noting, this provides a simple method of 
finding the requisite A matrix for any number of variables.  Finally, an alternative method would be to use the 

4 3
3 9
⎡

⎣
⎢

⎤

⎦
⎥

w w1
2

2
2+ w2

2 2 0
15 2 598. .
⎡

⎣
⎢

⎤

⎦
⎥
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characteristic roots and vectors of AA′.  The inverse square root defined in Section B.7.12 would also provide 
a method of transforming x to obtain the desired covariance matrix.  
 
18.  The density of the standard normal distribution, denoted φ(x), is given in (C-28).  The function based on 
the ith derivative of the density given by Hi = [(-1)idiφ (x)/dxi]/φ(x), i = 0,1,2,... is called a Hermite polynomial.  
By definition, H0 = 1. 
 (a)  Find the next three Hermite polynomials. 
 (b)  A useful device in this context is the differential equation 
  drφ(x)/dxr + xdr-1φ(x)/dxr-1 + (r-1)dr-2φ(x)/dxr-2 = 0. 
Use this result and the results of part a. to find H4 and H5. 
 The crucial result to be used in the derivations is dφ(x)/dx  =  -xφ(x).   Therefore, 
   d2φ(x)/dx2  =  (x2 - 1)φ(x) 
and   d3φ(x)/dx3  =  (3x - x3)φ(x). 
The polynomials are H1  =  x,  H2  =  x2 - 1, and H3  =  x3 - 3x. 
For part (b), we solve for drφ(x)/dxr =  -xdr-1φ(x)/dxr-1 - (r-1)dr-2φ(x)/dxr-2 
Therefore,  d4φ(x)/dx4 = -x(3x - x3)φ(x) - 3(x2 - 1)φ(x)  =  (x4 - 6x2 + 3)φ(x) 
and   d5φ(x)/dx5 = (-x5 + 10x3 - 15x)φ(x). 
Thus,   H4  =  x4 - 6x2 + 3 and H5  =  x5 - 10x3 + 15x.   
 
19.  Continuation: orthogonal polynomials: The Hermite polynomials are orthogonal if x has a standard 
normal distribution.  That is, E[HiHj] = 0 if i ≠ j.  Prove this for the H1, H2, and H3 which you obtained above. 
   E[H1(x)H2(x)] = E[x(x2 - 1)] = E[x3 - x] = 0 
since the normal distribution is symmetric. Then,  
   E[H1(x)H3(x)] = E[x(x3 - 3x)] = E[x4 - 3x2] = 0. 
The fourth moment of the standard normal distribution is 3 times the variance.  Finally, 
   E[H2(x)H3(x)] = E[(x2 - 1)(x3 - 3x)]  =  E[x5 - 4x3 + 3x]  =  0 
because all odd order moments of the normal distribution are zero. (The general result for extending the 
preceding is that in a product of Hermite polynomials, if the sum of the subscripts is odd, the product will be a 
sum of odd powers of x, and if even, a sum of even powers.  This provides a method of determining the higher 
moments of the normal distribution if they are needed.  (For example, E[H1H3] = 0 implies that E[x4] = 
3E[x2].)   
 
20.  If x and y have means μx and μy and variances  and and covariance σxy, what is the approximation 
of the covariance matrix of the two random variables f1 = x/y and f2 = xy? 

σ x
2 σ y

2

 The elements of JΣJN are (1,1) = σ
μ

σ μ

μ

σ μ

μ
x

y

y
x

y

xy x

y

2

2

2
2

4 3

2
+ −  

    (1,2) = σ - σ /  x
2

y
2 μ x

2 μ y
4

    (2,2) = σ μ  +  + 2σxyμxμy.    x
2

y
4 σ y

2 μ x
2

 
21.  Factorial Moments.  For finding the moments of a distribution such as the Poisson, a useful device is the 
factorial moment. (The Poisson distribution is given in Example 3.1.)   The density is 
    f(x)  =  e-λλx / x!, x = 0,1,2,... 

To find the mean, we can use E[x]   =   =   xf x
x

( )
=

∞∑ 0
xe xx

x
−

=

∞∑ λλ / !
0

          =  e xx
x

− −
=

∞
−∑ λλ 1

1
1/ ( )!

          =  λ  e yy
y

−
=

∞∑ λλ / !
0

     =  λ, 
since the probabilities sum to 1.  To find the variance, we will extend this method by finding E[x(x-1)], and 
likewise for other moments.  Use this method to find the variance and third central moment of the Poisson 
distribution.  (Note that this device is used to transform the factorial in the denominator in the probability.) 
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 Using the same technique, 

   E[x(x-1)]   =  =  x x f x
x

( ) (−
=

∞∑ 1
0

) !x x e xx
x

( ) /− −
=

∞∑ 1
0

λλ

          =   e xx
x

− −
=

∞
−∑ λλ 2

2
2/ ( )!

          =  λ2  e yy
y

−
=

∞∑ λλ / !
0

     =  λ2 
     =  E[x2]  -  E[x] 
So,    E[x2] =  λ2 + λ. 
Since E[x] = λ, it follows that Var[x] = (λ2 + λ) - λ2 = λ.  Following the same pattern, the preceding produces 
   E[x(x-1)(x-2)]   =  E[x3] - 3E[x2] + 2E[x]. 
             =  λ3. 
Therefore,  E[x3]    =  λ3 + 3(λ + λ2) - 2λ 
                           =  λ3 + 3λ2 + λ. 
Then,   E[x - E[x]]3   =  E[x3] - 3λE[x2] + 3λ2E[x] - λ3 
           =  λ.    
 
22.  If x has a normal distribution with mean μ and standard deviation σ, what is the probability distribution of 
y = e x? 
 If y = e x, then x = lny and the Jacobian is dx/dy = 1/y.  Making the substitution, 

   f(y)  =  
[ ]1

2

1
2

2

σ πy
e

y− −(ln )/μ σ
 

This is the density of the lognormal distribution.  
 
23.  If y has a lognormal distribution, what is the probability distribution of y 2? 
 Let z = y2.  Then, y = z  and dy/dz = 1/(2 z ).  Inserting these in the density above, we find 

   f(z)   =  1
2

1 1
2

0
1
2

1
2

2

σ π z z
e z

z− −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

>
ln /

,
μ σ

 

    =
[ ]1

2 2
0

1
2

2 2 2

( )
, .

(ln ) / (

σ πz
e z

z− −
>

μ σ)
 

Thus, z has a lognormal distribution with parameters 2μ and 2σ.  The general result is that if y has a lognormal 
distribution with parameters μ and σ, y r has a lognormal distribution with parameters rμ and rσ.  
 
24.  Suppose y, x1, and x2 have a joint normal distribution with parameters  μN  =  [1, 2, 4] 

and covariance matrix Σ =   
2 3 1
3 5 2
1 2 6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (a)  Compute the intercept and slope in the function E[y*x1], Var[y*x1], and the coefficient of 
        determination in this regression. (Hint: See Section 3.10.1.) 
 (b)  Compute the intercept and slopes in the conditional mean function, E[y*x1,x2].  What is 
        E[y*x1=2.5,x2=3.3]?  What is Var[y*x1=2.5,x2=3.3]? 
 First, for normally distributed variables, we have from (3-102), 
   E[y*x]     =  μy  +  Cov[y,x]{Var[x]}-1(x - :x) 
and   Var[y*x]   =  Var[y] - Cov[y,x]{Var[x]}-1Cov[x,y] 
and   COD        =  Var[E[y*x]] / Var[y] 
       =  Cov[y,x]{Var[x]}-1Cov[x,y] / Var[y]. 
We may just insert the figures above to obtain the results. 
   E[y*x1]      =  1  +  (3/5)(x1 - 2)  =  -.2  +  .6x1, 
   Var[y*x1]    =  2  -  3(1/5)3  =  1/5 = .2 
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   COD          =  .62(5) / 2  =  .9 

   E[y*x1,x2]   =  1 + [ ]3 1
5 2
2 6

3
1

1
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎤

⎦
⎥

−

  

     =  -.4615 + .6154x1 - .03846x2, 
   Var[y*x1,x2]   =  2  -  (.6154,-.03846)(3,1)N  =  .1923. 
   E[y*x1=2.5,x2=3.3]  =  1.3017. 
The conditional variance is not a function of x1 or x2.   
 
25.   What is the density of y = 1/x if x has a chi-squared distribution? 
 The density of a chi-squared variable is a gamma variable with parameters 1/2 and n/2 where n is the 
degrees of freedom of the chi-squared variable.  Thus, 

   f x
n

e x x
n x n

( ) ( / )
( / )

, .
/

= >
− −1 2

2
0

2 1
2 2

1

Γ
 

If y = 1/x then x = 1/y and |dx/dy| =  1/y2.  Therefore, after multiplying by the Jacobian, 

   f y
n

e
y

y
n

y

n

( ) ( / )
( / )

, .
/

=
⎛
⎝
⎜

⎞
⎠
⎟ >

− +
1 2

2
1 0

2 1
2 2

1

Γ
   

 
26.  What is the density and what are the mean and variance of y = 1/x if x has the gamma distribution 
described in Section C.4.5. 

 The density of x is f x
P

e x x
P

x P( )
( )

,= − −λ λ

Γ
1 0.>   If y = 1/x, then x = 1/y, and the Jacobian is  |dx/dy| 

=  1/y2.  Using the change of variable formula, as usual, the density of y is 

f y
P y

e
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y
P
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P
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,/=
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⎜
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.   The mean is E y y
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1 1
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1

0
.  This is a 

gamma integral (see Section 5.2.4b).  Combine terms to obtain E y
P

e
y

dy
P

y
P

( )
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./=
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∫
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Γ
1

0
  Now, in 

order to use the results for the gamma integral, we will have to make a change of variable.  Let z = 1/y, so 
|dy/dz| = 1/z2.   Making the change of variable, we  

find E y
P

e z
z

dz
P

e z dz
P

z P
P
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2

0

λ .  Now, we can use the gamma integral directly, 

to find E(y) = λ
λ

λP

PP
P

PΓ
Γ

( )
( ) .×

−
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−−
1

11   Note that for this to exist, P must be greater than one.  We can use 

 the same approach to find the variance.  We start by finding E[y2].  First,  

E y y
P y

e
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P

( )
( )

/2 2
2

1

0

1 1
=

⎛
⎝
⎜

⎞
⎠
⎟−

−∞

∫
λ λ

Γ
 = λ λ

P
y

P

P
e

y
dy

Γ( )
/−

−∞ ⎛
⎝
⎜

⎞
⎠
⎟∫

1
1

0
.  Once again, this is a gamma 

integral, which we can evaluate by first making the change of variable to z = 1/y.  The integral is  

E y
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Now, Var[y] = E[y2] - E2[y]  =  λ3

21 2
2

( ) ( )
, .

P P
P

− −
>    

 
27.  Suppose x1 and x2 have the bivariate normal distribution described in Section 3.8.  Consider an 
extension of Example 3.4, where the bivariate normal distribution is obtained by transforming two 
independent standard normal variables.  Obtain the distribution of z = exp(y1)exp(y2) where y1 and y2 have a 
bivariate normal distribution and are correlated. Solve this problem in two ways.  First, use the 
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transformation approach described in Section C.6.4.  Second, note that z = exp(y1+y2) = exp(w), so you can 
first find the distribution of w, then use the results of Section 3.5 (and, in fact, Section 3.4.4 as well). 
 The (extremely) hard way to proceed is to define the joint transformations z1 = exp(y1)exp(y2) and z2 
= exp(y2).  The Jacobian is 1/(z1z2).  The joint distribution is the Jacobian times the bivariate normal 
distribution, evaluated at y1 = logz1 - logz2 and y2 = logz2, from which it is now necessary to integrate out z2.  
Obviously, this is going to be tedious, but the hint gives a much simpler way to proceed.  The variable w = 
y1+y2 has a normal distribution with mean μ = μ1+μ2 and variance σ2 = (σ1

2 + σ2
2 + 2σ12).  We already have 

a simple result for exp(w) in Exercise 22; this has a lognormal distribution.  
 
28.  Probability Generating Function.  For a discrete random variable, x, the function 
    E[tx]  =   t Xx

x
Prob[ ]=

=

∞∑ 0
x

is called the probability generating function because in the function, the coefficient on ti is Prob[X=i].  
Suppose that x is the number of the repetitions of an experiment with probability π of success upon which the 
first success occurs.  The density of x is the geometric distribution, 
    Prob[X=x]  =  (1 - π)x-1π. 
What is the probability generating function? 

    E[tx]   =   t x x
x

( )1 1
0

− −
=

∞∑ π π

     =  π
π

π
( )

[ ( )]
1

1
0−

−
=

∞∑ t x
x

 

     =  π
π π( ) ( )1

1
1 1− − −t

.    

 
29.  Moment Generating Function.  For the random variable X, with probability density function f(x), if the 
function M(t)  =  E[etx] exists, it is the moment generating function.  Assuming the function exists, it can be 
shown that drM(t)/dtr|t=0 = E[xr ].  Find the moment generating functions for 
 (a)  The Exponential distribution of Exercise 9. 
 (b)  The Poisson distribution of Exercise 21. 

 For the continuous variable in (a), For f(x) = θexp(-θx), M(t) =  = . e e dxtx xθ θ−
∞

∫   

0
θ θe dt x−

∞

∫ (  - )

0
x

x!

This is θ times a Gamma integral (see Section 5.4.2b) with p=1, c=1, and a = (θ-t).  Therefore,  
M(t)  =  θ/(θ- t). 
 For the Poisson distribution, 

  M(t)   =    e e x e e xtx x
x

t x
x

−
=

∞ −
=

∞∑ ∑λ λλ λ/ ! ( ) / !
0 0

 =  

   =  e e  e e xe e t x
x

t t− −
=

∞∑ λ λ λ λ( ) / !
0

 

   =  e e  ee e t x
x

t t− + −
=

∞∑λ λ λ λ( ) /
0

The sum is the sum of probabilities for a Poisson distribution with parameter λe t, which equals 1, so the term 
before the summation sign is the moment generating function, M(t)  =  exp[λ(e t - 1)].    
 
28.  Moment generating function for a sum of variables.  When it exists, the moment generating function 
has a one to one correspondence with the distribution.  Thus, for example, if we begin with some random 
variable and find that a transformation of it has a particular MGF, we may infer that the function of the 
random variable has the distribution associated with that MGF.  A useful application is the following: 
If x and y are independent, the MGF of x + y is Mx(t)My(t). 
 (a)  Use this result to prove that the sum of Poisson random variables has a Poisson distribution. 
 (b)  Use the result to prove that the sum of chi-squared variables has a chi-squared distribution. 
        [Note, you must first find the MGF for a chi-squared variate.  The density is given in (3-39).] 
 (c)  The MGF for the standard normal distribution is Mz  = exp(-t2/2).  Find the MGF for the N[μ,σ2] 
      distribution, then find the distribution of a sum of normally distributed variables. 
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 (a)  From the previous problem, Mx(t) = exp[λ(et - 1)].  Suppose y is distributed as Poisson with 
parameter μ.  Then, My(t)=exp[μ(et-1)].  The product of these two moment generating functions is  
Mx(t)My(t)= exp[λ(e t - 1)]exp[μ(e t - 1)] =  exp[(λ+μ)(e t - 1)], which is the moment generating function of the 
Poisson distribution with parameter λ+μ.  Therefore, on the basis of the theorem given in the problem, it 
follows that x+y has a Poisson distribution with parameter λ+μ. 
 (b)  The density of the Chi-squared distribution with n degrees of freedom is [from (C-39)] 

f x
n

e x x
n x n

( ) ( / )
( / )

, .
/

= >
− −1 2

2
0

2 1
2 2

1

Γ
 

Let the constant term be k for the present.  The moment generating function is 

    M(t)   =  k  e e x dxtx x n− −∞

∫ / ( / )2 2 1
0

     =  k e x . dxx t n− − −∞
∫ (1/ ) ( / )2 2 1

0

This is a gamma integral which reduces to M(t) = k(1/2 - t)-n/2Γ(n/2).  Now, reinserting the constant k and 
simplifying produces the moment generating function M(t)  =  (1 - 2t) -n/2.  Suppose that xi is distributed as 
chi-squared with ni degrees of freedom.  The moment generating function of Σi xi is 

    ΠiMi(t)  =  ( ) /1 2 2
−

−∑t nii  
which is the MGF of a chi-squared variable with n = Σi ni degrees of freedom. 
 (c)  We let y = σz + μ.  Then, My(t) =  E[exp(ty)] = [ ] [ ] [E e e E e e E et z t tz t t z( ) ( )σ μ μ μ  + = =σ σ ]  

     =  [ ]e e t tt tμ σ σ  − = −( ) / exp ( ) /
2 2 2 2μ 2  

Using the same approach as in part b., it follows that the moment generating function for a sum of random 
variables with means μi and standard deviations σi is 

    M t
x ii iiii∑ = − ⎛
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Appendix C 
 

Estimation and Inference 
 
1.  The following sample is drawn from a normal distribution with mean μ and standard deviation σ: 
   x  =  1.3, 2.1, .4, 1.3, .5, .2, 1.8, 2.5, 1.9, 3.2. 
Compute the mean, median, variance, and standard deviation of the sample. 

    x
x

n
ii

n

= =∑ 1 =  1.52, 

    s2 = 
( )x x

n
ii

n
−

−
=∑

2

1

1
 =   .9418, 

    s  =  .97 
    median  =  1.55, midway between 1.3 and 1.8.   
 
2.  Using the data in the previous exercise, test the following hypotheses: 
 (a)  μ  >  2. 
 (b)  μ  <  .7. 
 (c)  σ2 = .5. 
 (d)  Using a likelihood ratio test, test the following hypothesis μ = 1.8, σ2 = .8. 
 
 (a)  We would reject the hypothesis if 1.52 is too small relative to the hypothesized value of 2.  Since 
the data are sampled from a normal distribution, we may use a t test to test the hypothesis.  The t ratio is 
   t[9]  =  (1.52 - 2) / [.97/ 10 ]=  -1.472. 
The 95% critical value from the t distribution for a one tailed test is -1.833.  Therefore, we would not reject 
the hypothesis at a significance level of 95%. 
 (b)  We would reject the hypothesis if 1.52 is excessively large relative to the hypothesized mean of 
.7.  The t ratio is t[9]  =  (1.52 - .7) / [.97/ 10 ]=  2.673.   Using the same critical value as in the previous 
problem, we would reject this hypothesis. 
 (c)  The statistic (n-1)s2/σ2 is distributed as χ2 with 9 degrees of freedom.  This is 9(.94)/.5  =  
16.920. The 95% critical values from the chi-squared table for a two tailed test are 2.70 and 19.02. Thus we 
would not reject the hypothesis. 
 (d)  The log-likelihood for a sample from a normal distribution is 

  lnL = -(n/2)ln(2π) - (n/2)lnσ2 - 1
2 2σ

( )xii

n
−

=∑ μ 2
1

 

The sample values are μ
∧
= =x 152. ,  2 = σ

∧ ( )x x

n
ii

n
−

=∑
2

1  = .8476. 

The maximized log-likelihood for the sample is -13.363.  A useful shortcut for computing the log-likelihood 

at the hypothesized values is  = ( )xii

n
−

=∑ μ 2
1

( )x xii
n

−
=∑ 2

1
 + ( )n x − μ

2
 .  For the hypothesized 

value of μ = 1.8, this is  =  9.26. The log-likelihood is -5(ln(2π) - 5(ln.8) - (1/1.6)9.26  =  
-13.861.  The likelihood ratio statistic is -2(lnL r - lnLu)  =  .996.  The critical value for a chi-squared 
with 2 degrees of freedom is 5.99, so we would not reject the hypothesis.    

( . )xii
n

−
=∑ 18 2

1

 
3.  Suppose that the following sample is drawn from a normal distribution with mean μ and standard deviation 
σ:  y  =  3.1, -.1, .3, 1.4, 2.9, .3, 2.2, 1.5, 4.2, .4.  Test the hypothesis that the mean of the distribution which 
produced these data is the same as that which produced the data in Exercise 1.  Test the hypothesis assuming 
that the variances are the same.  Test the hypothesis that the variances are the same using an F test and using a 
likelihood ratio test.  (Do not assume that the means are the same.) 
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 If the variances are the same,  
    x N n1 1

2
1~ [ , / ]μ σ1 and x N n2 2

2
2~ [ , / ]μ σ2 , 

    x x N n n1 2
2

1 21 1− − +~ [ , {( / ) ( / )}],μ μ1 2 σ  
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2/σ2 ~ χ2[n1-1] and (n2-1)s2
2/σ2 ~ χ2[n2-1] 

    (n1-1)s1
2/σ2 + (n2-1)s2

2/σ2 ~  χ2[n1 + n2 - 2] 

Thus, the statistic    t  = 
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is the ratio of a standard normal variable to the square root of a chi-squared variable divided by its degrees of 
freedom which is distributed as t with n1 + n2 - 2 degrees of freedom.  Under the hypothesis that the means are 

equal, the statistic is   t = 
( )

{ }
x x n n

n s n s n n

1 2 1 2
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The sample statistics are  n1  =  10, x1 =  1.52, =  .9418 s1
2

    n2  =  10, x2 =  1.62, = 2.0907 s2
2

so t[18]  =  .1816.  This is quite small, so we would not reject the hypothesis of equal means. 
 For random sampling from two normal distributions, under the hypothesis of equal variances, the 

statistic F[n1-1,n2-1] = 
[ ]
[ ]
( ) / / ( )

( ) / / ( )

n s n

n s n
1 1

2 2
1

2 2
2 2

2

1 1

1 1

− −

− −

σ

σ
is the ratio of two independent chi-squared variables, each 

divided by its degrees of freedom.  This has the F distribution with n1-1 and n2-1 degrees of freedom.  If n1 = 
n2, the statistic reduces to F[n1-1,n2-1]  = .  For our purposes, it is more convenient to put the larger 
variance in the denominator.  Thus, for our sample data,  F[9,9]  =  2.0907 / .9418  =  2.2199.  The 95% 
critical value from the F table is 3.18.  Thus, we would not reject the hypothesis of equal variances.   

s s1
2

2
2/

 The likelihood ratio test is based on the test statistic λ = -2(lnL r - lnLu).  The log-likelihood for the 
joint sample of 20 observations is the sum of the two separate log-likelihoods if the samples are assumed to be 
independent.  A useful shortcut for computing the log-likelihood arises when the maximum likelihood 

estimates are inserted:  At the maximum likelihood estimates, lnL  =  (-n/2)[1 + ln(2π) + ln ].  So, the log-
likelihood for the sample is lnL2=(-5/2)[1 + ln(2π) + ln((9/10)2.0907)]= -17.35007.  (Remember, we don't 
make the degrees of freedom correction for the variance estimator.)  The log-likelihood function for the 
sample of 20 observations is just the sum of the two log-likelihoods if the samples are completely 
independent.  The unrestricted log-likelihood function is, thus, -13.363+(-17.35001) = -30.713077.  To 
compute the restricted log-likelihood function, we need the pooled estimator which does not assume that the 
means are identical.  This would be  =  [(n1-1)  +  (n2-1) ]/[n1 + n2] 

σ2
∧

2σ̂ s1
2 s2

2

         =  [9(.9418) + 9(2.0907)]/20  =  1.36463. 
So, the restricted log-likelihood is lnLr  =  (-20/2)[1 + ln(2π) + ln(1.36463)]  =  -31.4876.  Minus twice the 
difference is λ  =  -2[-31.4876 - (-30.713077)]  =  1.541.  This is distributed as chi-squared with one degree of 
freedom.  The critical value is 3.84, so we would not reject the hypothesis.    
 
4.  A common method of simulating random draws from the standard normal distribution is to compute the 
sum of 12 draws from the uniform [0,1] distribution and subtract 6.  Can you justify this procedure? 
 The uniform distribution has mean 2 and variance 1/12.  Therefore, the statistic 12( x - 1/2) = 

- 6 is equivalent to  z  =xii=∑ 1
12 n ( x - μ) / σ.  As n→∞, this converges to a standard normal variable.  

Experience suggests that a sample of 12 is large enough to approximate this result. However, more recently 
developed random number generators usually use different procedures based on the truncation error which 
occurs in representing real numbers in a digital computer.   
 
5.  Using the data in Exercise 1, form confidence intervals for the mean and standard deviation. 
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 Since the underlying distribution is normal, we may use the t distribution.  Using (4-57), we obtain a 
95% confidence interval for the mean of 1.52 - 2.262[.97/ 10 ]  <  μ <  1.52 + 2.262[.97/ 10 ] or   
.826 < μ < 2.214.  Using the procedure in Example 4.30, we obtain a 95% confidence for σ2 of  
9(.941)/19.02 < σ2 < 9(.941)/2.70 or .445 < σ2 < 3.137.  Taking square roots gives the confidence interval  
for σ,  .667  <  σ  <  1.771.      
 
6.  Based on a sample of 65 observations from a normal distribution, you obtain a median of 34 and a standard 
deviation of 13.3.  Form a confidence interval for the mean.  (Hint:  Use the asymptotic distribution.  See 
Example 4.15.)  Compare your confidence interval to the one you would have obtained had the estimate of 34 
been the sample mean instead of the sample median. 
 The asymptotic variance of the median is πσ2/(2n).  Using the asymptotic normal distribution instead 
of the t distribution, the confidence interval is 34 - 1.96(13.32π/130)2 < μ < 34 + 1.96(13.32π/130)2 or       
29.95  <  μ  <  38.052.  Had the estimator been the mean instead of the median, the appropriate asymptotic 
variance would be σ2/n, instead, which we would estimate with 13.32/65 = 2.72 compared to 4.274 for the 
median.  The confidence interval would have been (30.77,37.24), which is somewhat narrower.    
 
7.   The random variable x has a continuous distribution f(x) and cumulative distribution function F(x).  What 
is the probability distribution of the sample maximum?  (Hint: In a random sample of n observations, x1, x2, 
..., xn, if z is the maximum, then every observation in the sample is less than or equal to z.  Use the cdf.) 
 If z is the maximum, then every sample observation is less than or equal to z.  The probability of this 
is Prob[x1 # z, x2 # z, ..., xn # z]  =  F(z)F(z)...F(z)  =  [F(z)]n.   The density is the derivative, n[F(z)]n-1f(z).    
 
8.  Assume the distribution of x is  f(x)  =  1/θ, 0 < x < θ.  In random sampling from this distribution, prove 
that the sample maximum is a consistent estimator of θ.  Note: you can prove that the maximum is the 
maximum likelihood estimator of θ.  But, the usual properties do not apply here.  Why not?  (Hint:  Attempt 
to verify that the expected first derivative of the log-likelihood with respect to θ is zero.) 
 Using the result of the previous problem, the density of the maximum is 
    n[z/θ]n-1(1/θ),  0 < z < θ. 

Therefore, the expected value is E[z] = zndz = [θn+1/(n+1)][n/θn] = nθ/(n+1).  The variance is found 

likewise,  E[z2]  =  z2n(z/n)n-1(1/θ)dz  =  nθ2/(n+2) so Var[z]  =  E[z2] - (E[z])2  =  nθ2/[(n + 1)2(n+2)].  

Using mean squared convergence we see that E[z] = θ  and Var[z] = 0, so that plim z = θ.   

0

θ
∫

0

θ
∫

lim
n→∞

lim
n→∞

9.  In random sampling from the exponential distribution, f(x)  = 1
θ

θe
x−

, x > 0, θ> 0, find the maximum 

likelihood estimator of θ and obtain the asymptotic distribution of this estimator.  
 The log-likelihood is lnL  =  -nlnθ - (1/θ) .  The maximum likelihood estimator is obtained as 

the solution to ∂lnL/∂θ = -n/θ  + (1/θ2)  =  0, or θ  =  (1/n)  = 

xii
n
=∑ 1

xii
n
=∑ 1 ML

∧
xii

n
=∑ 1

x .  The asymptotic variance 

of the MLE is {-E[∂2lnL/∂θ2]}-1  =  {-E[n/θ2 - (2/θ3) ]}-1.  To find the expected value of this random 

variable, we need E[xi] = θ. Therefore, the asymptotic variance is θ2/n.  The asymptotic distribution is normal 
with mean θ and this variance.   

xii
n
=∑ 1

 
10.  Suppose in a sample of 500 observations from a normal distribution with mean μ and standard deviation 
σ, you are told that 35% of the observations are less than 2.1 and 55% of the observations are less than 3.6.  
Estimate μ and σ. 
 If 35% of the observations are less than 2.1, we would infer that  
  Φ[(2.1 - μ)/σ]  =  .35, or  (2.1 - μ)/σ  =  -.385  ⇒  2.1 - μ  =  -.385σ. 
Likewise, Φ[(3.6 - μ)/σ]  =  .55, or  (3.6 - μ)/σ  =   .126  ⇒  3.6 - μ  =   .126σ. 
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The joint solution is = 3.2301 and = 2.9354.  It might not seem obvious, but we can also derive asymptotic 
standard errors for these estimates by constructing them as method of moments estimators.  Observe, first, that 
the two estimates are based on moment estimators of the probabilities.  Let xi denote one of the 500 
observations drawn from the normal distribution.  Then, the two proportions are obtained as follows:  Let 
zi(2.1) =  1[xi < 2.1] and zi(3.6) = 1[xi < 3.6] be indicator functions.  Then, the proportion of 35% has been 
obtained as 

μ
∧

σ
∧

z (2.1) and .55 is z (3.6).  So, the two proportions are simply the means of functions of the sample 
observations.  Each zi is a draw from a Bernoulli distribution with success probability π(2.1) = Φ((2.1-μ)/σ) 
for zi(2.1) and π(3.6) = Φ((3.6-μ)/σ) for zi(3.6).  Therefore, E[ z (2.1)] = π(2.1), and E[ z (3.6)] = π(3.6).  The 
variances in each case are Var[ z (.)] = 1/n[π(.)(1-π(.))].  The covariance of the two sample means is a bit 
trickier, but we can deduce it from the results of random sampling. Cov[ z (2.1), z (3.6)]]  
= 1/n Cov[zi(2.1),zi(3.6)], and, since in random sampling sample moments will converge to their population 
counterparts, Cov[zi(2.1),zi(3.6)] = plim [{(1/n) i(2.1)zi(3.6)}  -  π(2.1)π(3.6)]. But, zi(2.1)zi(3.6) 
must equal [zi(2.1)]2 which, in turn, equals zi(2.1).  It follows, then, that  

z
i
n
=∑ 1

Cov[zi(2.1),zi(3.6)] = π(2.1)[1 - π(3.6)]. Therefore, the asymptotic covariance matrix for the two sample 

proportions is Asy Var p p
n

. [ ( . ), ( . )]
( . )( ( . )) ( . )( ( . ))
( . )( ( . )) ( . )( ( . ))

2 1 3 6 1 2 1 1 2 1 2 1 1 3 6
2 1 1 3 6 3 6 1 3 6

= =
− −
− −

⎡

⎣
⎢

⎤

⎦
⎥Σ

π π π π
π π π π

.  If we insert our 

sample estimates, we obtain   Now, ultimately, our 

estimates of μ and σ are found as functions of p(2.1) and p(3.6), using the method of moments.  The moment 
equations are 

Est Asy Var p p. . [ ( . ), ( . )]
. .
. .

.21 36
0 000455 0 000315
0 000315 0 000495

= =
⎡

⎣
⎢

⎤

⎦
⎥S

   m
n

zii
n

2 1 1
1 21 21 0. ( . ) .

= ⎡
⎣⎢

⎤
⎦⎥

−⎡
⎣⎢

⎤
⎦⎥=∑   -     =   Φ

μ
σ

, 

   m n zii
n

3 1

1
3 6

3 6
0.6 ( . )

.
=
⎡
⎣⎢

⎤
⎦⎥

−⎡
⎣⎢

⎤
⎦⎥=∑   -     =   Φ

μ
σ . 

Now, let Γ = and let G be the sample estimate of Γ.  Then, the estimator of the 

asymptotic covariance matrix of ( , ) is [GS-1G′]-1.  The remaining detail is the derivatives, which are just 

∂ ∂μ ∂ ∂σ
∂ ∂μ ∂ ∂σ

m m
m m

2 1 2 1

3 6 3 61

. .

. .

/ /
/ /

⎡

⎣
⎢

⎤

⎦
⎥

μ
∧
σ
∧

∂m2.1/∂μ = (1/σ)φ((2.1-μ)/σ) and ∂m2.1/∂σ = (2.1-μ)/σ[Mm2.1/Mσ]  and likewise for m3.6.  Inserting our sample 

estimates produces G = .  Finally, multiplying the matrices and computing the 

necessary inverses produces [GS-1G′]-1 = .  The asymptotic distribution would be 

normal, as usual.  Based on these results, a 95% confidence interval for μ would be 3.2301 ± 1.96(.10178)2 = 
2.6048 to 3.8554.    

0 37046 014259
0 39579 0 04987
. .
. .

−⎡

⎣
⎢

⎤

⎦
⎥

010178 012492
012492 016973
. .
. .

−
−
⎡

⎣
⎢

⎤

⎦
⎥

 
11.  For random sampling from a normal distribution with nonzero mean μ and standard deviation σ, find the 
asymptotic joint distribution of the maximum likelihood estimators of σ/μ and μ2/σ2. 

 The maximum likelihood estimators, μ̂  = (1/n)  and xii
n
=∑ 1

2σ̂ = (1/n) ( )x xii
n

−
=∑ 1

2
 were given 

in (4-49).   By the invariance principle, we know that the maximum likelihood estimators of μ/σ and μ2/σ2 are 
/ and / and the maximum likelihood estimate of σ is μ̂ σ̂ μ̂ 2σ̂ σ̂ . To obtain the asymptotic joint 

distribution of the two functions of and , we first require the asymptotic joint distribution of  andμ
∧

σ
∧

μ̂ 2σ̂ .  
This is normal with mean vector (μ,σ2) and covariance matrix equal to the inverse of the information matrix.  
This is the inverse of  
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−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E L L
L L

∂ ∂μ ∂ ∂μ∂σ
∂ ∂σ ∂μ ∂ ∂ σ

2 2 2 2

22 2 2 2
log / log /

log / log / ( ) ( )
− − −

− − − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

= =

∑
∑ ∑
n x

x n x

ii

n

ii

n
ii

n

/ ( / ) ( )

( / ) ( ) / ( ) ( / )

σ σ μ

σ μ σ σ μ

2 3
1

3
1

4 6 2

1

1

1 2 1

2
4

)

=   

The off diagonal term has expected value 0.  Each term in the sum in the lower right has expected value σ2, 
so, after collecting terms, taking the negative, and inverting, we obtain the asymptotic covariance matrix, 

V  =  .  To obtain the asymptotic joint distribution of the two nonlinear functions, we use 

the multivariate version of Theorem 4.4.  Thus,  we require H  =  JVJ′ where  

σ
σ

2

4
0

0 2
/

/
n

n

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

J =   =  .  The product is  ∂ μ σ ∂μ ∂ μ σ ∂σ
∂ μ σ ∂μ ∂ μ σ ∂σ

( / ) / ( / ) /
( / ) / ( / ) /

2

2 2 2 2 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

3

2
/ / (
/ /
σ μ σ

μ σ μ σ
−
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

H = 1 1 2 2
2 4 2

2 2 3

3 2 2 4 4n
+ +

+ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

μ σ μ σ μ σ
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/ ( ) / ( / )
/ ( / ) / /

.   

 
12.  The random variable x has the following distribution:  f(x)  =  e-λλx / x!, x = 0,1,2,... The following random 
sample is drawn:  1,1,4,2,0,0,3,2,3,5,1,2,1,0,0. Carry out a Wald test of the hypothesis that λ= 2. 
 For random sampling from the Poisson distribution, the maximum likelihood estimator of λ is x = 
25/15.  (See Example 4.18.)  The second derivative of the log-likelihood is /λ2, so the the 

asymptotic variance is λ/n.  The Wald statistic would be 

−
=∑ xii

n
1

   W  = 
( )x

n

−
∧

2
2

λ/
  =  [(25/15 - 2)2]/[(25/15)/15]  =  1.0. 

The 95% critical value from the chi-squared distribution with one degree of freedom is 3.84, so the hypothesis 
would not be rejected.  Alternatively, one might estimate the variance of  with s2/n = 2.38/15 = 0.159.  Then, 
the Wald statistic would be (1.6 - 2)2/.159 = 1.01.  The conclusion is the same.   ~ 
 
13.  Based on random sampling of 16 observations from the exponential distribution of Exercise 9, we wish to 
test the hypothesis that θ =1.  We will reject the hypothesis if x is greater than 1.2 or less than .8.  We are 
interested in the power of this test. 
(a)  Using the asymptotic distribution of x graph the asymptotic approximation to the true power function. 
(b)  Using the result discussed in Example 4.17, describe how to obtain the true power function for this test. 
 The asymptotic distribution of x is normal with mean θ and variance θ2/n.  Therefore, the power 
function based on the asymptotic distribution is the probability that a normally distributed variable with mean 
equal to θ and variance equal to θ2/n will be greater than 1.2 or less than .8.  That is, 
   Power  =  Φ[(.8 - θ)/(θ/4)] + 1 - Φ[(1.2 - θ)/(θ/4)]. 
Some values of this power function and a sketch are given below: 
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  θ   Approx.   True 

 

       Power   Power 
 .4   1.000   1.000 
 .5    .992    .985 
 .6    .908    .904 
 .7    .718    .736 
 .8    .522    .556 
 .9    .420    .443 
1.0    .423    .421 
1.1    .496    .470 
1.2    .591    .555 
1.3    .685    .647 
1.4    .759    .732 
1.5    .819    .801 
1.6    .864    .855 
1.7    .897    .895 
1.8    .922    .925 
1.9    .940    .946  2.0    .954    .961 
2.1    .963    .972 
 
Note that the power function does not have the symmetric shape of Figure 4.7 because both the variance and 
the mean are changing as θ changes.  Moreover, the power is not the lowest at the value of θ = 1, but at about 
θ = .9.  That means (assuming that the normal distribution is appropriate) that the test is slightly biased.  The 
size of the test is its power at the hypothesized value, or .423, and there are points at which the power is less 
than the size. 
 According to the example cited, the true distribution of x is that of θ/(2n) times a chi-squared 
variable with 2n degrees of freedom.  Therefore, we could find the true power by finding the probability that a 
chi-squared variable with 2n degrees of freedom is less than .8(2n/θ) or greater than 1.2(2n/θ).  Thus, 
   True power  =  F(25.6/θ)    +    1 - F(38.4/θ) 
where F(.) is the CDF of the chi-squared distribution with 32 degrees of freedom.  Values for the correct 
power function are shown above.  Given that the sample is only 16 observations, the closeness of the 
asymptotic approximation is quite impressive.   
 
14.  For the normal distribution, μ2k = σ2k(2k)!/(k!2k) and μ2k+1 = 0, k = 0,1,...  Use this result to show that in 

Example 4.27, θ1 = 0 and θ2 = 3, and JVJ′ = . 
6 0
0 24
⎡

⎣
⎢

⎤

⎦
⎥

 For θ1 and θ2, just plug in the result above using k = 2, 3, and 4.  The example involves 3 moments, 
m2, m3, and m4.  The asymptotic covariance matrix for these three moments can be based on the formulas 
given in  Example 4.26.  In particular, we note, first, that for the normal distribution, Asy.Cov[m2,m3] and 
Asy.Cov[m3,m4] will be zero since they involve only odd moments, which are all zero.  The necessary even 
moments are μ2 = σ2, μ4 = 3σ4. μ6 = 15σ6, μ8 = 105σ8. The three variances will be 
  n[Asy.Var(m2)]  =  μ4 - μ2

2

4

 =  3σ4 - (σ2)2  =  2σ4 
  n[Asy.Var(m3)]  =  μ6 - μ3

2 - 6μ4μ2 + 9μ2
3 = 6σ6 

  n[Asy.Var(m4)]  =  μ8 - μ4
2 - 8μ5μ3 + 16μ2μ3

2 = 96σ8 
and  n[Asy.Cov(m2,m4)]  =  μ6 - μ2μ4 - 4μ3

2 =  12σ6. 
The elements of J are given in Example 4.27.  For the normal distribution, this matrix would be J = 

.  Multiplying out JVJ/N produces the result given above.    0 1 0
6 0 1

3

2
/

/ /
σ

σ σ−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
15.  Testing for normality.  One method that has been suggested for testing whether the distribution 
underlying a sample is normal is to refer the statistic L  =  n{skewness2/6  +  (kurtosis-3)2/24} to the 
chi-squared distribution with 2 degrees of freedom.  Using the data in Exercise 1, carry out the test. 
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 The skewness coefficient is .14192 and the kurtosis is 1.8447. (These are the third and fourth 
moments divided by the third and fourth power of the sample standard deviation.)  Inserting these in the 
expression above produces L = 10{.141922/6 + (1.8447 - 3)2/24} = .59.  The critical value from the 
chi-squared distribution with 2 degrees of freedom (95%) is 5.99.  Thus, the hypothesis of normality cannot be 
rejected.   
 
16.  Suppose the joint distribution of the two random variables x and y is 
  f(x,y)  =    β,θ  0,  y $ 0, x = 0,1,2,... θe yy x− +( ) ( ) / !β θ β x
 (a)  Find the maximum likelihood estimators of β and θ and their asymptotic joint distribution. 
 (b)  Find the maximum likelihood estimator of θ/(β+θ) and its asymptotic distribution. 
 (c)  Prove that f(x) is of the form f(x)  =  γ(1-γ)x, x = 0,1,2,... 
       Then, find the maximum likelihood estimator of γ and its asymptotic distribution. 

(d)  Prove that f(y*x) is of the form λe-λy(λy) x/x!  Prove that f(y|x) integrates to 1.  Find the 
       maximum likelihood estimator of λ and its asymptotic distribution.   (Hint:  In the conditional 
       distribution, just carry the xs along as constants.) 

 (e)  Prove that f(y)  =  θe-θy then find the maximum likelihood estimator of θ and its asymptotic 
                      variance. 
 (f) Prove that  f(x|y) = e-βy (βy) x/x! .  Based on this distribution, what is the maximum likelihood 
       estimator of β? 
 The log-likelihood is lnL = nlnθ - (β+θ)  + lnβ  + -  yii

n
=∑ 1

xii
n
=∑ 1

x yii
n

i=∑ 1
log log( !)xii

n
=∑ 1

The first and second derivatives are  ∂lnL/∂θ    =  n/θ-  yii
n
=∑ 1

     ∂lnL/∂β     =  -  + /β yii
n
=∑ 1

xii
n
=∑ 1

     ∂2lnL/∂θ2   =  -n/θ2 
     ∂2lnL/∂β2   =  -  /β2 xii

n
=∑ 1

     ∂2lnL/∂β∂θ  =  0. 

Therefore, the maximum likelihood estimators are  =  1/θ
∧

y  and  = β
∧

x y/  and the asymptotic covariance 

matrix is the inverse of . In order to complete the derivation, we will require the 

expected value of  = nE[xi].   In order to obtain E[xi], it is necessary to obtain the marginal 

distribution of xi, which is f(x)  =  ∫ =   This is βx(θ/x!) 

times a gamma integral.  This is f(x)  =  βx(θ/x!)[Γ(x+1)]/(β+θ)x+1.  But, Γ(x+1) = x!, so the expression reduces 
to 

E
n

xii

n
/

/
θ

β

2

1
2

0
0

=∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

xii
n
=∑ 1

θ ββ θe y x dyy x− +
∞ ( ) ( ) / !

0
β θ β θx y xx e y dy( / !) .( )− +

∞

∫0

    f(x)  =  [θ/(β+θ)][β/(β+θ)]x. 
Thus, x has a geometric distribution with parameter π = θ/(β+θ).  (This is the distribution of the number of 
tries until the first success of independent trials each with success probability 1-π.  Finally, we require the 
expected value of xi, which is E[x]  =  [θ/(β+θ)] x[β/(β+θ)]x=  β/θ.  Then, the required asymptotic 

covariance matrix is . 

x=
∞∑ 0

n
n

n
n

/
( / ) /

/
/

θ
β θ β

θ
βθ

2

2

1 20
0

0
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

 The maximum likelihood estimator of θ/(β+θ) is is  
   =  (1//( )θ β + θ y )/[ x / y  + 1/ y ]  =  1/(1 +  x ). 
Its asymptotic variance is obtained using the variance of a nonlinear function 
       V  = [β/(β+θ)]2(θ2/n) + [-θ/(β+θ)]2(βθ/n)  =  βθ2/[n(β+θ)3]. 
The asymptotic variance could also be obtained as [-1/(1 + E[x])2]2Asy.Var[ x ].) 
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 For part (c), we just note that γ = θ/(β+θ).  For a sample of observations on x, the log-likelihood 
would be   lnL = nlnγ + ln(1-γ)  xii

n
=∑ 1

    ∂lnL/dγ  =  n/γ - /(1-γ). xii
n
=∑ 1

A solution is obtained by first noting that at the solution, (1-γ)/γ  = x  =  1/γ  -  1.  The solution for γ is, thus, 

γ
∧

=  1 / (1 + x ).Of course, this is what we found in part b., which makes sense. 

 For part (d)  f(y|x)  =  f x y
f x
( , )
( )

 = θ β β θ β θ
θ β

β θe y
x x

y x x− + + +( ) ( ) ( ) ( )
!

.
      

  Cancelling terms and gathering 

the remaining like terms leaves f(y|x)  = ( )  so the density has the required form 

with λ = (β+θ).  The integral is { } .  This integral is a Gamma integral which equals 

Γ(x+1)/λx+1, which is the reciprocal of the leading scalar, so the product is 1.  The log-likelihood function is 

[( ) ] /( )β θ β θ β θ+ + − +y e xx y !

y x y[ ] / !λ λx x e y d+ −
∞

∫1

0

  lnL  =  nlnλ - λ  + lnλ  - yii
n
=∑ 1

xii
n
=∑ 1

ln !xii
n
=∑ 1  

  ∂lnL/∂λ  =  ( + n)/λ  - . xii
n
=∑ 1

yii
n
=∑ 1

  ∂2lnL/∂λ2  =  -( + n)/λ2. xii
n
=∑ 1

Therefore, the maximum likelihood estimator of λ is (1 +   x )/ y  and the asymptotic variance, conditional on 

the xs is Asy.Var.  =  (λ2/n)/(1 + λ
∧⎡

⎣
⎢
⎤

⎦
⎥ x ) 

 Part (e.)  We can obtain f(y) by summing over x in the joint density.  First, we write the joint density 

as  .  The sum is, therefore, .  The sum is 

that of the probabilities for a Poisson distribution, so it equals 1.  This produces the required result.  The 
maximum likelihood estimator of θ and its asymptotic variance are derived from 

f x y e e y xy y x( , ) ( ) / != − −θ βθ β f y e e y xy y x
x

( ) ( ) / != − −
=

∞∑θ βθ β
0

    lnL  =  nlnθ - θ  yii
n
=∑ 1

    ∂lnL/∂θ  =  n/θ -  yii
n
=∑ 1

    ∂2lnL/∂θ2  =  -n/θ2. 
Therefore, the maximum likelihood estimator is 1/ y  and its asymptotic variance is θ2/n.  Since we found f(y) 
by factoring f(x,y) into f(y)f(x|y) (apparently, given our result), the answer follows immediately.  Just divide 
the expression used in part e. by f(y).  This is a Poisson distribution with parameter βy.  The log-likelihood 
function  and its first derivative are 
   lnL  =  -β  + lnyii

n
=∑ 1

xii
n
=∑ 1  + x yi ii

n ln
=∑ 1  - ln !xii

n
=∑ 1  

   ∂lnL/∂β  =  -  + /β, yii
n
=∑ 1

xii
n
=∑ 1

from which it follows that  β
∧
= x y/ .  

 
17.  Suppose x has the Weibull distribution,  f(x) = αβxβ-1exp(-αxβ), x, α, β > 0. 
 (a)  Obtain the log-likelihood function for a random sample of n observations. 
 (b)  Obtain the likelihood equations for maximum likelihood estimation of α and β.  Note that the 
        first provides an explicit solution for α in terms of the data and β. But, after inserting this in the 
                      second, we obtain only an implicit solution for β.  How would you obtain the maximum 
                      likelihood estimators? 
 (c)  Obtain the second derivatives matrix of the log-likelihood with respect to α and β.  The exact 
       expectations of the elements involving β involve the derivatives of the Gamma function and are 
                     quite messy analytically.  Of course, your exact result provides an empirical estimator.  How 
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                     would you estimate the asymptotic covariance matrix for your estimators in part (b)? 
 (d)  Prove that αβCov[lnx,xβ] = 1.  (Hint: Use the fact that the expected first derivatives of the 
       log-likelihood function are zero.) 
 The log-likelihood and its two first derivatives are 
  logL  =  nlogα + nlogβ + (β-1)  - α  log xii

n
=∑ 1

xii
n β
=∑ 1

  ∂logL/∂α  =  n/α -  xii
n β
=∑ 1

  ∂logL/∂β  =  n/β + - α  log xii
n
=∑ 1

(log )x xi ii

n β
=∑ 1

Since the first likelihood equation implies that at the maximum, =  n / , one approach would be to 

scan over the range of β and compute the implied value of α.  Two practical complications are the allowable 
range of β and the starting values to use for the search. 

α
∧

xii
n β
=∑ 1

 The second derivatives are 
  ∂2lnL/∂α2  =  -n/α2 
  ∂2lnL/∂β2  =  -n/β2 - α  (log )x xi ii

n 2
1

β
=∑

  ∂2lnL/∂α∂β =  - . (log )x xi ii
n β
=∑ 1

If we had estimates in hand, the simplest way to estimate the expected values of the Hessian would be to 
evaluate the expressions above at the maximum likelihood estimates, then compute the negative inverse.  
First, since the expected value of ∂lnL/∂α is zero, it follows that E[xi

β] = 1/α.  Now, 
   E[∂lnL/∂β]  =  n/β + E[ ] - αE[ ]= 0 log xii

n
=∑ 1

(log )x xi ii
n β
=∑ 1

as well.  Divide by n, and use the fact that every term in a sum has the same expectation to obtain 
   1/β + E[lnxi] - E[(lnxi)xi

β]/E[xi
β] = 0. 

Now, multiply through by E[xi
β] to obtain E[xi

β]  =  E[(lnxi)xi
β] - E[lnxi]E[xi

β] 
or       1/(αβ)  =  Cov[lnxi,xi

β].   ~ 
 
18.  The following data were generated by the Weibull distribution of Exercise 17: 
   1.3043   .49254   1.2742   1.4019   .32556   .29965   .26423 
   1.0878   1.9461   .47615   3.6454   .15344   1.2357   .96381   
   .33453   1.1227   2.0296   1.2797   .96080   2.0070     
 (a)  Obtain the maximum likelihood estimates of α and β and estimate the asymptotic covariance 
                     matrix for the estimates. 
 (b)  Carry out a Wald test of the hypothesis that β = 1. 
 (c)  Obtain the maximum likelihood estimate of α under the hypothesis that β = 1. 
 (d)  Using the results of a. and c. carry out a likelihood ratio test of the hypothesis that β = 1. 
 (e)  Carry out a Lagrange multiplier test of the hypothesis that β = 1. 
 As suggested in the previous problem, we can concentrate the log-likelihood over α.  From ∂logL/∂α 
= 0, we find that at the maximum, α = 1/[(1/n) ].  Thus, we scan over different values of β to seek 

the value which maximizes logL as given above, where we substitute this expression for each occurrence of α.   

xii
n β
=∑ 1

Values of β and the log-likelihood for a range of values of β are listed and shown in the figure below.   
  β           logL 
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 0.1     -62.386 

 

 0.2     -49.175 
 0.3     -41.381 
 0.4     -36.051 
 0.5     -32.122 
 0.6     -29.127 
 0.7     -26.829 
 0.8     -25.098 
 0.9     -23.866 
 1.0     -23.101 
 1.05    -22.891 
 1.06    -22.863 
 1.07    -22.841 
 1.08    -22.823 
 1.09    -22.809 
 1.10    -22.800 
 1.11    -22.796 

  1.12    -22.797 
 1.2     -22.984 
 1.3     -23.693 
 
The maximum occurs at β = 1.11.  The 
implied value of α is 1.179.  The negative of the second derivatives matrix at these values and its inverse are 

 and . I α β
∧ ∧⎛

⎝⎜
⎞
⎠⎟ =

⎡

⎣
⎢

⎤

⎦
⎥,

. .
. .
2555 9 6506

9 6506 27 7552 I-1 α β
∧ ∧⎛

⎝⎜
⎞
⎠⎟
=

−
−
⎡

⎣
⎢

⎤

⎦
⎥,

. .
. .

04506 2673
2673 04148

The Wald statistic for the hypothesis that β = 1 is  W  =  (1.11 - 1)2/.041477 = .276.  The critical value for a 
test of size .05 is 3.84, so we would not reject the hypothesis. 

 If β = 1, then  =  = 0.88496.  The distribution specializes to the geometric distribution 

if β = 1, so the restricted log-likelihood would be 

α
∧

n ii
n/
=∑ 1

x

α
β

  logLr  =  nlogα - α  =  n(logα - 1) at the MLE. xii
n
=∑ 1

logLr at α = .88496 is -22.44435.  The likelihood ratio statistic is  -2logλ = 2(23.10068 - 22.44435)  = 1.3126. 
Once again, this is a small value.  To obtain the Lagrange multiplier statistic, we would compute 

  [ ]∂ ∂α ∂ ∂β
∂ ∂α ∂ ∂α∂β
∂ ∂α∂β ∂ ∂β

∂ ∂
∂ ∂

log / log / log / log /
log / log /

log /
log /

L L L L
L L

L
L

 
− −
− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

−2 2 2

2 2 2

1

at the restricted estimates of α = .88496 and β = 1.  Making the substitutions from above, at these values, we 
would have 
  ∂logL/∂α  =  0 

  ∂logL/∂β  =  n + - log xii
n
=∑ 1

1
1x
x xii

n log
=∑ i   =  9.400342 

  ∂2logL/∂α2  =  − nx
2

 =  -25.54955 

  ∂2logL/∂β2  =  -n - 1 2
1x
x xi ii

n (log )
=∑ =  -30.79486 

  ∂2logL/∂α∂β  =  =  -8.265. −
=∑ x xii

n log
1 i

The lower right element in the inverse matrix is .041477.  The LM statistic is, therefore, (9.40032)2.041477 = 
2.9095.  This is also well under the critical value for the chi-squared distribution, so the hypothesis is not 
rejected on the basis of any of the three tests.   
 
19.  We consider forming a confidence interval for the variance of a normal distribution.  As shown in 
Example 4.29, the interval is formed by finding clower and cupper such that Prob[clower < χ2[n-1] < cupper] = 1 - α. 
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The endpoints of the confidence interval are then (n-1)s2/cupper and (n-1)s2/clower.  How do we find the 
narrowest interval?  Consider simply minimizing the width of the interval, cupper - clower subject to the 
constraint that the probability contained in the interval is (1-α).  Prove that for symmetric and asymmetric 
distributions alike, the narrowest interval will be such that the density is the same at the two endpoints. 
 The general problem is to minimize Upper - Lower subject to the constraint F(Upper) - F(Lower) = 1 
- α, where F(.) is the appropriate chi-squared distribution.  We can set this up as a Lagrangean problem, 
 minL,U L*  =  U - L + λ{(F(U) - F(L)) - (1 - α)} 
The necessary conditions are 
 ∂L*/∂U  =  1 + λf(U)  =  0 
 ∂L*/∂L  =  -1 - λf(L)  =  0 
 ∂L*/∂λ  =  (F(U) - F(L)) - (1 - α)  =  0 
It is obvious from the first two that at the minimum, f(U) must equal f(L).   
 
20.  Using the results in Example 4.26, and Section 4.7.2, estimate the asymptotic covariance matrix of the 
method of moments estimators of P and λ based on  and m2′ .  (Note:  You will need to use the data in 
Table 4.1 to estimate V.) 

m−1'

 Using the income data in Table 4.1, (1/n) times the covariance matrix of 1/xi and xi
2 is 

V  =  .  The moment equations used to estimate P and λ are 
. .

. .
000068456 2 811

2 811 228050
−

−
⎡

⎣
⎢

⎤

⎦
⎥

E m P[ ' / ( )]− − −1 1    λ = 0 0 and E m P P[ ' ( ) / ]2 1    − + =λ . The matrix of derivatives with respect to P 

and λ is G  =  .  The estimated asymptotic covariance matrix is  λ λ
λ λ

/ ( ) / ( )
( ) / ( ) /

P
P P P

− − −
− + +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2 1 2 1

2

2
P 1

3

[GV-1G′]-1  =  .   
. .

. .
17532 0073617

0073617 00041871
⎡

⎣
⎢

⎤

⎦
⎥
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Appendix D 
 

Large Sample Distribution Theory 
 
There are no exercises for Appendix D. 
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Appendix E 
 

Computation and Optimization 
 
1.  Show how to maximize the function 

  f(β)  =  ( )1
2

2
2

π
e c− −β /  

with respect to β for a constant, c, using Newton's method.  Show that maximizing logf(β) leads to the same 
solution.  Plot f(β) and logf(β). 
 The necessary condition for maximizing f(β) is 

  df(β)/dβ  = ( )1
2

2
2

π
e c− −β / [-(β - c)]  =  0  =  -(β - c)f(β). 

The exponential function can never be zero, so the only solution to the necessary condition is β = c.  The 
second derivative is  d2f(β)/dβ2  =  -(β-c)df(β)/dβ  -  f(β)  =   [(β-c)2 - 1]f(β).  At the stationary value b = c, the 
second derivative is negative, so this is a maximum.  Consider instead the function g(β) = logf(β) =  
-(1/2)ln(2π) - (1/2)(β - c)2.  The leading constant is obviously irrelevant to the solution, and the quadratic is a 
negative number everywhere except the point β = c.  Therefore, it is obvious that this function has the same 
maximizing value as f(β).  Formally,  dg(β)/dβ  =  -(β - c)  =  0 at β = c, and d2g(β)/dβ2 = -1, so this is indeed 
the maximum.  A sketch of the two functions appears below. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
Note that the transformed function is concave everywhere while the original function has inflection points.   
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2.  Prove that Newton’s method for minimizing the sum of squared residuals in the linear regression model 
will converge to the minimum in one iteration. 
 The function to be maximized is  f(β)  =  (y - Xβ)′(y - Xβ).  The required derivatives are 
∂f(β)/∂β  =  -X′(y - Xβ) and  ∂2f(β)/∂β∂β∂  =  X′X.  Now, consider beginning a Newton iteration at an 
arbitrary point, β0.  The iteration is defined in (12-17), 
β1  =  β0  -  (X′X)-1{-X′(y - Xβ0)}  =  β0  +  (X′X)-1X′y  -  (X′X)-1X′Xβ0  =  (X′X)-1X′y  =  b. 
Therefore, regardless of the starting value chosen, the next value will be the least squares coefficient vector.    
 

3.  For the Poisson regression model, Prob[Yi = yi|xi] = e
y

i i
i
y

i

−λ λ
!

where λi  = .  The log-likelihood 

function is lnL  = logProb[Yi = yi|xi]. 

e iβ 'x

i
n
=∑ 1

 (a)  Insert the expression for λi to obtain the log-likelihood function in terms of the observed data. 
 (b)  Derive the first order conditions for maximizing this function with respect to β. 
 (c)  Derive the second derivatives matrix of this criterion function with respect to β.  Is this matrix 
                      negative definite? 
 (d)  Define the computations for using Newton’s method to obtain estimates of the unknown 
        parameters. 
 (e)  Write out the full set of steps in an algorithm for obtaining the estimates of the parameters of this 
              model.  Include in your algorithm a test for convergence of the estimates based on 
Belsley’s 
        suggested criterion. 
 (f)  How would you obtain starting values for your iterations? 
 (g)  The following data are generated by the Poisson regression model with  logλ  =  α + βx. 
     y   6    7    4   10   10    6    4    7    2    3    6    5    3    3    4 
         x 1.5  1.8  1.8  2.0  1.3  1.6  1.2  1.9  1.8  1.0  1.4   .5   .8  1.1   .7 
Use your results from parts (a) - (f) to compute the maximum likelihood estimates of α and β.  Also obtain 
estimates of the asymptotic covariance matrix of your estimates. 
 The log-likelihood is 
 logL = [-λi + yilnλi - lnyi!]  =  -

i
n
=∑ 1

e i
i
n β 'x
=∑ 1 + ( )yi ii

n
β' x

=∑ 1  - log !yii
n
=∑ 1   

     =  - e i
i
n β 'x
=∑ 1 + β′ xi ii

n y
=∑ 1 - log !yii

n
=∑ 1  

The necessary condition is  MlnL/Mβ  = - x x
ii

n e iβ '
=∑ 1 +  xi ii

n y
=∑ 1 = 0 or XNy   = xi ii

n
λ

=∑ 1 .  It is useful to 

note, since E[yi*xi]  =  λi  =  eβNxi, the first order condition is equivalent to xi ii
n y
=∑ 1 =  xiE[yi*xi]  or  

XNy  =  XNE[y], which makes sense.  We may write the first order condition as MlnL/Mβ = xi(yi - λi)  
=  0 

i
n
=∑ 1

i
n
=∑ 1

which is quite similar to the counterpart for the classical regression if we view (yi - λi) = (yi - E[yi*xi]) as a 

residual. The second derivatives matrix is ∂lnL/∂β∂β′  =  - ( )e i
i
n

i i
β ' 'x x x

=∑ 1   =  - .  This is a 

negative definite matrix.  To prove this, note, first, that λi must always be positive.  Then, let Ω be a diagonal 
matrix whose ith diagonal element is 

λ ii

n
i i=∑ 1

x x '

λ i  and let Z  =  ΩX.  Then, ∂lnL/∂β∂β′ = -Z′Z which is clearly 
negative definite.  This implies that the log-likelihood function is globally concave and finding its maximum 
using NewtonNs method will be straightforward and reliable. 
 The iteration for NewtonNs method is defined in (5-17).  We may apply it directly in this problem.  
The computations involved in using Newton's method to maximize lnL will be as follows: 
     (1)  Obtain starting values for the parameters. Because the log-likelihood function is globally concave, it  
will usually not matter what values are used.  Most applications simply use zero.  One suggestion which does 

appear in the literature is β0  =  [ ]qi ii
n

ix x=

−
∑ 1

1
' [ ]q yi ii

n
ix

=∑ 1
where   qi  =  log(max(1,yi)). 
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 (2)  The iteration is computed asβ   =  + . 
∧

+t 1 β
∧

t λ
∧

=

−

∑⎡
⎣
⎢

⎤

⎦
⎥i ii

n
ix x

1

1

' xii

n
i iy

=

∧

∑ −
⎡
⎣⎢

⎤
⎦⎥1

( )λ

 (3)  Each time we computeβ , we should check for convergence.  Some possibilities are 
∧

+t 1

      (a) Gradient:  Are the elements of ∂lnL/∂β small? 

      (b) Change:  Is β -  small? 
∧

+t 1 β
∧

t

      (c) Function rate of change: Check the size of   

  δt =  ′  xii

n
i iy

=

∧

∑ −
⎡
⎣⎢

⎤
⎦⎥1

( )λ λ
∧

=

−

∑⎡
⎣
⎢

⎤

⎦
⎥i ii

n
ix x

1

1

' xii

n
i iy

=

∧

∑ −
⎡
⎣⎢

⎤
⎦⎥1

( )λ

           before computing .  This measure describes what will happen to the function β
∧

+t 1

           at the next value of β. This is Belsley's criterion. 
 (4)  When convergence has been achieved, the asymptotic covariance matrix for the 
      estimates is estimated with the inverse matrix used in the iterations. 
 
 Using the data given in the problem, the results of the above computations are 
   Iter.     α      β         lnL     ∂lnL/∂α    ∂lnL/∂β   Change 
    0        0      0    -102.387    65.       95.1       296.261 
    1  1.37105  2.17816  -1442.38   -1636.25  -2788.5     1526.36 
    2  .619874  2.05865  -461.989   -581.966  -996.711     516.92 
    3  .210347  1.77914  -141.022   -195.953  -399.751    197.652 
    4  .351893  1.26291  -51.2989   -57.9294  -102.847     30.616 
    5  .824956  .698768  -33.5530   -12.8702  -23.1932    2.75855 
    6  1.05288  .453352  -32.0824   -1.28785  -2.29289    .032399 
    7  1.07777  .425239  -32.0660   -.016067  -.028454   .0000051   
    8  1.07808  .424890  -32.0660      0         0          0 
 
At the final values, the negative inverse of the second derivatives matrix is 

λ
∧

=

−

∑⎡
⎣
⎢

⎤

⎦
⎥i ii

n
ix x

1

1

' = .  
. .
. .
151044 095961
095961 0664665

−
−
⎡

⎣
⎢

⎤

⎦
⎥

 

4.  Use Monte Carlo Integration to plot the function g(r) = E[xr*x>0] for the standard normal distribution. 
 The expected value from the truncated normal distribution is 

 E x x x f x x dx
x x dx

x dx
x e dxr r

r
r

x

[ | ] ( | )
( )

( )
.> = > = =

∞

∞

∞ −∞∫
∫

∫ ∫0 0 20

0

0
2

0

2φ

φ π
 

To evaluate this expectation, we first sampled 1,000 observations from the truncated standard normal 
distribution using (5-1).  For the standard normal distribution, μ = 0, σ = 1, PL = Φ((0 - 0)/1) = 2, and  
PU = Φ((+4 - 0)/1) = 1.  Therefore, the draws are obtained by transforming draws from U(0,1) (denoted Fi) to  
xi = Φ[2(1 + Fi)]. Since 0 < Fi < 1, the argument in brackets must be greater than 2, so xi > 0, which is to be 
expected.  Using the same 1,000 draws each time (so as to obtain smoothness in the figure), we then plot the 

values of xr i
r

i
=

=∑1
1000 1

1000 x , r = 0, .2, .4,.6, ..., 5.0. As an additional experiment, we generated a second 

sample of 1,000 by drawing observations from the standard normal distribution and discarding them and 
redrawing if they were not positive.  The means and standard deviations of the two samples were 
(0.8097,0.6170) for the first and (0.8059,0.6170) for the second.  Drawing the second sample takes 
approximately twice as long as the second.  Why? 
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5.  For the model in Example 5.10, derive the LM statistic for the test of the hypothesis that μ=0. 
 The derivatives of the log-likelihood with μ = 0 imposed are gμ = nx /σ 2 and 

g
n xii

n

σ σ σ
2 2 22

2
1
4=

−
+ =∑

.  The estimator for σ2 will be obtained by equating the second of these to 0, which 

will give (of course), v = x′x/n.  The terms in the Hessian are Hμμ = -n/σ2, H nxμσ σ2
4= − / , 

and n/(2σ4)-x′x/σ6.  At the MLE, = 0, exactly.  The off diagonal term in the expected Hessian is 

also zero.  Therefore, the LM statistic is 

Hσ σ2 2 = gσ 2

[ ]LM nx v

n
v

n
v

nx v
=

⎡

⎣

⎢
⎢
⎢

⎤
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⎥
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⎥
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⎦
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0

0

0
2

0
2

  

-1

  =  x
v n/
⎡

⎣
⎢

⎤

⎦
⎥

2

. 

This resembles the square of the standard t-ratio for testing the hypothesis that μ = 0.  It would be exactly that 
save for the absence of a degrees of freedom correction in v.  However, since we have not estimated μ with x  
in fact, LM is exactly the square of a standard normal variate divided by a chi-squared variate over its degrees 
of freedom.  Thus, in this model, LM is exactly an F statistic with 1 degree of freedom in the numerator and n 
degrees of freedom in the denominator.   
 
6.  In Example 5.10, what is the concentrated over μ log likelihood function? 
 It is obvious that whatever solution is obtained for σ2, the MLE for μ will be x , so the concentrated 

log-likelihood function is ( ) ( )log log logL
n

x xc ii

n
=
−

+ − −
=∑2 2

1
2

2
2

2

1
π σ

σ
 

7.  In Example E.13, suppose that E[yi] = μ, for a nonzero mean.   
(a)  Extend the model to include this new parameter.  What are the new log likelihood, likelihood equation, 
       Hessian, and expected Hessian?   
(b)  How are the iterations carried out to estimate the full set of parameters? 
(c)  Show how the LIMDEP program should be modified to include estimation of μ. 
(d)  Using the same data set, estimate the full set of parameters. 
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 If yi has a nonzero mean, μ, then the log-likelihood is 

lnL(γ,μ|Z)  =  − − −
−⎛

⎝
⎜
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The likelihood equations are 

  
∂
∂
ln L
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   =   gγ(γ,μ)  =  0 

and  ∂
∂μ
ln L  =  =   gμ(γ,μ)  =  0. 

i

n

iy
=
∑ − −

1
( ) exp( ' )μ z γi

The Hessian is     ∂
∂ ∂

2 ln
'
L

γ γ
 = − −⎛

⎝
⎜

⎞

⎠
⎟

=
∑1

2 1

2

2
i

n

i i
i

i

yz z ' ( )μ
σ

=  − −
=
∑1

2 1i

n

i i i iy( ' exp(- ) z z z2μ γ' )  =   Hγγ. 

  ∂
∂ ∂

2 ln L
γ μ

 =  =   Hγμ − − −
=∑ z zi ii

n
iy( ) exp( 'μ

1
γ )

  ∂
∂ ∂

2 ln L
μ μ

 =    =  Hμμ − −
=∑ exp( ' )

i

n
i1

z γ

The expectations in the Hessian are found as follows:  Since E[yi] = μ, E[Hγμ] = 0.  There are no stochastic 

terms in Hμμ, so E[Hμμ] = Hμμ  = −
=∑ 1

21σ i
i

n
.  Finally, E[(yi - μ)2] = σi

2, so E[Hγγ] = -1/2(Z′Z).   

 There is more than one way to estimate the parameters.  As in Example 5.13, the method of 
scoring (using the expected Hessian) will be straightforward in principle - though in our example, it does 
not work well in practice, so we use Newton’s method instead.  The iteration, in which we use index ‘t’ to 
indicate the estimate at iteration t, will be 
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The zero off diagonal elements in the expected Hessian make this convenient, as the iteration may be 
broken into two parts.  We take the iteration for μ first.  With current estimates μ(t) and γ(t), the method of 

scoring produces this iteration: μ(t+1)  =  μ(t)  +  

y t
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1 .  As will be explored in Chapters 12 and 

13, this is generalized least squares.  Let i denote an n×1 vector of ones, let ei(t) = yi - μ(t) denote the 
‘residual’ at iteration t and let e(t) denote the n×1 vector of residuals.  Let Ω(t) denote a diagonal matrix 
which has σi

2 on its diagonal (and zeros elsewhere).  Then, the iteration for μ is  
μ(t+1) = μ(t) +  [i′Ω(t)-1i]-1[i′Ω(t)-1e(t)].  This shows how to compute μ(t+1).  The iteration for γ(t+1) is 
exactly as was shown in Example 5.13, save for the single change that in the computation, yi

2 is changed to 
(yi - μ(t))2.  Otherwise, the computation is identical.  Thus, we would have  
γ(t+1) = γ(t) + (Z′Z)-1Z′v(γ(t),μ(t)), where vi(γ(t),μ(t)) is the term in parentheses in the iteration shown 
above.  This shows how to compute γ(t+1). 
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/*================================================================ 
Program Code for Estimation of Harvey's Model 
The data set for this model is 100 observations from Greene (1992) 
Variables are: Y  = Average monthly credit card expenditure 
               Q1 = Age in years+ 12ths of a year 
               Q2 = Income, divided by 10,000 
               Q3 = OwnRent; individual owns (1) or rents (0) home 
               Q4 = Self employed (1=yes, 0=no) 
Read     ; Nobs = 200 ; Nvar = 6 ; Names = y,q1,q2,q3,q4 
         ; file=d:\DataSets\A5-1.dat$ 
Namelist ; Z = One,q1,q2,q3,q4 $ 
================================================================ 
Step 1 is to get the starting values and set some values for the 
iterations- iter=iteration counter, delta=value for convergence. 
*/ 
Create   ; y0 = y – Xbr(y) ; ui = log(y0^2) $ 
Matrix   ; gamma0 = <Z'Z> * Z'ui ; EH = 2*<Z'Z> $ 
Calc     ; c0 = gamma0(1)+1.2704     ? Correction to start value 
         ; s20 = y0'y0/n ; delta = 1 ; iter=0 $ 
Create   ; vi0 = y0^2 / s20 - 1 $  (Used in LM statistic) 
? Correct first element in gamma, then set starting vector. 
Matrix   ; Gamma0(1) = c0  ; Gamma = Gamma0 $ Start value for gamma 
Calc     ; mu0 = Xbr(y); mu = mu0$            Start value for mu 
Procedure ----------[This does the iterations]-------------------- 
Create   ; vari = exp(Z'Gamma)  ;  ei = y-mu  ; varinv=1/vari 
         ; hi   = ei^2 / vari  
         ; gigamma = .5*(hi - 1); gimu = ei/vari 
         ; logli = -.5*(log(2*pi) + log(vari) + hi) $ 
Matrix   ; ggamma = Z'gigamma ; gmu= 1’gimu 
         ; H = 2*<Z’[hi]Z> ; gupdate = H*ggamma  
? scoring, update = EH*ggamma 
         ; Gamma = Gamma + gupdate $ 
Calc     ; muupdate = Sum(gimu)/Sum(varinv) ; mu = mu + muupdate $ 
Matrix   ; update = [gupdate/muupdate] ; g = [ggamma/gmu] $ 
Calc     ; list ; Iter = Iter+1 ; LogLU = Sum(logli);delta=g'update$ 
EndProcedure   
Execute  ; While  delta > .00001 $ ------------------------------ 
Matrix   ; Stat (Gamma,H) $ 
Calc     ; list ; mu ; vmu = 1/Sum(varinv)   ; tmu = mu/Sqr(Vmu) $ 
Calc     ; list ; Sigmasq = Exp(Gamma(1))    ; K = Col(Z) 
                ; SE = Sigmasq * Sqr(H(1,1)) ; TRSE = Sigmasq/SE   
                ; LogLR = -n/2*(1 + log(2*pi)+ log(s20)) 
                ; LRTest = -2*(LogLR - LogLU) $ 
Matrix          ; Alpha = Gamma(2:K) ; VAlpha = Part(H,2,K,2,K) 
         ; list ; WaldTest = Alpha ' <VAlpha> Alpha   
                ; LMTest = .5* vi0'Z * <Z'Z> * Z'vi0   
                ; EH ; H ; VB = BHHH(Z,gi) ; <VB> $ 
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In the Example in the text, μ was constrained to equal y .  In the program, μ is allowed to be a free 
parameter.  The comparison of the two sets of results appears below. 
                         (Constrained model, μ = y )                (Unconstrained model) 
Iteration            log likelihood             δ      log-l;ikelihood     δ 
   1           -698.3888    19.7022   -692.2987 22.8406 
   2          -692.2986     4.5494   -683.2320  6.9005 
   3          -689.7029     0.406881    -680.7028  2.7494 
   4          -689.4980     0.01148798   -679,7461  0.63453 
   5          -689.4741     0.0000125995   -679.4856  0.27023 
   6          -689.47407    0.000000000016 -679.4856  0.08124 
    -679.4648    0.03079 
    -679.4568  0.0101793 
    -679.4542  0.00364255 
    -679.4533   0.001240906 
    -679.4530   0.00043431 
    -679.4529   0.0001494193 
    -679.4528  0.00005188501 
    -679.4528  0.00001790973 
    -679.4528  0.00000620193 
Estimated Paramaters 
Variable     Estimate   Std Error  t-ratio 
Age 0.013042   0.02310    0.565     -0.0134    0.0244  -0.550 
Income 0.6432     0.120001   5.360      0.9953    0.1375   7.236 
Ownrent      -0.2159     0.3073    -0.703      0.0774    0.3004   0.258 
SelfEmployed -0.4273     0.6677    -0.640     -1.3117    0.6719  -1.952 
γ1             8.465                           7.867 
σ2           4,745.92       2609.72 
μ   189.02 fixed      91.874     15.247   6.026 
Tests of the joint hypothesis that all slope coefficients are zero: 
LW           40.716       60.759 
Wald:        39.024        69.515 
 LM          35.115        35.115 (same by construction).    
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