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Data sets for today, posted on the web page:

I KonsDataSim2.zip
I ECON4160_Jorg121314.xls, see also Erik Biorn’s note FGLS
for regression systems which was posted 8 Sept

I ADLfromVAR_d.zip
I KonsData2Nor.zip
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The simple bivariate case I

Assume that we have stochastic variables (yi ,xi ), i = 1, 2, . . . , n
that are generated by the following system of linear equations:

yi = µy + εy ,i (1)

xi = µx + εx ,i (2)

where µy and µx are parameters and εy ,i and εx ,i are have a joint
probability distribution. Without loss of generality (for the
following derivations) we assume a normal distribution(

εxi
εyi

)
∼ N

(
0,
(
σ 2x ωxy
ωxy σ 2y

))
. (3)
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The simple bivariate case II
εx ,i and εy ,i is bivariate normal with expectation zero and
covariance matrix (

σ 2x ωxy
ωxy σ 2y

)
.

The correlation coeffi cient between εx ,i and εy ,i is:

ρxy =
ωxy

σ xσ y
.

Since linear combination of normally distributed variables are also
normally distributed, it follows that yi and xi are normally
distributed (and correlated in general).
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The simple bivariate case III
From the properties of the normal distribution we know that the
distribution of yi conditional on xi is also normal, with expectation

E[yi | xi ] = µy − ρxy
σ y

σ x
µx + ρxy

σ y

σ x
xi

= β1 + β2xi (4)

If we define the stochastic variables εi , i = 1, 2, . . . , n

εi = yi − E[yi | xi ] (5)

we see that the simple regression model:

yi = β1 + β2xi + εi . (6)

gives yi as the sum of the conditional expectations function (4)
and the disturbance εt .
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The simple bivariate case IV
Note that εi can also be written as

εi = µy + εyi − β1 − β2(µx + εxi )

= εyi −
ωxy

σ 2x
εxi

Which can be used to show:

E (εi ) = 0, E (εiεxi ) = 0

Var(εi ) = σ 2y (1−
ω2xy

σ 2yσ
2
x
)

E (xiεi ) = 0 for all i
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The simple bivariate case V
The statistical system given by (1), (2) and (3) can be expressed in
model form by:

yi = β1 + β2xi + εi (7)

xi = µx + εx ,i (8)

E (εi ) = 0, for all i

Var(εi ) = σ 2y (1−
ω2xy

σ 2yσ
2
x
), for all i

E (xiεi ) = 0 for all i

E (εx ,iiεi ) = 0 for all i
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Regressions models I

1. When we estimate a linear regression we are estimating a
conditional expectation that is derived from a system of
variables.

2. When we estimate a linear regression model we can say that
we are estimating a partial system!

3. The full econometric model of the system consists of the
conditional model (7), the marginal model (8), and the
disturbances εi and εxi .

4. With reference to Cov(εi , xi ) = 0, xi is exogenous in the
conditional model.

5. OLS estimation is effi cient for Gaussian (i.e., normal)
disturbances and gives the Maximum Likelihood estimators for
β1 and β2.
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Regressions models II

6. This means that there is no information in the marginal model
that can help us improve on the estimates of β1 and β2 that
we get from the conditional model.

7. We say that xi is a weakly exogenous variable for parameters
of interest β1, β2 and Var [εi ]. (Greene defines weak
exogeneity on page 357)
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Generalizations I

I The results 1.-4. above do not depend on normality (it is just
a simplification)

I In particular: normality of xi is not required for E [εi | xi ] = 0
and E [εixi ] = 0.

I The results E [εi | xi ] = 0 and E [εixi ] = 0 do not depend on
linearity. More generally we have

yi = E [yi | xi ]+ εi

with E [εi | xi ] = 0 and E [εixi ] = 0 for a non-linear conditional
expectation function E [yi | xi ].
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Generalizations II

I Generalization from one to k explanatory variables is
straight-forward: we get

yi = E [yi | x1i ,x2i , . . . ,xki ]+ εi

and linear multiple regression as a special case.
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Omitted variables bias I

I Consider the three-variable system y , x1 and x2.
I The conditional expectations function for y is then a function
of x1 and x2

I Analyze this in OxMetrics/PcGive with the use of the artificial
data set in KonsDataSim2.zip on the web page.

I We will only use the variables named C (consumption), I
(income) and F (households’wealth).

I DGP is
C = 45+ 0.8I + 0.05F

I Choose the same sample size as in the first computer class:
1960-2006.
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The SUR model I

I Sometimes we are not interested in the parameters of the
conditional model, but in the parameters of the system.

I We may be interested in µy and µx in (1) and (2) or more
generally:

yi = µy0 +µy1z1i + εyi (9)

xi = µx0 +µx1z2i + εxi (10)

with Cov(z1i , εyi ) = 0 Cov(z2i , εyi ) = 0.

I Since ωyx 6= 0 in general, the two equations are Seemingly
Unrelated Regressions, SUR.

E 4160 Computer Class 2 Department of Economics, University of Oslo



Data sets Linear regression as a partial model of the system Systems of regression equations Dynamic models Exogeneity

The SUR model II

I From the lectures we know that the effi cient estimator is
Feasible Generalized Least Squares, FGLS, the SUR estimator,

I However, if z1i = z2i or if ωyx = 0, the SUR estimator is
identical to the OLS estimator for each equation

I Use the data set ECON4160_JORG121314.xls to estimate an
example. This will also be commented in the Lecture later in
the week.
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The VAR I

I The above assumes implicitly that we can condition on any x
when we model y conditionally.
Hence we have in effect that

yi = E [yi | xj ]+ εi ∀ i , j

with E [εi | xj ] = 0, ∀ i , j and E [εixj ] = 0, ∀ i , j .
I However, for time-series variables (xt , εs ) not all combinations
are relevant: There is a natural ordering of time!
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The VAR II

Let µx ,t−1, µx ,t−1 denote the expectations of xt and yt conditional
on the pre-history:

µyt−1 = E[yt | xt−1, yt−1] = a11yt−1 + a12xt−1 (11)

µxt−1 = E[xt | xt−1, yt−1] = a21yt−1 + a22xt−1 (12)

aij are the parameters of the conditional expectation of the
economic system. 1) and (2) are replaced by:

yt = µyt−1 + εyt (13)

xt = µxt−1 + εxt (14)
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The VAR III
where εyt and εxt have a joint probability distribution, for example(

εxt
εyt

)
∼ N

(
0,
(
σ 2x ωxy
ωxy σ 2y

))
. (15)

εxt and εyt are bivariate normal with expectation zero and
covariance matrix (

σ 2x ωxy
ωxy σ 2y

)
.

The correlation coeffi cient between εxt and εyt is:

ρxy =
ωxy

σ xσ y
. (16)
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The VAR IV
I The specification of the system that begins with (11) and
ends with (16 ) is a Vector AutoRegressive model, VAR.

I The name reflects that we here have a so called autoregressive
model for a vector variable:(

yt
xt

)
=

(
a11 a12
a21 a22

)(
yt−1
xt−1

)
+

(
εyt
εxt

)
(17)

I VAR models are popular in macroeconomics.
I Note that the VAR above is an example of a system of
regression equations (Biorn ch 4) or SUR model (Greene Ch
10) when we consider yt−1 and xt−1 as exogenous variables

I In fact, we will need the more precise term predetermined
variable which we define below.
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A conditional model of the VAR I

As economists we will typically be interested in building
econometric models of the VAR system.
In this course we will consider mainly two models of the VAR

I A conditional model of the VAR
I A simultaneous equations model of the VAR

Today we will consider the conditional model of the VAR
With the new notation for time series, the derivation used at the
start of the slide set goes can be used directly to give

yt = φ1yt−1 + β1xt + β2xt−1 + εt . (18)
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A conditional model of the VAR II

E[εt | xt , xt−1, yt−1] = 0

Var[εt | xt , xt−1, yt−1] ≡ σ 2 = σ 2y (1− ρ
2
xy ),

φ1 = a11 −
ωxy

σ 2x
a21,

β1 =
ωxy

σ 2x
,

β2 = a12 −
ωxy

σ 2x
a22.

xt = a21yt−1 + a22xt−1 + εxt (19)

Cov(εt , εxt ) = 0.
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A conditional model of the VAR III

I (18)
yt = φ1yt−1 + β1xt + β2xt−1 + εt

can be estimated by OLS, which is also conditional FIML for
the case of normal disturbances.

I As in the simplest case, (18) is a conditional model and (2) is
a marginal model.
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Granger causality

I We see that in one sense (18) and (19) define a recursive
model, see Biorn page 6.5, since given the history (represented
by yt−1 and xt−1), then xt is determined first, and given this,
yt is determined. Moreover, Cov(εt , εxt ) = 0.

I However, the two variables are clearly jointly determined over
time, since in general xt−1 −→ yt and yt−1 −→ xt . In
econometrics we call this joint Granger causality. Only if
a21 = 0 can we say that we have a recursive causal chain.

I With a21 = 0 imposed we say that yt−1 is not
Granger-causing x while xt−1 is Granger-causing yt .
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The ADL model

Dynamic models of the form (18):

yt = φ1yt−1 + β1xt + β2xt−1 + εt .

are referred to as Autoregressive Distributed Lag models in the
literature, and in OxMetrics/PcGive in particular.

I ADL models can be readily generalized to k explanatory
variables and to “any” lag lengths (how far back we condition
in the first step)

I Such large ADL equations then implies k marginal models
(although they are often not estimated, since we want to
focus on the conditional model)
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An example ADL model I

We specify a DGP in accordance with (11) (13) :(
a11 a12
a21 a22

)
=

(
0.5 0.4
0.2 0.7

)
and (

εxt
εyt

)
∼ N

(
0,
(

1 0.5
0.5 1

))
Then we expect:
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An example ADL model II

φ1 : a11 −
ωxy

σ 2x
a21 ⇒ 0.5− 0.5 ∗ 0.2 = 0.4

β1 :
ωxy

σ 2x
⇒ 0.5

β2 : a12 −
ωxy

σ 2x
a22 ⇒ 0.4− 0.5 ∗ 0.7 = 0.05

What do we find?

I Data from this DGP is found in the file
ADLfromVAR_d.in7/bn7.

I In that file YA corresponds to yt above and YB corresponds
to xt above.

I We use PcGive to check the theoretical results.
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Weak exogeneity of X in the conditional model I

OLS gives ML estimates of the parameters of the ADL model

yt = φ1yt−1 + β1xt + β2xt−1 + εt . (20)

xt is therfore weakly exogenous in (20) despite the fact that xt is
an endogenous variable in the VAR:

yt = a11yt−1 + a12xt−1 + εyt (21)

xt = a21yt−1 + a22xt−1 + εxt (22)(
εxt
εyt

)
∼ N

(
0,
(
σ 2x ωxy
ωxy σ 2y

))
(23)
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Weak exogeneity of X in the conditional model II
I There is a difference between a variable being endogenous in a
statistical system like (21)-(23) and being endogenous in a
model of the statistical system.

I xt is weakly exogenous for the parameters in (20) because we
do not gain anything in terms of effi ciency by estimating (20)
jointly with the marginal equation (22).

Again, this is a consequence of the conditioning, which also gives

E (εtεxt ) = 0⇒ E (εtxt ) = 0

so xt is exogenous in the econometric sense that is used in most
textbooks (sometimes referred to as the condition of strict
exogeneity.)
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Parameters of interest and weak exogeneity I

I How helpful and relevant is the weak exogeneity of a variable
in a conditional (regression) model?

I It is relevant if the parameters that we want to estimate, the
parameters of interest, are the parameters of the conditional
model!

I If the parameters of interest are not the conditional model,
then the weak exogeneity of xt is not very helpful.

I The solution is to change to a different econometric model of
the system.

I The other model is estimated by other methods than OLS.
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Predeterminedness I
In the two variable ADL model

yt = φ1yt−1 + β1xt + β2xt−1 + εt (24)

we have that

E (yt−1εt+j ) = 0,and E (xt−1εt+j ) = 0 for j > 0

by conditioning on history of the system, and

E (xtεt+j ) = 0 for j > 0

by conditioning on xt .
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Predeterminedness II
Heuristically, we cannot claim strict exogeneity

E (yt−1εt±j ) = 0 for all j (25)

Intuitively, this is because yt−1 must be correlated with εt−1,εt−2
and older disturbances through the solution of the equation for yt .

I (25) defines yt−1 as a pre-determined variable.
I xt and xt−1 are either exogenous or predetermined (depending
on Granger causality).

I With pre-determinedness OLS estimators are biased in small
samples, but they are remain consistent estimators in
stationary systems.

I The size of the bias is seldom very large, and it declines with
φ1.
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Predeterminedness and misspecification

Disturbances εi are:
Xi heteroscedastic autocorrelated

Xi β̂1 V̂ar(β̂1) β̂1 V̂ar(β̂1)

exogenous
unbiased
consistent

wrong
unbiased
consistent

wrong

predetermined
unbiased
consistent

wrong
biased
inconsistent

wrong
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Strong exogeneity

I In the ADL model

yt = φ1yt−1 + β1xt + β2xt−1 + εt

I xt is a strongly exogenous variable if there is no feed-back
from yt−1 on xt .

I xt is Granger causing yt , but yt is not Granger causing xt .
I In the ADL model, xt is strongly exogenous if a21 = 0 in the
marginal equation for xt .

I We see that strong exogeneity is easy to test.
I But note that the test involves the system, we learn nothing
about strong exogeneity from the conditional equation alone.
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Invariance, super exogeneity and autonomy I

I xt is super exogenous if the parameter of xt in the conditional
model for yt is invariant to structural breaks in the marginal
equation for xt .

I Super-exogeneity is the property that we have constant
parameters in the conditional model even in periods where
there is a structural break in the marginal equation for xt .

I We discussed this concept during the first seminar.
I Super exogeneity is defined for conditional models, but the
concept is related to the more general idea of autonomy.

I Econometric models with parameters that are invariant in the
face of wide range of structural breaks have a high degree of
autonomy.
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Testing invariance and super exogeneity and autonomy I

To test a hypothesis of lack of invariance we need to investigate
two issues:

1. Test the null hypothesis of no-structural breaks in the
marginal model

2. Test the null hypothesis of stability in the conditional model.

We have several tools available:

I Recursive estimation and recursive graphs
I Formal tests of structural breaks,
I Test the significance of dummy variables for structural breaks.
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