E 4160: Econometrics–Modeling and Systems Estimation Computer Class $# 2$ Ragnar Nymoen

Department of Economics, University of Oslo

12 September 2011

[E 4160 Computer Class 2](#page-33-0) Computer Class 2 Computer Cl

イタン イラン イラン

 QQ

Data sets for today, posted on the web page:

- \blacktriangleright KonsDataSim2.zip
- \triangleright ECON4160 Jorg121314.xls, see also Erik Biorn's note FGLS for regression systems which was posted 8 Sept
- \blacktriangleright ADLfromVAR d.zip
- \blacktriangleright KonsData2Nor.zip

 \mathcal{A} and \mathcal{A} . In the set of \mathbb{R}^n is

 η a

重

The simple bivariate case I

Assume that we have stochastic variables (y_i, x_i) , $i = 1, 2, \ldots, n$ that are generated by the following system of linear equations:

$$
y_i = \mu_y + \epsilon_{y,i} \tag{1}
$$

$$
x_i = \mu_x + \epsilon_{x,i} \tag{2}
$$

where μ_v and μ_x are parameters and $\epsilon_{v,i}$ and $\epsilon_{x,i}$ are have a joint probability distribution. Without loss of generality (for the following derivations) we assume a normal distribution

$$
\left(\begin{array}{c}\epsilon_{xi} \\ \epsilon_{yi}\end{array}\right)\sim N\left(0,\left(\begin{array}{cc}\sigma_x^2 & \omega_{xy} \\ \omega_{xy} & \sigma_y^2\end{array}\right)\right). \tag{3}
$$

 Ω

イロメ イ母メ イラメ イラメー

The simple bivariate case II

 $\epsilon_{\text{x,}i}$ and $\epsilon_{\text{y,}i}$ is bivariate normal with expectation zero and covariance matrix

$$
\left(\begin{array}{cc}\sigma_x^2 & \omega_{xy}\\ \omega_{xy} & \sigma_y^2\end{array}\right).
$$

The correlation coefficient between $\epsilon_{x,i}$ and $\epsilon_{y,i}$ is:

$$
\rho_{xy} = \frac{\omega_{xy}}{\sigma_x \sigma_y}.
$$

Since linear combination of normally distributed variables are also normally distributed, it follows that y_i and x_i are normally distributed (and correlated in general).

[E 4160 Computer Class 2](#page-0-0) Department of Economics, University of Oslo

 Ω

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

The simple bivariate case III

From the properties of the normal distribution we know that the distribution of y_i conditional on x_i is also normal, with expectation

$$
E[y_i \quad | \quad x_i] = \mu_y - \rho_{xy} \frac{\sigma_y}{\sigma_x} \mu_x + \rho_{xy} \frac{\sigma_y}{\sigma_x} x_i
$$

$$
= \beta_1 + \beta_2 x_i \tag{4}
$$

If we define the stochastic variables ε_i , $i = 1, 2, ..., n$

$$
\varepsilon_i = y_i - \mathsf{E}[y_i \mid x_i] \tag{5}
$$

we see that the simple regression model:

$$
y_i = \beta_1 + \beta_2 x_i + \varepsilon_i. \tag{6}
$$

gives y_i as the sum of the conditional expectations function [\(4\)](#page-4-0) and the disturbance $\varepsilon_t.$ マーティ ミュース ミュー

[E 4160 Computer Class 2](#page-0-0) Department of Economics, University of Oslo

 OQ

The simple bivariate case IV

Note that ε_i can also be written as

$$
\varepsilon_i = \mu_y + \epsilon_{yi} - \beta_1 - \beta_2(\mu_x + \epsilon_{xi})
$$

$$
= \epsilon_{yi} - \frac{\omega_{xy}}{\sigma_x^2} \epsilon_{xi}
$$

Which can be used to show:

$$
E(\varepsilon_i) = 0, E(\varepsilon_i \varepsilon_{xi}) = 0
$$

$$
Var(\varepsilon_i) = \sigma_y^2 (1 - \frac{\omega_{xy}^2}{\sigma_y^2 \sigma_x^2})
$$

$$
E(x_i \varepsilon_i) = 0 \text{ for all } i
$$

Allen Allen [E 4160 Computer Class 2](#page-0-0) Computer Class 2 Computer Cl

4 0 F

 2990

Þ

The simple bivariate case V

The statistical system given by [\(1\)](#page-2-1), [\(2\)](#page-2-2) and [\(3\)](#page-2-3) can be expressed in model form by:

$$
y_i = \beta_1 + \beta_2 x_i + \varepsilon_i \tag{7}
$$

$$
x_i = \mu_x + \epsilon_{x,i} \tag{8}
$$

$$
E(\varepsilon_i) = 0, \text{ for all } i
$$

\n
$$
Var(\varepsilon_i) = \sigma_y^2 (1 - \frac{\omega_{xy}^2}{\sigma_y^2 \sigma_x^2}), \text{ for all } i
$$

\n
$$
E(x_i \varepsilon_i) = 0 \text{ for all } i
$$

\n
$$
E(\varepsilon_{x,i} \varepsilon_i) = 0 \text{ for all } i
$$

[E 4160 Computer Class 2](#page-0-0) Computer Class 2 Computer Cl

 η an \equiv

イロメ イ母メ イヨメ イヨメー

Regressions models I

- 1. When we estimate a linear regression we are estimating a conditional expectation that is derived from a system of variables.
- 2. When we estimate a linear regression model we can say that we are estimating a *partial* system!
- 3. The full econometric model of the system consists of the conditional model [\(7\)](#page-6-0), the marginal model [\(8\)](#page-6-1), and the disturbances ε_i and ϵ_{xi} .
- 4. With reference to $Cov(\varepsilon_i, x_i) = 0$, x_i is exogenous in the conditional model.
- 5. OLS estimation is efficient for Gaussian (i.e., normal) disturbances and gives the Maximum Likelihood estimators for β_1 and β_2 . $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$ η an

Regressions models II

- 6. This means that there is no information in the marginal model that can help us improve on the $\,$ estimates of β_1 and β_2 that we get from the conditional model.
- 7. We say that x_i is a *weakly exogenous* variable for *parameters of interest* β_1 *,* β_2 and $\mathsf{Var}[\varepsilon_i]$. (Greene defines weak exogeneity on page 357)

イタン イラン イラン

 η an

Generalizations I

- \triangleright The results 1.-4. above do not depend on normality (it is just a simplification)
- In particular: normality of x_i is not required for $E[\varepsilon_i | x_i] = 0$ and $E[\varepsilon_i x_i] = 0$.
- The results $E[\varepsilon_i | x_i] = 0$ and $E[\varepsilon_i x_i] = 0$ do not depend on linearity. More generally we have

$$
y_i = E[y_i \mid x_i] + \varepsilon_i
$$

with $E[\varepsilon_i | x_i] = 0$ and $E[\varepsilon_i x_i] = 0$ for a *non-linear* conditional expectation function $E[y_i | x_i]$.

Generalizations II

Generalization from one to k explanatory variables is straight-forward: we get

$$
y_i = E[y_i \mid x_{1i}, x_{2i}, \ldots, x_{ki}] + \varepsilon_i
$$

and linear multiple regression as a special case.

[E 4160 Computer Class 2](#page-0-0) Computer Class 2 Computer Cl

- イタト イラト イラト

4. 17. 6.

 OQ

重

Omitted variables bias I

- **Consider the three-variable system y,** x_1 **and** x_2 **.**
- \blacktriangleright The conditional expectations function for y is then a function of x_1 and x_2
- \triangleright Analyze this in OxMetrics/PcGive with the use of the artificial data set in KonsDataSim2.zip on the web page.
- \triangleright We will only use the variables named C (consumption), I (income) and F (households' wealth).
- \triangleright DGP is

$$
C = 45 + 0.8I + 0.05F
$$

 \triangleright Choose the same sample size as in the first computer class: 1960-2006.

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$ [E 4160 Computer Class 2](#page-0-0) Computer Class 2 Computer Cl

 OQ

The SUR model I

- \triangleright Sometimes we are not interested in the parameters of the conditional model, but in the parameters of the system.
- \blacktriangleright We may be interested in $\mu_{_Y}$ and $\mu_{_X}$ in (1) and (2) or more generally:

$$
y_i = \mu_{y0} + \mu_{y1} z_{1i} + \epsilon_{yi}
$$

\n
$$
x_i = \mu_{x0} + \mu_{x1} z_{2i} + \epsilon_{xi}
$$
 (9)

with $Cov(z_{1i}, \epsilon_{yi}) = 0$ $Cov(z_{2i}, \epsilon_{yi}) = 0$.

Since $\omega_{vx} \neq 0$ in general, the two equations are Seemingly Unrelated Regressions, SUR.

[E 4160 Computer Class 2](#page-0-0) **Department of Economics, University of Oslo**

 η an

イロメ イ母メ イラメ イラメー

The SUR model II

- \blacktriangleright From the lectures we know that the efficient estimator is Feasible Generalized Least Squares, FGLS, the SUR estimator,
- \blacktriangleright However, if $z_{1i} = z_{2i}$ or if $\omega_{vx} = 0$, the SUR estimator is identical to the OLS estimator for each equation
- \blacktriangleright Use the data set $ECON4160$ JORG121314.xls to estimate an example. This will also be commented in the Lecture later in the week.

 Ω

The VAR I

 \blacktriangleright The above assumes implicitly that we can condition on any x when we model y conditionally. Hence we have in effect that

$$
y_i = E[y_i \mid x_j] + \varepsilon_i \ \forall \ i, j
$$

with $E[\varepsilon_i | x_j] = 0, \forall i, j$ and $E[\varepsilon_i x_j] = 0, \forall i, j$.

 \blacktriangleright However, for time-series variables (x_t, ε_s) not all combinations are relevant: There is a natural ordering of time!

- イター・エー・メモー

 η an

The VAR II

Let $\mu_{x,t-1}$, $\mu_{x,t-1}$ denote the expectations of x_t and y_t conditional on the pre-history:

$$
\mu_{yt-1} = \mathsf{E}[y_t \mid x_{t-1}, y_{t-1}] = a_{11}y_{t-1} + a_{12}x_{t-1} \tag{11}
$$

$$
\mu_{xt-1} = \mathsf{E}[x_t \mid x_{t-1}, y_{t-1}] = a_{21}y_{t-1} + a_{22}x_{t-1} \tag{12}
$$

 a_{ii} are the parameters of the conditional expectation of the economic system. [1\)](#page-2-1) and [\(2\)](#page-2-2) are replaced by:

$$
y_t = \mu_{yt-1} + \epsilon_{yt} \tag{13}
$$

$$
x_t = \mu_{xt-1} + \epsilon_{xt} \tag{14}
$$

 \equiv Ω

イロメ イ母メ イラメ イラメー

The VAR III

where ϵ_{vt} and ϵ_{xt} have a joint probability distribution, for example

$$
\left(\begin{array}{c} \epsilon_{xt} \\ \epsilon_{yt} \end{array}\right) \sim N\left(0, \left(\begin{array}{cc} \sigma_x^2 & \omega_{xy} \\ \omega_{xy} & \sigma_y^2 \end{array}\right)\right). \tag{15}
$$

.

 ϵ_{xt} and ϵ_{vt} are bivariate normal with expectation zero and covariance matrix

$$
\left(\begin{array}{cc}\sigma_x^2 & \omega_{xy} \\ \omega_{xy} & \sigma_y^2\end{array}\right)
$$

The correlation coefficient between ϵ_{xt} and ϵ_{vt} is:

$$
\rho_{xy} = \frac{\omega_{xy}}{\sigma_x \sigma_y}.
$$
\n(16)

 QQ

イロト イ母 トイラト イラト

The VAR IV

- \blacktriangleright The specification of the system that begins with [\(11\)](#page-15-0) and ends with [\(16](#page-16-0)) is a Vector AutoRegressive model, VAR.
- \blacktriangleright The name reflects that we here have a so called autoregressive model for a vector variable:

$$
\left(\begin{array}{c} y_t \\ x_t \end{array}\right) = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right) \left(\begin{array}{c} y_{t-1} \\ x_{t-1} \end{array}\right) + \left(\begin{array}{c} \epsilon_{yt} \\ \epsilon_{xt} \end{array}\right) \tag{17}
$$

- \triangleright VAR models are popular in macroeconomics.
- \triangleright Note that the VAR above is an example of a system of regression equations (Biorn ch 4) or SUR model (Greene Ch 10) when we consider y_{t-1} and x_{t-1} as exogenous variables
- \blacktriangleright In fact, we will need the more precise term predetermined variable which we deÖne below.

 Ω

マーディ エー・マート

A conditional model of the VAR I

As economists we will typically be interested in building econometric models of the VAR system. In this course we will consider mainly two models of the VAR

- \triangleright A conditional model of the VAR
- \triangleright A simultaneous equations model of the VAR

Today we will consider the conditional model of the VAR With the new notation for time series, the derivation used at the start of the slide set goes can be used directly to give

$$
y_t = \phi_1 y_{t-1} + \beta_1 x_t + \beta_2 x_{t-1} + \varepsilon_t.
$$
 (18)

イタン イラン イラン

 Ω

A conditional model of the VAR II

$$
E[\varepsilon_{t} | x_{t}, x_{t-1}, y_{t-1}] = 0
$$

\n
$$
Var[\varepsilon_{t} | x_{t}, x_{t-1}, y_{t-1}] \equiv \sigma^{2} = \sigma_{y}^{2} (1 - \rho_{xy}^{2}),
$$

\n
$$
\phi_{1} = a_{11} - \frac{\omega_{xy}}{\sigma_{x}^{2}} a_{21},
$$

\n
$$
\beta_{1} = \frac{\omega_{xy}}{\sigma_{x}^{2}},
$$

\n
$$
\beta_{2} = a_{12} - \frac{\omega_{xy}}{\sigma_{x}^{2}} a_{22}.
$$

\n
$$
x_{t} = a_{21} y_{t-1} + a_{22} x_{t-1} + \epsilon_{xt}
$$

\n
$$
Cov(\varepsilon_{t}, \epsilon_{xt}) = 0.
$$

\n(19)

イロメ イ母メ イヨメ イヨメー [E 4160 Computer Class 2](#page-0-0) Computer Class 2 Computer Cl

 \equiv ΩQ

A conditional model of the VAR III

 \blacktriangleright [\(18\)](#page-18-0)

$y_t = \phi_1 y_{t-1} + \beta_1 x_t + \beta_2 x_{t-1} + \varepsilon_t$

can be estimated by OLS, which is also conditional FIML for the case of normal disturbances.

As in the simplest case, (18) is a conditional model and (2) is a marginal model.

 \equiv Ω

イロメ イ押メ イヨメ イヨメー

Granger causality

- \triangleright We see that in one sense [\(18\)](#page-18-0) and [\(19\)](#page-19-0) define a recursive model, see Biorn page 6.5, since given the history (represented by y_{t-1} and x_{t-1}), then x_t is determined first, and given this, y_t is determined. Moreover, $Cov(\varepsilon_t, \epsilon_{xt}) = 0$.
- \blacktriangleright However, the two variables are clearly jointly determined over time, since in general $x_{t-1} \longrightarrow y_t$ and $y_{t-1} \longrightarrow x_t$. In econometrics we call this joint Granger causality. Only if $a_{21} = 0$ can we say that we have a recursive causal chain.
- \triangleright With $a_{21} = 0$ imposed we say that y_{t-1} is not Granger-causing x while x_{t-1} is Granger-causing y_t .

 \equiv \cap \cap

The ADL model

Dynamic models of the form [\(18\)](#page-18-0):

$$
y_t = \phi_1 y_{t-1} + \beta_1 x_t + \beta_2 x_{t-1} + \varepsilon_t.
$$

are referred to as Autoregressive Distributed Lag models in the literature, and in OxMetrics/PcGive in particular.

- \blacktriangleright ADL models can be readily generalized to k explanatory variables and to "any" lag lengths (how far back we condition in the first step)
- \triangleright Such large ADL equations then implies k marginal models (although they are often not estimated, since we want to focus on the conditional model)

ാഹ

 \mathcal{A} and \mathcal{A} . In the set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

An example ADL model I

We specify a DGP in accordance with (11) (13) :

$$
\left(\begin{array}{cc}\n a_{11} & a_{12} \\
a_{21} & a_{22}\n\end{array}\right) = \left(\begin{array}{cc}\n 0.5 & 0.4 \\
0.2 & 0.7\n\end{array}\right)
$$

and

$$
\left(\begin{array}{c} \epsilon_{xt} \\ \epsilon_{yt} \end{array}\right) \sim N\left(0, \left(\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array}\right)\right)
$$

Then we expect:

[E 4160 Computer Class 2](#page-0-0) Computer Class 2 Computer Cl

 η an

重

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$

4. 17. 6.

An example ADL model II

$$
\phi_1 : a_{11} - \frac{\omega_{xy}}{\sigma_x^2} a_{21} \Rightarrow 0.5 - 0.5 * 0.2 = 0.4
$$

$$
\beta_1 : \frac{\omega_{xy}}{\sigma_x^2} \Rightarrow 0.5
$$

$$
\beta_2 : a_{12} - \frac{\omega_{xy}}{\sigma_x^2} a_{22} \Rightarrow 0.4 - 0.5 * 0.7 = 0.05
$$

What do we find?

- \triangleright Data from this DGP is found in the file ADLfromVAR_d.in7/bn7.
- In that file YA corresponds to y_t above and YB corresponds to x_t above.
- \triangleright We u[s](#page-23-0)e *PcGive* to check the theoretical [re](#page-23-0)[su](#page-25-0)[lt](#page-22-0)s[.](#page-24-0)

 OQ

Weak exogeneity of X in the conditional model I

OLS gives ML estimates of the parameters of the ADL model

$$
y_t = \phi_1 y_{t-1} + \beta_1 x_t + \beta_2 x_{t-1} + \varepsilon_t.
$$
 (20)

 x_t is therfore weakly exogenous in [\(20\)](#page-25-1) despite the fact that x_t is an endogenous variable in the VAR:

$$
y_t = a_{11}y_{t-1} + a_{12}x_{t-1} + \epsilon_{yt}
$$
 (21)

$$
x_t = a_{21}y_{t-1} + a_{22}x_{t-1} + \epsilon_{xt} \tag{22}
$$

$$
\left(\begin{array}{c}\epsilon_{xt}\\ \epsilon_{yt}\end{array}\right)\sim N\left(0,\left(\begin{array}{cc}\sigma_x^2 & \omega_{xy}\\ \omega_{xy} & \sigma_y^2\end{array}\right)\right) \tag{23}
$$

[E 4160 Computer Class 2](#page-0-0) Computer Class 2 Computer Cl

 \mathcal{A} and \mathcal{A} . In the set of \mathbb{R}^n is

 OQ

Weak exogeneity of X in the conditional model II

- ▶ There is a difference between a variable being endogenous in a statistical system like [\(21\)](#page-25-2)-[\(23\)](#page-25-3) and being endogenous in a model of the statistical system.
- \blacktriangleright x_t is *weakly exogenous* for the parameters in [\(20\)](#page-25-1) because we do not gain anything in terms of efficiency by estimating (20) jointly with the marginal equation [\(22\)](#page-25-4).

Again, this is a consequence of the conditioning, which also gives

$$
E(\varepsilon_t \epsilon_{xt}) = 0 \Rightarrow E(\varepsilon_t x_t) = 0
$$

so x_t is exogenous in the econometric sense that is used in most textbooks (sometimes referred to as the condition of strict exogeneity.)

 η an

Parameters of interest and weak exogeneity I

- \blacktriangleright How helpful and relevant is the weak exogeneity of a variable in a conditional (regression) model?
- It is relevant if the parameters that we want to estimate, the parameters of interest, are the parameters of the conditional model!
- If the parameters of interest are not the conditional model, then the weak exogeneity of x_t is not very helpful.
- ▶ The solution is to change to a *different econometric model* of the system.
- \blacktriangleright The other model is estimated by other methods than OLS.

 Ω

 $4.69 \times 4.33 \times 4.33 \times$

Predeterminedness I

In the two variable ADL model

$$
y_t = \phi_1 y_{t-1} + \beta_1 x_t + \beta_2 x_{t-1} + \varepsilon_t \tag{24}
$$

we have that

$$
E(y_{t-1}\varepsilon_{t+j})=0, \text{and } E(x_{t-1}\varepsilon_{t+j})=0 \text{ for } j>0
$$

by conditioning on history of the system, and

$$
E(x_t \varepsilon_{t+j}) = 0 \text{ for } j > 0
$$

by conditioning on x_t .

A BAY A BA [E 4160 Computer Class 2](#page-0-0) Computer Class 2 Computer Cl

 -10.16

 2990

Þ

Predeterminedness II

Heuristically, we cannot claim strict exogeneity

$$
E(y_{t-1}\varepsilon_{t\pm j}) = 0 \text{ for all } j \tag{25}
$$

Intuitively, this is because y_{t-1} must be correlated with $\varepsilon_{t-1}, \varepsilon_{t-2}$ and older disturbances through the solution of the equation for $y_t.$

- \triangleright [\(25\)](#page-29-0) defines y_{t-1} as a pre-determined variable.
- \triangleright x_t and x_{t-1} are either exogenous or predetermined (depending on Granger causality).
- ▶ With pre-determinedness OLS estimators are biased in small samples, but they are remain consistent estimators in stationary systems.
- \triangleright The size of the bias is seldom very large, and it declines with ϕ_1 . $\Box \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box C \rightarrow A \Box C$

Predeterminedness and misspecification

[E 4160 Computer Class 2](#page-0-0) Computer Class 2 Computer Cl

 299

Ξ

Strong exogeneity

 \blacktriangleright In the ADL model

$$
y_t = \phi_1 y_{t-1} + \beta_1 x_t + \beta_2 x_{t-1} + \varepsilon_t
$$

- \blacktriangleright x_t is a strongly exogenous variable if there is no feed-back from y_{t-1} on x_t .
- ▶ x_t is Granger causing y_t , but y_t is **not** Granger causing x_t .
- In the ADL model, x_t is strongly exogenous if $a_{21} = 0$ in the marginal equation for x_t .
- \triangleright We see that strong exogeneity is easy to test.
- \triangleright But note that the test involves the system, we learn nothing about strong exogeneity from the conditional equation alone.

 OQ

Invariance, super exogeneity and autonomy I

- \triangleright x_t is super exogenous if the parameter of x_t in the conditional model for y_t is invariant to structural breaks in the marginal equation for x_t .
- \triangleright Super-exogeneity is the property that we have constant parameters in the conditional model even in periods where there is a structural break in the marginal equation for x_t .
- \triangleright We discussed this concept during the first seminar.
- \triangleright Super exogeneity is defined for conditional models, but the concept is related to the more general idea of autonomy.
- \blacktriangleright Econometric models with parameters that are invariant in the face of wide range of structural breaks have a high degree of autonomy.

 PQQ

 $4.69 \times 4.33 \times 4.33 \times$

Testing invariance and super exogeneity and autonomy I

To test a hypothesis of lack of invariance we need to investigate two issues:

- 1. Test the null hypothesis of no-structural breaks in the marginal model
- 2. Test the null hypothesis of stability in the conditional model.

We have several tools available:

- \blacktriangleright Recursive estimation and recursive graphs
- \blacktriangleright Formal tests of structural breaks,
- \triangleright Test the significance of dummy variables for structural breaks.

 Ω D.

 $4.69 \times 4.33 \times 4.33 \times$