Econ 4160: Seminar 4

October 25, 2011

Problems from postponed exam spring 2006

1a

Specify the reduced form of this macro model and determine which of its equations are exactly identified and which are overidentified.

Solving for Y_t

 $Y_t = \frac{a_0 + u_t + b_0 + b_2 Y_{t-1} + v_t + X_t}{1 - a_1 - b_1}$

$$= \prod_{10} + \prod_{11} Y_{t-1} + \prod_{12} X_t + \varepsilon_{1t}$$
$$\prod_{10} = \frac{a_0 + b_0}{1 - a_1 - b_1}$$
$$\prod_{11} = \frac{b_2}{1 - a_1 - b_1}$$
$$\prod_{12} = \frac{1}{1 - a_1 - b_1}$$
$$\varepsilon_{1t} = \frac{u_t + v_t}{1 - a_1 - b_1}$$

Solving for C_t

$$C_t = a_0 + a_1(\frac{a_0 + u_t + b_0 + b_2 Y_{t-1} + v_t + X_t}{1 - a_1 - b_1}) + u_t$$

$$= \prod_{20} + \prod_{21} Y_{t-1} + \prod_{22} X_t + \varepsilon_{2t}$$
$$\prod_{20} = \frac{a_1 b_0 - b_1}{(1 - a_1 - b_1)}$$

$$\Pi_{21} = \frac{a_1 b_2}{(1 - a_1 - b_1)}$$
$$\Pi_{22} = \frac{a_1}{(1 - a_1 - b_1)}$$
$$\varepsilon_{2t} = \frac{u_t + a_1 v_t - u_t b_1}{(1 - a_1 - b_1)}$$

Solving for I_t

$$I_{t} = b_{0} + b_{1} \left(\frac{a_{0} + u_{t} + b_{0} + b_{2} Y_{t-1} + v_{t} + X_{t}}{1 - a_{1} - b_{1}} \right) + b_{2} Y_{t-1} + v_{t}$$

$$= \prod_{30} + \prod_{31} Y_{t-1} + \prod_{32} X_{t} + \varepsilon_{3t}$$

$$\prod_{30} = \frac{b_{0} - b_{0} a_{1} - b_{1} a_{0}}{1 - a_{1} - b_{1}}$$

$$\prod_{31} = \frac{b_{1} b_{2} - b_{2} a_{1}}{1 - a_{1} - b_{1}}$$

$$\prod_{32} = \frac{b_{1}}{1 - a_{1} - b_{1}}$$

$$\varepsilon_{3t} = \frac{v_{t} - v_{t} a_{1} + b_{1} u_{t}}{1 - a_{1} - b_{1}}$$

Problem 3

3a

The model contains four equations: which are its four endogenous variables, and which of them are observable and which are latent? The consumption function (1) is specified without a disturbance. Do you have any comment to this simplifying assumption?

a)

We have four endogenous variables : η_i , ξ_i , y_i , x_i

Where the first two are latent variables and the two latter are observed consumption and income.

When equation 1 and two are combined we get:

 $y_i = \alpha + \beta \xi_i + \varepsilon$

Adding a disturbance term to (1) would not give any extra information.

3b

 $var(y_i) = var(\eta_i + \varepsilon_i) = var(\eta_i) + var(\varepsilon_i) + 2cov(\eta, \varepsilon_i)$

 $2cov(\eta, \varepsilon_i)$ is 0 by assumption

$$= var(\alpha + \beta\xi) + var(\varepsilon_i) = var(\alpha) + \beta^2 var(\xi) + var(\varepsilon_i) = \beta^2 \gamma_x^2 \sigma_q^2 + \beta^2 \sigma_u^2 + \sigma_\varepsilon^2$$
$$var(x_i) = \gamma_x^2 \sigma_q^2 + \sigma_u^2 + \sigma_\delta^2$$
$$cov(y_i, x_i) = \beta \gamma_x \sigma_q^2$$
$$cov(x_i, q_i) = \gamma_x \sigma_q^2$$

3c

$$y_i = (\alpha + \beta(x_i - \delta_i) + \varepsilon_i) = (\alpha + \beta x_i - \beta \delta_i + \varepsilon_i)$$
 where we can put $\omega_i = -\beta \delta_i + \varepsilon_i$

- Correlated with the variable it is supposed to represent (X)

- Not correlated with residual (w_i)

 $\mathbf{3d}$

$$\hat{\beta}(z) = \frac{M[y, z]}{M[x, z]}$$

$$plim\hat{\beta}(z) = \frac{plimM[y,z]}{plimM[x,z]} = \frac{cov(y,z)}{var(z)}$$

i) $z_i = x_i$

$$\frac{cov(y,x)}{var(x)} = \frac{\beta\gamma_x^2\sigma_q^2 + \beta\sigma_u^2}{\gamma_x^2\sigma_q^2 + \sigma_u^2 + \sigma_\delta^2} = \beta \frac{\gamma_x^2\sigma_q^2 + \sigma_u^2}{\gamma_x^2\sigma_q^2 + \sigma_u^2 + \sigma_\delta^2} < \beta$$

Inconsistent estimator. Underestimation ii) $z_i = y_i$

$$\tfrac{var(y)}{cov(x,y)} = \tfrac{\beta^2 \gamma_x^2 \sigma_q^2 + \beta^2 \sigma_u^2 + \sigma_\varepsilon^2}{\beta \gamma_x^2 \sigma_q^2 + \beta \sigma_u^2} = \beta + \tfrac{\sigma_\varepsilon^2}{\gamma_x^2 \sigma_q^2 + \sigma_u^2} > \beta$$

Inconsistent estimator. Overestimation

iii)
$$z_i = \hat{x}_i = \hat{\lambda}_x + \hat{\gamma}_x q i$$

$$\frac{cov(y,\lambda_x+\gamma_xqi)}{cov(x,\lambda_x+\gamma_xqi)} = \frac{cov(\alpha+\beta x_i+\varepsilon_i-\beta\delta_i,\lambda_x+\gamma_xq_i)}{cov(-\frac{\alpha}{\beta}+\frac{1}{\beta}y_i+\delta_i-\frac{1}{\beta}\varepsilon_i,\lambda_x+\gamma_xq_i)} = \frac{\beta\gamma_xcov(x,q)}{\frac{1}{\beta}\gamma_xcov(y,q)} = \frac{\beta^2\gamma_x\sigma_q^2}{\beta\gamma_x\sigma_q^2} = \beta$$

Consistent estimator for β

$$\begin{split} &\text{iv}) \ z_i = \hat{y}_i = \hat{\lambda}_y + \hat{\gamma_y} q i \\ & \frac{\cos(y, \lambda_y + \gamma_y q i)}{\cos(x, \lambda_y + \gamma_y q i)} = \frac{\cos(\alpha + \beta x_i + \varepsilon_i - \beta \delta_i, \lambda_y + \gamma_y q_i)}{\cos(\alpha - \beta + \frac{1}{\beta} y_i + \delta_i - \frac{1}{\beta} \varepsilon_i, \lambda_y + \gamma_y q_i)} = \frac{\beta \gamma_y \cos(x, q)}{\frac{1}{\beta} \gamma_y \cos(y, q)} = \frac{\beta^2 \gamma_y \sigma_q^2}{\beta \gamma_y \sigma_q^2} = \beta \end{split}$$

Consistent estimator for β

 ${\bf x}$ and ${\bf y}$ endogenous -> cannot be used as IV shown by inconsistency in i) and ii)

We know that q is uncorrelated with the error terms in both equations -> $(\hat{\lambda}_x, \hat{\gamma_x})$ consistent estimators of (λ_x, γ_x)

If you find any misprints/mistakes, don't hesitate to let us know! (sofie.kjernli-wijnen@econ.uio.no)