
Exercise 1: The ADL model and Equilibrium Correction form 

a) 
 

Known properties of VAR: 

We insert equation (4) into equation (3) to get: 

                                        , 

Where               ,                in (1), and              

From the slides to CC 2 we have that  

       
   

  
                

   
   

  
           

       
   

  
                

And we see that the estimated parameter values come close to what we expect from the known 

properties of this artificial VAR. 

AR 1-2 test:  

Regress the OLS residuals on all independent variables, including the lagged variables (and the 

intercept). What we really do is to test whether the errors in different time periods are correlated 

with each other. We the obtain the F test for joint significance of ut and uxt to test the null hypothesis 

that that the errors are serially uncorrelated; 

H0: ρ=0 vs H1≠0. 

In Pc Give we obtain F(2, 195) = 0,59 (0,56) (Significant 5% lever of the F-test with 2 degrees of 

freedom and 120 observations is 3,07, so it is far from significant). 

Conclusion: No serial correlation in the residuals. 

ARCH 1-1 Test:  

“Auto Regressive Conditional Heteroskedasticity” test.  

First, the errors should not be serially correlated; any serial correlation will generally invalidate a 

heteroskedasticity test. 

In the ARCH test we look at the conditional variance of ut given past errors.  

                                                    
    



                                 

In Pc Give we obtain F(1, 198) = 0,015 (0,90) which again is not statistically significant different from 

zero. (Significant 5% lever of the F-test with 1 degrees of freedom and 120 observations is 3,92) 

Conclusion: No heteroskedasticity in the residuals. 

Normality Test: 

Test the goodness of fit for the system to follow a normal distribution.  

The Chi Square Test in Pc Give Chi^2(2)=0,35 (0,84), which means that we cannot reject the null 

hypothesis that the residual follows a normal distribution. 

RESET Test: 

Used to test for whether unknown variables have been omitted from a regression specification. 

b) 
The static long run solution of (3) is defined as  

    
     
    

                         
     
    

                                          

From the static long run solution in PcGive we get the estimate of the long run derivative coefficient 

   = 0.919469 (0.04159). 

We received the following value from the regression in PcGive: 

                                   
             

Another way to find B is to plot the estimates of the coefficient from the regression into the 

definition of B: 

    
                    

           
          

We are now going to test the hypothesis H0: B=1 versus H1: B≠1 

Using the t-test: 

   
      

      
  

          

       
            so we can reject the null hypothysis that B=1 at the 5% 

significance level, but not at the 1% level.  

c) 
We’ll use eq (4):  

                              

and               ,                  

First subtract                 on both side of eq(4): 

                                                         



                                         

We define                                 as the new coefficients. 

We then create two new variables,     and     in PcGive and regress (5): 

Comments: 

 When we estimated eq (5) in PcGive we got the following estimates of the new coefficients: 

                                             which is exactly the same values we 

get if we insert the estimated coefficients from the previous regression into the definitions of 

the b’s. 

 All the tests we went through in 1a) has exactly the same values except from the Hetero-test 

and the Reset23-test.  The result from the Reset23-test has increased from 0.15202 [0.8591] 

to 0.40360 [0.6685]. This means that the probability that we have omitted a variable has 

increased, but the test result is still not significant enough to reject the null hypothesis.   

d) 
If we want to look at the long term static solution we have to transform the model: 

In the long run we assume that there is no change between the short term periods:  

                  and                      

If we use these assumptions, we can rewrite equation (5)  and find the long run coefficient B: 

                                                               

    
     

      
    

So alternative 3 for estimating B is then simply to see that     
  

  
. To see this; 

 
   

   
  

        

         
=0,919469. 

 

Exercise 3:  
 

We interpret Y(Ya in PcGive) to be private consumption and X(Yb in PcGive) to be disposable income. 

We are going to look at a permanent change in the endogenous variable x (Yb), and we model this as 

a sunspot shock in εxt. 

Comments:  

We have simulated at 0,1 permanet change in X(Yb) and as we can see on the graph, the long term 

change  on Y(Ya) is approximately 0.95. This means that we will use 95% of the increase in income on 

consumption. This coincides with exercise 1b where we found that we could not reject the H0: B=1.  



Excercise 4 
 

We are given the two equations 

                             

                   , 

And we assume that  

               (the disturbances are uncorrelated) 

                          (zero conditional expectations) 

                         
          
         

 ,                       
          
         

  (The errors 

are homoscedastic and that there is no autocorrelation). 

Two alternative ways of showing that the OLS estimator in general will be an inconsistent estimator 

for the parameter β1: 

Alternative 1:      
 

Regressing    on      instead of     

Taking conditional expectations on both sides of (7) yields: 

                                                             

Inserting the expression                   into (6) yields: 

                , where     is the new OLS estimator.  

If we define      , we see that when we regress    on      we will get 

                

and    will in general not be a consistent estimator for    since                       . So as 

long as       , then the OLS estimator will be an inconsistent estimator.   

 

Alternative 2: 
 

When                       , then we see from (7) that  

                  

                  

Inserting this expression into (6) yields: 



                                                            

Since    now is a function of both    and    , the regression of the above equation will therefore in 

general produce inconsistent estimates of      That is because the explanatory variables should not 

be correlated with the disturbances, but that will now be the case, since    is in general correlated 

with    . 

 

Exercise 5: Exercise 16 in Forty Exercises 
 

“Explain precisely the terms structural form and reduced form of a 
simultaneous, linear equation system. Explain precisely the difference between a simul- 
taneous linear equation system and a system of linear regressions equations.” 

With structural form we mean a set of structural relations put together to one determined system, 

with specified endogenous and exogenous variables, and with specified assumptions about the 

distributions of the error terms. The structural form has as many equations as endogenous variables. 

Structural equations also satisfy the normalization restrictions: Each equation has at least one known 

coefficient. 

The reduced form is found by solving the structural form with respect to the endogenous variables. 

In systems of regressions equations there are no endogenous variables on the RHS, while in a 

simultaneous linear equation system that can be the case. It follows that a system of linear 

regressions equations often consist of reduced form equations. 

Exercise 6: 
 

An explanatory variable that is determined simultaneously with the dependent variable is generally 

correlated with the error term, which leads to bias and inconsistency in OLS. 

EX: 

Look at the simultaneous linear equation system for demand and supply as functions of the same 

price   : 

(8)   
              

(9)   
              

Defining a new equation; 

(10)   
    

     

And solving out for    we get 



                        

                        

   
     
     

 
       
     

 

And we see that    is a function of both the disturbance in (8) and the disturbance in (9). This means 

that the explanatory variable in both equations will be correlated with the disturbance, and this will 

create simultaneity bias.  

 

 

Exercise 2: Exercise in practical estimation and use of a conditional 

model of the VAR (system). 

a) 
 

LRC – Log of private disposable income. 

LRCa – Disposable income corrected for dividends. 

LPC – Log of private consumption. 

LF – Log of Wealth where including houses. 

Fourth order VAR for the three variables.  This means that each explanatory variable is lagged with 

four periods.  

1. First regression: The unrestricted model: 

 The regression on LCP (consumption): Her all variables are significant except from the 

lags of LRCa variables. 

 Regression on LRCa(income): All the variables are not significant except from the lagged 

LRCa variables; disposable income mainly depends on historical income. 

 Regression on LF(wealth): What’s interesting here is that only the previous period of 

wealth is significant and the second to fourth lag is insignificant.  

 The F-test result shows that all the variables except LF_3, LRCa_2 and LF_4 are jointly 

significant, most of them at 1% significance level.  This could suggest that a model 

without these three variables would perform equally well. 

 The log-likelihood value is 1101.91716 

 

2. Next regression: In this regression we have included the LRCa in the LCP regression. 

Otherwise the model is equal to the unrestricted model.  

 The new variable LRCa is significant with 1% significance level. 

 The log-likelihood value is has decreased 1101.52409; almost nothing.  



3. Next regression: In this model we have removed all lagged LCP variable in the LCP regression, 

and removed the dummy variable in the other equations.  

 The log-likelihood variable I almost the same; decreased to 1101.22203. So the dummy 

variable in LRCa and LF has no prediction power. 

 The p-value from the LR-test is 0.8459 witch means that the new model is as good as the 

unrestricted model. So it doesn’t matter for the models prediction power that we 

removed these variables.  

b) 
Based on the batch file and the significance level of the variables, we estimate the model without 

LF_3 and LF_4.  

The Log-likelihood value is 1098.66019 witch is still very high and the P-value from the LR-

test(0.9634) so the model I still good. 

 

 

 


