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1 Properties of OLS in RE models

In Lecture 17 we discussed the following example of a rational expectations
(RE) model:

Yt = β1E(Xt+1 | It−1) + εt (1)

Xt = λXt−1 + εxt, − 1 < λ < 1 (2)

εt ∼ IID(0, σ2) (3)

εxt ∼ IID(0, σ2
x) (4)

Cov(εt, εxs) = 0 for all t and s (5)

(1) is the structural equation and β1 is the parameter of interest of this model:1

β1 shows by how much Y is adjusted in period t when the expectation about X
in period t+1 is changed based on information that the agents have available in
period t− 1. Hence the agents are forward-looking in this model, but like other
forecasters they must build on history in order to formulate their expectations
about the futureX. The information set used by the agents to form expectations
is denoted by It−1 in (1).

In this note, we focus on the salient implications of this type of expectations
for econometric modelling. Algebraic deltails aside, those consequences are the
same if we have E(Xt+1 | It) in (1), allowing agents to form expectations on the
basis of period t information, and also if E(Xt | It−1) which would only remove
the forward-looking aspect of the model, not the econometric consequences of
rational expectations formation.

The disturbances εt and εxt are independent from each other, as stated in
assumption (5) and they have classical properties conditional on the agents’

1The model is specified without an intercept, without loss of generality, and because it
simplifies the algebra.
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information set It−1. Without loss of generality, this is conveyed by the as-
sumptions that each disturbance is IID with expectation zero and constant
variance.

As shown in the lectures, given the model specification, the solution for Xt+1

is
Xt+1 = λ2Xt−1 + λεxt + εxt+1 (6)

with conditional mathematical expectation

E(Xt+1 | It−1) = λ2Xt−1. (7)

(The unconditional expectation of Xt+1 is zero, it does not play a role in the
derivations below.) The unconditional variance of Xt+1 does not depend on t
and it is therefore the same as V ar(Xt). From the lecture on dynamic regression
we found it to be

V ar(Xt) =
σ2
x

1− λ2
.

The expectation error is

Xt+1 − E(Xt+1 | It−1) = λεxt + εxt+1 (8)

We know that OLS gives (at least) consistent estimators of the conditional
expectation of Yt given Xt+1. But is β1 a parameter in the conditional expec-
tation? To answer that question we can investigate the probability limit of the
OLS estimator

β̂1 =

∑
t(Xt+1)Yt∑
tX

2
t+1

(9)

for
Yt = β1Xt+1 + ut (10)

Note that the disturbance ut is

ut = εt − β1εxt+1 − β1λεxt

as a result of using (7) to replace

E(Xt+1 | It−1)

in the structural equation by the right hand side of

E(Xt+1 | It−1) = Xt+1 − εxt+1 − λεxt.
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The detailed algebra for finding plim(β̂1):

plim(β̂1) = plim(

∑
t(Xt+1)Yt∑
tX

2
t+1

)

= β1 + plim(

∑
t(Xt+1)ut∑
tX

2
t+1

)

= β1 +
1

V ar(Xt)
plim(

1

T

∑
t

(Xt+1)(εt − β1εxt+1 − β1λεxt))

= β1 +
1

V ar(Xt)
plim(

1

T

∑
t

(λ2Xt−1 + λεxt + εxt+1)(εt − β1εxt+1 − β1λεxt)

= β1 +
−β1λ2σ2

x − β1σ2
x

V ar(Xt)
= β1 +

−β1λ2σ2
x − β1σ2

x
σ2
x

1−λ2

= β1(1 +
−λ2σ2

x − σ2
x

σ2
x

1−λ2

) = β1(1− (λ2 + 1)(1− λ2) = β1
[
1− λ2(1− λ2)− (1− λ2)

]
= β1

[
−λ2(1− λ2) + λ2

]
= β1λ
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This means that the OLS estimator of β1 in (10) is inconsistent when the
true model is (1)-(5). The asymptotic bias is:

plim(β̂1)− β1 = β1(λ4 − 1) < 0 (11)

Note that in Lecture 17 we found that in the case where (1) is replaced by

Yt = β1E(Xt | It−1) + εt

and the model is otherwise kept unchanged, the bias is

plim(β̂1)− β1 = β1(λ2 − 1) < 0.

2 Errors-in-variables bias

The source of the OLS bias is that we “contaminate” the disturbance term by
the forecast error for the Xt+1 (or Xt, depending on the specification of (1)).
Therefore, the bias is a special case of the errors-in-varaibles bias. As noted in
Lecture 17, another famous example is the measurement-error bias.

The measurement-error bias is often presented for the cross-section data
model:

Yi = β0 + β1X
∗
i + ε∗i i = 1, 2, . . . , n (12)

where Cov(ε∗i , X
∗
i ) = 0, and ε∗i has the other classical properties as well We

assume that X∗
i is an unobservable random variable which is replaced by the

observable Xi in the estimation of (12). The difference between Xi and X∗
i is

random:
ei = Xi −X∗

i

3



Even if all ei and ε∗i are independent, OLS on

Yi = β0 + β1Xi + εi i = 1, 2, . . . , n (13)

will produce an inconsistent estimator of β1, because Cov(εi, Xi) 6= 0 as a
consequence of

εi = ε∗i − β1ei

As usual, the probability limit of β̂1 − β1 is

plim(β̂1 − β1) = plim
1
n

∑n
i=1(Xi − X̄)εi

1
n

∑n
i=1(Xi − X̄)2

(14)

The denominator of (14) is equal to the theoretical variance of X, which is the
sum of the variance of X∗, σ2

X∗ , and the measurement-error variance,σ2
e :

V ar(X) = σ2
X∗ + σ2

e (15)

The numerator is

plim

[
1

n

n∑
i=1

(Xi − X̄)εi

]
= plim

[
1

n

n∑
i=1

(X∗
i −X∗) + (ei − ē))(ε∗i − β1ei)

]
= −β1V ar(e) = −β1σ2

e

since the probability limit of all the other terms are zero by the assumptions of
the model. Collecting results, we have the compact expressions

plim(β̂1 − β1) =
−β1σ2

e

V ar(X)
=
−β1σ2

e

σ2
X∗ + σ2

e

(16)

for the asymptotic bias of the OLS estimator in the measurement-error model.
To see the errors-in-variables interpretation of the RE bias of the OLS esti-

mator (11) in the model (1)-(5), set

σ2
e ≡ V ar(ut) = V ar(εxt+1 + λεxt) = σ2

x + λ2σ2
x

V ar(Xt) ≡
σ2
x

1− λ2

and insert in (16):

plim(β̂1 − β1) =
−β1σ2

e

V ar(X)
=
−β1(σ2

x + λ2σ2
x)

σ2
x

1−λ2

= −β1(1 + λ2)(1− λ2)

= −β1(1− λ4)

which is the same expression as in (11) above.
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3 The Lucas-critique

The Lucas-critique attacks the idea that if there is a change in the expectations
about Xt+1, the effect of this change on Yt can be predicted by using the OLS
estimate β̂1 from a regression model where Yt is regressed on Xt+1.2 By “change
in the expectations” the critique means a change in a parameter of the equations
that are used to form the mathematical expectation of Xt+1. By looking at (11)
we see that the relevant parameter must be λ. We see that we if λ change—we
call this a structural break in the Xt process—the probability limit of β̂1. must
also change. This means that the estimated effect of a change in X on Y will
be wrongly estimated by the use of OLS estimation. The solution, as we have
discussed in Lectures 18 and 19, is to use IV estimation.

More generally, the critique implies that policy analysis cannot be based on
OLS estimated conditional expectations (regression models). Empirically, the
relevance of the critique can be confirmed by finding proof of a structural break
in the conditional model that occurs at the same time as a structural break in
model for X. However, the relevance can also be refuted if the structural break
in the conditional expectation for X does not lead to a structural break in the
conditional model.

2As noted above, and as shown in Lecture 17, the same applies if the stuctural equation is
specified with E(Xt | It−1) as the explanatory varaible for Yt..
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