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A couple of FIML examples Model Based Macroeconomic Forecasts

Today:

I Follow up on the use of multi-equation-dynamic modelling
and FIML by a couple of examples

I An introduction to the theory of model based forecasting in
economics

I Unfortunately, there is very little about forecasting in the
books, even though forecasting is one of the main purposes
for formulating VARs and models of the VAR

I However, there is a short section on forecast errors on page
103-104 in DK that links up well with the “forecast theorem”
part of this lecture.
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NPC re-visited

The NPC system I

I Lecture 8 we presented GMM estimates of the New Keynesian
Phillips curve (NPC) equation

I We saw that estimation issues were clarified by a
“completing” system, that we can call the NPC system

I We write it here as:

∆pt = bfp1Et(∆pt+1) + bbp1∆pt−1 + bp2xt + εpt (1)

∆pt+1 = Et(∆pt+1) + et+1 (2)

xt = bx1xt−1 + εxt , − 1 < bx1 < 1 (3)

where et+1 is the (rational) expectation error of the
conditional forecast of ∆pt based on period t information.
Assume et+1 to be uncorrelated with εpt and εxt
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NPC re-visited

The NPC system II

I In lecture 8, we assumed that Cov(εpt ,εxt) = 0, now we allow
Cov(εpt ,εxt) 6= 0.

I In terms of observables, the dynamic multi-equation model is:

∆pt = bfp1∆pt+1 + bbp1∆pt−1 + bp2xt + εpt + bfp1et+1 (4)

xt = bx1xt−1 + εxt , − 1 < bx1 < 1 (5)

I Since the NPC equation (4) does not exclude any variables
from the system, it cannot be identified.
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NPC re-visited

The NPC system III
I Since most estimations of the NPC, like those cited in Lecture

8, use several overidentifying instruments, the relevant
competing model is not (4)-(5), but

∆pt = bfp1∆pt+1 + bbp1∆pt−1 + bp2xt + εpt + bfp1et+1 (6)

xt = bx1xt−1 + bx2zt + εxt , (7)

where zt is vector with instruments: Typically xt−2, up to five
lags of ∆pt and often one of more proxies for output-gap.

I In the NPC literature it is not very clear where the
instruments “come from”, they do not follow from the theory
that unerpin (6) for example. An interpretation maybe that
(7) is a reduced form derived form the rest of the model (ie.,
everything else apart from the NPC equation?)
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NPC re-visited

The NPC system IV

I That said, the point here is to show an example of equation
with lead-variables can formulated as part of a SEM and
estimated by FIML.

I Example in class.
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Modelling the male suicide rate

Suicide rates and unemployment I

I There is a literature (in both sociology and economics) about
the “endemic” nature of suicide

I Here: The relationship between the male suicidal rate in
Norway (variable name mennst) and the unemployment rate
Ut .

I We have annual data from 1905.

I y′t = (Lmennst , LUt) where the L denoted the natural
logarithm

I The VAR that represents the dynamic system (URF) is:

yt = ∑3

i=1
Πiyt−i + Γ0zt + εt (8)

where zt is a vector with individual year-dummies (1921 and
1945 for example). Graph data in class.
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Modelling the male suicide rate

Suicide rates and unemployment II

I (8) is a 2-dimensional VARX(3) with E (ε′tεt) = Σ (not
diagonal by assumption)

I We will first show an example of SURE estimation for this case

I Attempt a dynamic model of (8) based on the idea that
LUt → Lmennst , (triangular contemporaneous matrix) and
estimate by FIML to discover that structural disturbances in
ε
′
t = (ε1t ,ε2t) can be correlated when we interpret the model

with triangular contemporaneous matrix as a restricted SEM
model (rather than a model made up of conditional model for
suicide and a marginal model for LU).
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The simplest example and main insights

Terminology and essential assumption for forecasting I

I Surprisingly many insights about model based forecasting can
be gained by thinking trough the simplest case where a
multi-period forecasts (also called dynamic forecast) ŶT+h

(h = 1, 2, ..,H) can be based on the gaussian AR(1):

Yt = φ0 + π1Yt−1 + εt (9)

εt ∼ N(0, σ2), t = 1, 2, . . . ,T (10)

I The history of Yt up to and including period T , Yt

(t = 1, 2, ..,T ), is an important part of the information set
of the forecast ŶT+h (h = 1, 2, ..,T +H).

I We call H the forecast horizon.
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The simplest example and main insights

Terminology and essential assumption for forecasting II
I There is a fundamental difference between the statement that

(9)-(10) is a model that we assume to hold within the sample,
(up to and including period T );

I And another statement, saying that the model holds for the
forecast period: Yt+h(h = 1, 2, ..,H).

I One reason for drawing this distinction is that the first
statement can be evaluated empirically (how?), while there is
no known way (apart from a crystal ball; or by asking a
princess who speaks with angels) to assess the second
statement: Namely that the model continues to hold also
in the forecast period.

I Nevertheless, that assumption is underlies

I All model based macroeconomic forecasting
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The simplest example and main insights

Terminology and essential assumption for forecasting III

I The rational expectations assumption in macroeconomic theory
(or that the agents have the crystal ball, the princess ,or both).
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The simplest example and main insights

Optimal forecast theorem I

I Assume that

I the gaussian AR(1) model holds for
t = 1, 2, . . . ,T ,T + 1, . . .T +H

I and that we know the parameters π0, π1, σ2

I and that we know the history of the time series Yt

(t = 1, 2, ..,T ) without measurement errors

I The second abstracts from the “estimation problem” and the
third from the “real-time problem” (The observed YT that we
base our forecast on is a preliminary data release for the true
YT ) of practical forecasting

I Nevertheless, only the first is really fundamental.
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The simplest example and main insights

Optimal forecast theorem II
I Next, another very important assumption: That the

forecasting loss-function is quadratic so that we are
interesting in minimizing the mean of squared forecast
errors (MSFE):

MSFE =
1

H ∑H

h=1
(YT+h − ŶT+h|T )

2 (11)

I The theorem says that the optimal forecasts are the
conditional expectations based on the period T
information set (IT ):

ŶT+h|T ≡ E (YT+h | IT ), h = 1, 2, ..,H (12)

Proof is not difficult, but dropped here.
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The simplest example and main insights

Dynamic forecast (dynamic simulation) I

I To find ŶT+h|T ≡ E (YT+h | IT ) we need to solve the model
with T as the initialization period.

YT+h = π0 ∑h−1
i=0

πi
1 + πh

1YT + ∑h−1
i=0

πi
1εT+h−i (13)

h = 1, 2, ..,H

I And then invoke the gaussian white-noise assumption:

ŶT+h|T = π0 ∑h−1
i=0

πi
1 + πh

1YT (14)

h = 1, 2, ..,H
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The simplest example and main insights

Dynamic forecast (dynamic simulation) II

I Of course, we can obtain the same sequence of forecasts by
dynamic simulation, which amounts to

ŶT+1|T ≡ E (YT+1 | IT )
= π0 + π1YT

ŶT+2|T = π0 + π1ŶT+1|T

= π0(1 + π1) + π2
1YT

ŶT+3|T = π0 + π1ŶT+2|T

= π0(1 + π1 + π2
1) + π3

1YT

and so on
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The simplest example and main insights

Dynamic forecasts equilibrium-correct! I

I The above formulae hold even if for example π1 = 1, so that
Yt is not stationary. A case that we will come back to in
Lecture 11.

I However for the stationary case −1 < π1 < 1 we have the
interesting result that

ŶT+H |T →
H→∞

E (Yt) (15)

saying that the dynamic forecasts in (14) converge
asymptotically to the unconditional expectation of Yt . Since
E (Yt) represents the equilibrium value of Yt , define

Y ∗ ≡ E (Yt) =
π0

1− π1
, iff − 1 < π1 < 1 (16)
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The simplest example and main insights

Dynamic forecasts equilibrium-correct! II
I In fact, an inspired re-expression of (14) allows us to write the

dynamic forecasts as

ŶT+h|T = Y ∗ + πh
1(YT − Y ∗) iff − 1 < π1 < 1 (17)

h = 1, 2, ..,H

showing that a forecast from a stationary AR
equilibrium-corrects.

I This point, in particular, generalizes to VARs and therefore to
forecasts from econometric models of the VAR: Model based
forecasts always show a tendency of equilibrium correction.
Strength depend on the multivariate counterpart to πh

1 .

I (17) also tells us when a model based forecast is most usefull
(informative).
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The simplest example and main insights

Forecast errors I

I 1-step ahead forecast error:

YT+1 − ŶT+1|T = εT+1 (18)

I h−step ahead forecast errors:

YT+h − ŶT+h|T = ∑h−1
i=0

πi
1εT+h−i (19)

h = 1, 2, ..,H

18 / 36



A couple of FIML examples Model Based Macroeconomic Forecasts

The simplest example and main insights

Forecast errors II

I Expectation and variances:

E (YT+h − ŶT+h|T | IT ) = 0 for all h (20)

and that

Var(YT+H − ŶT+H) →
H→∞

Var(Yt) (21)

This also generalizes to stationary VARs and models of VARs,
meaning that:

I Forecasts are never biased (systematically over or under)

I The prediction intervals typically increase as functions of the
forecast horizon, but stabilizes as the forecast horizon gets
longer.
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The simplest example and main insights

Summary of our forecasting theory I

I Forecasts, like rational expectation, should always be right on
average

I The prediction intervals show the correct degree of
uncertainty of forecasting Yt

I As a result of this, forecast failures (realization that are
outside the prediction intervals) should be rare in economic
forecasting

I Are they?
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The simplest example and main insights

Main problem: Structural breaks in the forecast period I

I The forecasting theory was based on assumptions that are not
correct in practice:

1. We know the structure of the true model (it is a AR(1) in our
example)

2. We know the parameter values
3. There are no real-time data problems
4. There are no structural breaks in the forecast period

I 1. and 2 can be resolved by econometrics and methodology!

I 3. is a nuisance but mostly for short forecasting horizons
(why?).

I The main problem is 4. Forecasts are often damaged by
structural breaks in the real world economy that we attempt
to forecast by models that don’t contain those breaks!
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The simplest example and main insights

Forecasting bias due to structural breaks I

I Look again at the AR(1) example

I Assume that there is a structural break: E (Yt) changes from
Y ∗ to (Y ∗ + d) (d > 0) in period T + 1. The true
conditional expectations will then follow

E (YT+h | YT ) = (Y ∗ + d) + πh
1(YT − (Y ∗ + d)) (22)

but our model based forecast will still be

ŶT+h|T = Y ∗ + πh
1(YT − Y ∗) iff− 1 < π1 < 1 (23)

and the forecast error will have expectation:

E (YT+h − YT+h | IT ) = (1− πh
1)d 6= 0 for all h

so that there is an systematic bias
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The simplest example and main insights

Forecasting bias due to structural breaks II
I The problem is that the forecast equilibrium correct to the

wrong equilibrium

I Example: d = 1.5% and π1 = 0.5

I biasT+1: 0.75%
I biasT+3: 1.12%
I biasT+3: 1.31%

I Of course, after one period has passed, we can produce a new
forecast that conditions on Yt+1, the period where the shock
occurs

I Even if the break is now “in” the initialization period, the
forecast is biased towards Y ∗ as before:

ŶT+1+h|T+1 = Y ∗ + πh
1(YT+1 − Y ∗)
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The simplest example and main insights

Forecasting bias due to structural breaks III

I Without any intervention: Model based forecasts are not good
at adapting to structural breaks.

I It is not before we correct Y ∗ to (Y ∗ + d), that the biases
will be removed.
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The simplest example and main insights

Parameters of interest when forecasting I

I When we estimate a model for policy purposes or for testing a
hypothesis, the parameters of interest are the derivative
coefficients: regression coefficients or partial derivatives of a
structural equation

I When the purpose is forecasting, the parameters of interest
are the conditional means of the endogenous variables.
These parameters can display breaks even though (like in our
example) the derivative coefficients do no break—it is the
break in the Constant that often damage forecasts.

I On the positive side, this means that a model can be “good
for policy analysis”, even though it has forecasted badly.
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A macroeconometric model example

Keynesian type macro model
I Medium term macro model (cf simultaneous equation bias)

I Ct : private consumption in year t (in constant prices, eg.2010)
I GDPt , TAXt and It are gross domestic product, net taxes and

investments and gov.exp.
I a - e are parameters of the macroeconomic model
I εCt and εTAXt are independent disturbances with classical

properties conditional on It and Ct−1.

Ct = a+ b(GDPt − TAXt) + cCt−1 + εCt (24)

TAXt = d + eGDPt + εTAXt (25)

GDPt = Ct + It (26)

I Ct , GDPt and TAXt are endogenous, Ct−1 is predetermined.
I Assume that It is strictly exogenous with E (It) = µI and

Var(It) = σ2
I . For simplicity, we will use

It = µI + εIt (27)

where is independent of εCt and εTAXt , and has classical
properties conditional on It and Ct−1.
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A macroeconometric model example

Reduced form
I Suppose that our purpose is to forecast CT+1, CT+2, . . .,CT+H based on data

up to and including period T .
I This implies that we generate forecasts from the reduced form equation of Ct

Ct =
a+ bd

(1− b(1− e))︸ ︷︷ ︸
β0

+
b(1− e)

(1− b(1− e))︸ ︷︷ ︸
β1

It +
c

(1− b(1− e))︸ ︷︷ ︸
β2

Ct−1+
εCt − (be)εTAXt
(1− b(1− e))︸ ︷︷ ︸

εt

I This is an ARDL model and βj (j = 0, 1, 2) are reduced form coefficients that
can be estimated by OLS from a sample t = 1, 2, . . . ,T .

I Alternatively, because we are also interested in the structural parameters of the
model, we estimate the structural equations with 2SLS or FIML, and obtain the
(restricted) reduced form parameters.
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A macroeconometric model example

1-step ahead forecast I

I Since

E (εT+1 | CT , IT ) = 0

the model consistent best forecast for T + 1 becomes:

E (CT+1 | CT , IT ) = β0 + β1E (IT+1 | CT , IT ) + β2CT (28)

Next, from the exogeneity of It :

E (IT+1 | CT , IT ) = E (IT+1) = µI

so the forecast for CT+1 can be written as

E (CT+1 | CT , IT ) = β0 + β1µI + β2CT
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A macroeconometric model example

1-step ahead forecast II

I Note that IT+1 has been forecasted by E (It) = µI

I Reminds us that it necessary to also forecast the exogenous
variable!

I In practice forecasters often use subjective forecasts for
exogenous variables, and often present alternatives “scenarios”.

I Here we “keep it clean” and have used the mathematical
expectation consistent with the model assumptions.

I The practical problem with using E (CT+1 | CT , IT ) as a
forecast is that the parameters are unknown.
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A macroeconometric model example

1-step ahead forecast III

I In practice we therefore replace E (CT+1 | CT , IT ) by the
estimated expectation:

ĈT+1 = β̂0 + β̂1µ̂I + β̂2CT (29)

where β̂0,β̂1,β̂2 are OLS estimates or derived from FIML
estimates of the full structural model.
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A macroeconometric model example

h-period ahead dynamic forecasts
Define (to simplify notation)

γ̂ = β̂0 + β̂1µ̂I

Generally, for forecast horizon h:

ĈT+h =
h−1
∑
j=0

β̂j
2γ̂ + β̂h

2CT h = 1, 2, . . . ,H (30)
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A macroeconometric model example

Long-horizon forecast I

If −1 < β̂h
2 < 1 we get from

ĈT+h =
h−1
∑
j=1

β̂j
2γ̂T + β̂h

2CT h = 1, 2, . . . ,H

that

ĈT+h −→
h−→∞

Ê (Ct) =
γ̂

1− β̂2

exactly as in the first example.
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A macroeconometric model example

Forecast errors: Bias

Ct+h − ĈT+h = (γ− γ̂)
h−1
∑
j=0

β̂h
2 + (βh

2 − β̂h
2)CT +

h−1
∑
j=0

βj
2εt+j

Bias:

E
(
Ct+h − ĈT+h

)
=

h−1
∑
j=0

E
[
(γ− γ̂)β̂h

2

]
+ CTE (βh

2 − β̂h
2) h = 1, 2, . . .H

(31)

I Cannot prove that E
(
Ct+h − ĈT+h

)
= 0 for any horizon h.

I But biases can be small if the estimation sample period is sufficiently
large (cf. Lecture 15)
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A macroeconometric model example

Forecast errors: Variance

Ct+h − ĈT+h = (γ− γ̂)
h−1
∑
j=0

β̂h
2 + (βh

2 − β̂h
2)CT +

h−1
∑
j=0

βj
2εt+j

Bias:

Var
(
Ct+h − ĈT+h

)
= Var

[
(γ− γ̂)

h−1
∑
j=0

β̂h
2

]
+ σ2

h−1
∑
j=0

β2j
2 h = 1, 2, . . .H

(32)

I The first part corresponds to the “estimation uncertainty”
I That part will be small if the sample period is sufficiently large
I This means that the second part of (32) will dominate the variance of

the forecast error, and:

Var
(
Ct+h − ĈT+h

)
−→
h−→∞

Var(Ct) =
σ2

1− β2
2

I We expect that the variance of the forecast error converge to the
theoretical variance of the forecasted variable.
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A macroeconometric model example

Illustrating the forecasting theory I

Assume that the parameters of the macro model are as in:

Ct = 0 + 0.5(GDPt − TAXt) + 0.60Ct−1 + εCt (33)

TAXt = −20 + 0.5GDPt + εTAXt (34)

It = 100 + εIt (35)

GDPt = Ct + It + At − Bt (36)

but that we use the estimated reduced form ARDL for Ct to
forecast Ct+j .

I Generate data for 1-111.

I Use t = 1, 2, . . . , 101 to estimate structural model using
CFIML
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A macroeconometric model example

Illustrating the forecasting theory II

I Forecast C101+h , h = 1, 2, . . . , 10 from after estimation of
stuctural equations by CFIML

I Note that have added At (export) and Bt (Import) for more
realism in the notation. But we regard them as deterministic
variables, that are perfectly predictable, so they do not
contribute to the forecast errors.
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A macroeconometric model example

Three stimation and forecasting exercises:

I No breaks. Forecast from period 102

I E (It) reduced from 100 to 95 permanently in period 102.
Forecast from period 102.

I Estimate to period 104 and forecast from period 105.
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