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Introduction I

Main references:

I Davidson and MacKinnon Ch 14

I Refer also back Ch 2.4 and Ch 2.5 in Davidson and
MacKinnon for the Frisch-Waugh-Lovell theorem ,which we
often make reference to.
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Deterministic trend—trend stationarity I

I Let {Yt ; t = 1, 2, 3, ...T} define a time series (as before).Yt

follows a pure deterministic trend (DT) if

Yt = φ0 + δt + εt , δ 6= 0 (1)

where εt is white-noise and Gaussian.

Yt is non-stationary, since

E (Yt) = φ0 + δt (2)

even if the variance does not depend on time:

Var(Yt) = σ2 (3)
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Deterministic trend—trend stationarity II

I Assume that we are in period T and want a forecast for
YT+h. Assume that φ0 and δ are known parameters in period
T . The forecast is:

ŶT+h|T = φ0 + δ(T + h)

Assuming that the DGP is (1) also in the forecast period, the
forecast error becomes:

Yt+h − ŶT+h|T = εT+h

with

E [(Yt+h − ŶT+h) | T ] = 0
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Deterministic trend—trend stationarity III
and variance:

Var(Yt+h − ŶT+h) | T ] = σ2

The conditional variance is the same as the unconditional
variance (in the pure DT model).

I In the pure DT model, non-stationarity is purged by
de-trending. The de-trended variable:

Y s
t = Yt − δt

Var(Y s
t ) = σ2 and

E (Y s
t ) = φ0

I Y s
t is covariance stationary.

I Since stationarity of Y s
t is obtained by subtracting the linear

trend δt from Yt in (1), Yt is called a trend-stationary process.
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Estimation and inference in the deterministic trend model I

I Since the deterministic trend model can be placed within the
VAR class of models, it represents no new problems of
estimation.

I Still, the precise statistical analysis is not trivial, as E5101 will
show.

I Can mention that for (1)

Yt = φ0 + δ t + εt , t = 1, 2, . . .

and εt ∼ i .i .d . with Var(εt) = σ2 and E (ε4t) < ∞ ,we have
OLS estimators φ̂0 and δ̂:(

T 1/2(φ̂0 − φ0)
T 3/2(δ̂− δ)

)
D→ N

(
0
0

, σ2

(
1 1

2
1
2

1
3

)−1)
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Estimation and inference in the deterministic trend model II

I The speed of convergence of δ̂ is T 3/2 (sometimes written as
Op(T−3/2), for order in probability) while the standard speed
of convergence for stationary variables is T 1/2

I δ̂ is said to be super-consistent. It implies that

plim(δ̂) = δ and plim(T · δ̂) = δ. (4)

I However, the OLS based V̂ar(δ̂) has the same property.

I This means that the usual tests statistics have asymptotic N
and χ2 distributions as in the stationary VAR case.
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AR model with trend I

A slightly model general DT model:

Yt = φ0 + φ1Yt−1 + δt + εt , |φ1| < 1, δ 6= 0 (5)

Conditional on Y0 = 0, the solution is

Yt = φ0

t

∑
j=0

φj
1 − δ

t−1
∑
j=1

(
φ2
1

)j
j (6)

+ δ

(
t

∑
j=1

φj−1
1

)
· t +

t

∑
j=0

φj
1εt

If we define

Y s
t = Yt − δ

(
t

∑
j=1

φj−1
1

)
· t
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AR model with trend II

we get that also this de-trended variable is covariance stationary:

E (Y s
t ) =

φ0

(1− φ1)
− δ

φ2
1

(1− φ2
1)

2

Var(Y s
t ) =

σ2

(1− φ2
1)

where the result for E (Y s
t ) makes use of

δ
t−1
∑
j=1

(
φ2j
1

)
j →
t→∞

δ
φ2
1

(1− φ2
1)

2
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OLS estimation of models with deterministic trend I

I Above, saw that Yt ∼ AR(1) + trend can be transformed to
Y s
t ∼ AR(1).

I But how can we estimate (φ0, φ1, δ)′ ?

I With reference to Frisch-Waugh-Lovell theorem, φ̂1from OLS
on

Yt = φ0 + φ1Yt−1 + δt + εt (7)

is identical to the regression coefficient in the regression
between the de-trended residuals for Yt and Yt−1.

I Most practical to obtain OLS estimates for (φ0, φ1, δ)′ in one
step: By estimation of (7).
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OLS estimation of models with deterministic trend II
I This extends to Yt ∼ AR(p) + trend and to

Yt ∼ ARDL(p, p) + trend

I Distribution of OLS estimators:

I For the pure DT model we saw that δ̂ is super-consistent
(converge at rate T 3/2).

I In the AR(p) + trend model the OLS estimators of all
individual parameters, for example (φ̂0, φ̂1, δ̂)′ are consistent
at the usual rates of convergence (

√
T ).
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OLS estimation of models with deterministic trend III

I The reason why δ̂ is no longer super-consistent in the
AR(1) + trend model, is that δ̂ is a linear combination of
variables that converge at different rates.

I In such situations the slowest convergence rates dominates, it
is
√

T .

I The practical implication is that the stationary “asymptotic
distribution theory” can be used also for dynamic models that
include a DT

I For the AR(p) + trend or ARDL(p, p) + trend the conditional
means and variances of course depend on time, just as in the
model without trend: Adds flexibility to pure DT model.
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Other forms of deterministic non-stationarity I

I In one important sense, the model with DT is just a special
case of

Yt = φ0 + φ1Yt−1 + δD(t) + εt

where D(t) is any deterministic (vector) function of time. It
might be:

I Seasonal dummies, or
I Dummies for structural breaks (induce shifts in intercept

and/or φ1, gradually or as a deterministic shock)

I As long-as the model with D(t) can be re-expressed at a
model with constant unconditional mean (with reference to
the FWL theorem), this type of non-stationarity has no
consequence for the statistical analysis of the model.

I But for forecasts (structural breaks in the forecat period).
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Forecasting with pure DT model
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Back-casting may also give strange results!

I In 1975 Norwegian
recruits averaged 179
cm, and the increase
was 0.8 mm a year

I Back-casting with DT
model shows that the
feared Vikings were no
more than 30 cm
high!

See Aukrust (1977) for this
piece of research!
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Stochastic (or local) trend I

AR(p):
Yt = φ0 + φ(L)Yt−1 + εt (8)

φ(L) = φ1L + φ2L2 + . . . + φpLp.

Re-writing the model in the (now) usual way:

∆yt = φ0 + φ‡(L)∆yt−1 − (1− φ(1))︸ ︷︷ ︸
=p(1)

yt−1 + εt (9)

The parameters φ‡
i

in

φ‡(L) = φ
‡
1L + φ

‡
2L2 + . . . + φ

‡
p−1Lp−1 (10)

are functions of the φi ’s.
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Stochastic (or local) trend II
We know from before that Yt is stationary (and causal) if all roots
of

p(λ) = λp − φ1λp−1 − . . .− φpλ (11)

have modulus less than one. In the case of λ = 1 (one root is
equal to 1),

p(1) = 1− φ(1) = 0. (12)

and (9) becomes

∆Yt = φ0 +
p−1

∑
i=1

φ‡
i
∆Yt−i + εt . (13)
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Stochastic (or local) trend III

Definition
Yt given by (8) is integrated of order 1, Yt ∼ I (1), if p(λ) = 0
has one characteristic root equal to 1.

I The stationary case is often referred to as Yt ∼ I (0),
“integrated of order zero”.

I It follows that if Yt ∼ I (1), then ∆Yt ∼ I (1).
I An integrated series yt is called difference stationary.

I With reference to our earlier discussion of stationarity we see
that the definition above is not general:

I The characteristic polynomial of an AR(p) series can have
other unit-roots than the real root 1.

I The real root 1 to a root at the the so called long-run
frequency (E 5101).
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Stochastic (or local) trend IV

I In the following, we will abstract from unit roots at the
seasonal or business cycle frequencies.

I It implies that Yt ∼ I (1) series are dominated by one very
long cycle.

I Can however mention that the analysis can be extended to of
variables that are integrated of order 2: Yt ∼ I (2) if
∆2Yt ∼ I (0), where ∆2 = (1− L)2.

I In the I (2) case, there must be a unit root in the
characteristic polynomial associated with (13):

p(λ‡) = λp−1 − φ
‡
1λp−2 − . . .− φ

‡
p−1.
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Contrasting I(0) and I(1) I

:
I(1) I(0)

1 Var [Yt ] = ∞ finite

2 Corr [Yt , Yt−p ] ≈ 1 → 0

3 Multipliers Do not “die out” → 0

4 Forecasting YT+h E (YT+h|T ) depends on YT ∀h →
h→∞

E (Yt)

4 Forecasting,YT+h Var of forecast errors → ∞ → finite

(5 PSD Typical shape Finite at all v)

6 Inference Non-standard theory Standard
1-4 are easy to demonstrate for the Random Walk (RW) with drift:

Yt = φ0 + Yt−1 + εt , (14)

in fact we will show with this in a seminar exercise.
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Contrasting I(0) and I(1) II

I # 5 follows from Spectral analysis, E 5101.

I We concentrate considering the inference aspects of models
with I (1) variables.

I We start by a demonstrating what turns out to be the
fundamental problem of standard inference theory, and then
make use of the (non-standard) statistical theory that makes
it possible to make valid inference in the I (1)-case.
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Spurious regression I

Granger and Newbold (1974) observed that

1. Economic time series were typically I (1);

2. Econometricians used conventional inference theory to test
hypotheses about relationships between I (1) series

I In 1974 Clive Granger and Paul Newbold used Monte-Carlo
analysis to show that 1. and 2. imply that to many
“significant relationships are found” in economics

I Seemingly significant relationships between independent
I (1)−variables were dubbed spurious regressions.
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Spurious regression II
To replicate G&N results, we use Pc Naive an let YAt and YBt be
generated by

YAt = φA1YAt−1 + εA,t

YBt = φB1YBt−1 + εB,t

where (
εA,t
εB,t

)
∼ N

((
0
0

)
,

(
σ2
A 0
0 σ2

B

))
.

The DGP is a 1st order VAR. YAt , YBt are independent random
walks if φA1 = φB1 = 1, and stationary if |φA1| and |φB1| < 1.
The regression is

YAt = α + βYBt + et

and the hypothesis is H0: β = 0.
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Spurious regression III

We consider the stationary GDP first, then the non-stationary
DGP.
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Spurious regression IV

5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 2 0 0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

Fo
rk

as
tn

in
gs

ra
te 

m
ed

 5
 %

 si
gn

ifi
ka

ns
ni

vå

Utvalgsstørrelse

OLS based,rejection frequencies for H0: β = 0 in
the model YAt = α + βYBt + εt when εt is I (0)

(lowst line) and I(1) (highest). 5% nominal
significane level.

25 / 39



Deterministic and stochastic trend Inference problems with integrated variables Testing the null of a unit-root

Summary of Monte-Carlo of static regression

I With stationary variables:

I wrong inference (too high rejection frequencies) because of
positive residual autocorrelation

I but β̂ is consistent

I With I(1) variables:

I rejection frequencies even higher and growing with T
I Indication that β̂ is inconsistent under the null of β = 0.
I ... what is the distribution of β̂?
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Dynamic regression model I
In retrospect we can ask: Was the G&N analysis a bit of a
strawman?
After all ,the regression model is obviously mis-specified.
And the true DGP is not nested in the model.
To check: use same DGP, but replace static regression by the ECM
from of the ADL:

∆YAt = φ0 + ρYAt−1 + β0∆YBt + β1YBt−1 + εAt (15)

Under the null hypothesis:

ρ = 0

β0 = β1 = 0

and there is no residual autocorrelation, neither under H0, nor
under H1.
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Dynamic regression model II
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Spurious regression in an ADL model Lines show
rejection frequencised for H0: ρ = 0 (highest), H0:

(β0 + β1) = 0 and H0: β0 = 0.

I The ECM regression model (15) performs better than the
static regression,

I for example, tβ̂0
seems to behave as in the stationary case.

I This does hold true in general, since β0 is a coefficient on a
stationary variable!

I But inference based on tβ̂1
and tβ̂1

leads to over-rejection (the

size of the test is wrong) also in the ADL.
I Conclude that G&N’s spurious regression problem is not only

a product of misspecification. Non-stationarity also harms the
correctly specified regression.

I Need a new and more general inference theory before can
finally solve the spurious regression problem
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The Dickey Fuller distribution I

We now let the Data Generating Process (DGP) for yt ∼ I (1) be
the simple Gaussian Random Walk:

Yt = Yt−1 + εt , εt ∼ N(0, σ2) (16)

We estimate the model

Yt = ρYt−1 + ut , (17)

where our choice of OLS estimation is based on an assumption
about white-noise disturbances ut .
At the start, we know that, since the model can be written as

∆Yt = (ρ− 1)Yt−1 + ut
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The Dickey Fuller distribution II

the OLS estimate (̂ρ− 1) is consistent: The stationary (finite
variance) series ∆Yt cannot depend on the infinite variance
variable Yt−1.

I However consistency alone doesn’t guarantee that

√
T · (ρ̂− 1)

has a normal limiting distribution in this case (ρ = 1).

I In fact,
√

T · (ρ̂− 1) has a degenerate asymptotic distribution
since it can be shown that the speed of convergence is T
when ρ = 1 in the DGP, another instance of super consistency.
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The Dickey Fuller distribution III

We therefore seek the asymptotic distribution of the OLS based
stochastic variable:

T · (ρ̂− 1) =

1

T
∑T

t=1 Yt−1εt

1

T 2 ∑T
t=1 Y 2

t−1

. (18)

when the DGP is (16).

I The asymptotic distribution of T · (ρ̂− 1) is

T · (ρ̂− 1)
L−→

T→∞.

1

2
(X − 1)∫ 1

0 [W (r)]2 dr
(19)
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The Dickey Fuller distribution IV

I X is distributed χ2(1). W (r), r ∈ [0, 1], is a “Standard
Brownian motion”.

I χ2(1) is heavily skewed to the left (towards zero). Only 32%
of the distribution lies to the right of 1. This means that
values of X that makes the numerator in (19) negative have
probability 0.68.

I The denominator is always positive.

I As a result, we see that negative (ρ̂− 1) values will be
over-represented when the true value of ρ is 1.

I The distribution in (19) is called an Dickey-Fuller (D-F)
distribution.
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The Dickey Fuller distribution V
I Under the H0 of ρ = 1, also the “t-statistic” from OLS on

(17) has a Dickey-Fuller distribution, which is of course
relevant for practical testing of this H0. We can refer to it at
τ-statistic as in DM og as tDF to remind us that it is a
“t-statistic” but with a Dickey-Fuller distribution under the
H0 of unit-root

tDF =
ρ̂− 1

se(ρ̂)
(20)

where

se(ρ̂) =

√
σ̂2

∑T
t=1 Y 2

t−1

σ̂2 =
1

T − 1

T

∑
t=1

(Yt − ρ̂Yt−1)
2
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The Dickey Fuller distribution VI
σ̂2 is consistent since ρ̂ is consistent.

I “Written out”, tDF is:

tDF =
T · (ρ̂− 1)

√
1

T 2 ∑T
t=1 Y 2

t−1
√

σ̂2

I It can be shown that

tDF
L−→

T→∞.

1

2
(X − 1)√∫ 1

0 [W (r)]2 dr
(21)

I Which is not a normal distribution.
I Intuitively, because of the skewness of X , the left-tail 5 %

fractile of this Dickey-Fuller distribution will be more negative
than those of the normal.
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Dickey-Fuller tables and models I

I The distribution (21) have been tabulated by Monte-Carlo
simulation, see reference on page 618 in DM

I The distribution depend on whether the DF regressions
constain no constant (nc), constant (c), constant and trend
(ct) and constant and trend and squared trend (ctt), cf
figure 14.2 in DM.

I It is important to choose a relevant DF-regression for your
data set. For example we will usually include at least a
constant, which implies a liner trend under the H0 of a
unit-root, and a mean different from zero under the
alternative of stationarity-
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Augmented Dickey-Fuller tests I

Let the DGP be the AR(p)

Yt −
p

∑
i=1

φi Yt−i = εt (22)

with εt ∼ N(0, σ2). We have the reparameterization:

∆Yt =
p−1

∑
i=1

φ‡
i
∆yt−i − (1− φ(1))Yt−1 + εt (23)

yt ∼ I (1) is implied by (1− φ(1)) ≡ ρ = 0
But a simple D-F regression will have autocorrelated ut in the light
of this DGP: one or more lag-coefficient φ‡

i
6= 0 are omitted.
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Augmented Dickey-Fuller tests II
The augmented Dickey-Fuller test (ADF), see Ch 17.7, is based on
the model

∆Yt =
k−1
∑
i=1

bi∆Yt−i + (ρ− 1)yt−1 + ut (24)

Estimate by OLS and calculate the tDF form this ADF regression.

I The asymptotic distribution is that same as in the first order
case (with a simple random walk).

I The degree of augmentation can be determined by a
specification search. Start with high k and stop when a
standard t-test rejects null of bk−1 = 0
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Augmented Dickey-Fuller tests III
I The determination of lag length” is an important step in

practice since

I Too low k destroys the level of the test (dynamic
mis-specification),

I Too high k lead to loss of power (over-parameterization).

I The ADF test can be regarded as one way of tackling
“unit-root processes” with serial correlation

I Davidson and MacKinnon also mentions alternatives to ADF,
on page 623.

I The are several other tests for unit-roots as well—including
tests where the null-hypotheses is stationarity and the
alternative is non-stationary.

I As one example of the continuing interest in these topics: The
book by Patterson (2011) contains a comprehensive review.

38 / 39



Deterministic and stochastic trend Inference problems with integrated variables Testing the null of a unit-root

References

Aukrust, K. (1977) Ludvik Helge Erichsens Forlag, Oslo
Granger C.W.J and P. Newbold (1974) Spurious Regressions in
Econometrics, Journal of Econometrics, 2, 111-120.
Patterson, K. (2011), Unit Root Tests in Time Series. Volume 1:
Key Concepts and Problems, Palgrave MacMillan.

39 / 39


	Deterministic and stochastic trend
	Inference problems with integrated variables
	Testing the null of a unit-root

