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Econometrics courses in our programmes

I ECON 2130 Statistikk 1

I ECON 3145/4150 Introductory Econometrics

I ECON 4136 Applied Statistics and Econometrics

I ECON 4160 Econometrics-Modelling and System
Estimation

I ECON 4130 Statistics 2

I ECON 5101/02/03 Advanced coursed in time series, panel
data, micro econometrics
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References to Lecture 1

I Ch 1-3.5 in Davidson and MacKinnon, DM

I A lot of the material in these chapters is a presentation of
results that are well known from any introductory course in
econometrics.

I In particular OLS estimation and the properties of OLS
estimators (e.g., Gauss-Markov theorem).

I But in terms of matrix algebra rather than scalar notation,
I and the are several sections about geometric interpretation.

I There is a good discussion of modelling concepts in C1, and
the Frisch-Waugh-Lovell (FWL) theorem is lifted to the
forefront late in Ch 2
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The specification of regression models I

I We know that specification of regression model is complete
when we have specified

I a regressand
I one or more regressors
I the functional form of the conditional expectation function

of the regressand given the regressors
I The distribution of the random distubance term of the

model

I In introductory econometrics we study how the theoretical
properties of the OLS estimators of the parameters of the
conditional expectation function depend on the assumed
distribution of the intercept term. So called classical intercept
properties lead to OLS estimators being BLUE for example.
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The specification of regression models II

I In practical econometric modelling the specification of a
regression model is “not always easy” (DM p 16).

I It involves several decisions that have consequences for:

I (ir)relevance of the econometric model
I (un)biased estimation of parameters
I (un)stability of parameters, and the degree if autonomy of

parameters wrt to policy interventions and other structural
breaks

I (un)reliability statistical inference (confidence
intervals/hypothesis testing)
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Pitfalls in applied regression modelling
Problem “Typical” cause

Low relevance Conditional expectation does not
contain parameters of interest

Biased estimation Wrong or incomplete conditioning
Unstable parameters Wrong direction of regression
Unreliable statistical inference Misspecification of functional form

I Conversely, if the conditional expectation contains the parameters
of interest and it is correctly derived, and it is linear, then OLS
estimation will give estimators that are at least consistent.

I If there is a regime shift (structural break) in the system, but the
direction of regression is correct, then OLS can still give
parameters that are invariant to the regime shift.

I OLS based statistical inference can be made reliable
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Relevance of regression models I

I Ever since the “Probability Approach” by Haavelmo, the
fundamental concept of econometric modelling is the joint
probability distribution function of random variables, or the
joint probability density function pdf:

f (X0,X1, . . . ,Xk)

for the k + 1 random variables (X0,X1, . . . ,Xk). (Not all need
to be random, but the simplification notation)

I When we choose to use a regression model , we specify one
random variable as a regressand and the other as regressors.

I Let
Y = X0

define the regressand.
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Relevance of regression models II
I We can always write the joint pdf as the product of a

conditional pdf and a marginal pdf:

f (Y ,X1, . . . ,Xk) = f (Y | X1, . . . ,Xk) · f (X1, . . . ,Xk) (1)

I Note that f (X1, . . . ,Xk ) is a joint pdf in its own right, but it
is marginal relative to the “full” pdf on the left hand side.

I The conditional pdf is the foundation of regression modelling.
From f (Y | X1, . . . ,Xk) we can always construct the
conditional expectation function:

E (Y | X1, . . . ,Xk)

and the disturbance

ε = Y − E (Y | X1, . . . ,Xk).
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Relevance of regression models III

I For a realization of the X -vector, the conditional expectation
E (Y | x1, . . . , xk) is deterministic. But we can consider the
expectation for any realization of X , so E (Y | X1, . . . ,Xk) is
a deterministic function of the vector with k random X
variables.

I Hence the Law of iterated expectations (p 14), here applied
to ε;

E (E (ε | X1, . . . ,Xk)) = E (ε)

E ([Y − E (Y | X1, . . . ,Xk)] | X1, . . . ,Xk) = 0 =⇒ E (ε) = 0
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Relevance of regression models IV
I From the regression model

Y = E (Y | X1, . . . ,Xk) + ε

We estimate the parameters of E (Y | X1, . . . ,Xk) by OLS, if
the function is linear, or NLS (as we shall see)

I The parameters of E (Y | X1, . . . ,Xk) should correspond to
the parameters of interest for our research. Examples: The
average response in Y to a change in one Xj . The best
prediction of Y given x1, . . . , xk .

I If such correspondence does not exists, the relevant model is
instead to model the joint pdf f (Y ,X1, . . . ,Xk). We call this
system modelling.

I Sometimes the difference can be subtle
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Relevance of regression models V
I For example, we often focus on a ”single equation in the joint

pdf. It can “look like” a linear regression model

Y = γ0 + γ1X1 + γ2X2 + ε (2)

but because E (ε | X1,X2) 6= 0, it is not a regression equation
but a structural equation that belongs to the joint pdf.

I As the title of the course suggest, we will spend quite a lot of
time to develop structural modelling of the joint pdf.

I However, we begin with the regression model (in matrix
notation), since the purpose of the econometric modelling is
often to estimate the average response of Y to a marginal
change in Xj . And this slope parameter can always be
obtained from E (Y | X1, . . . ,Xk).
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Biased estimation I
Problem “Typical” cause

Low relevance Conditional expectation does not
contain parameters of interest

Biased estimation Wrong or incomplete conditioning
Unstable parameters Wrong direction of regression
Unreliable statistical inference Misspecification of functional form

I When it is relevant to model the conditional expectation, it
must still be consistent with the joint distribution, otherwise

f (Y ,X1, . . . ,Xk) 6= f (Y | X1, . . . ,Xk−1) · f (X1, . . . ,Xk−1)

as a consequence of “incomplete conditioning”, or

f (Y ,X1, . . . ,Xk) 6= f (Y | X1, . . . ,Xk−1,Z ) · f (X1, . . . ,Xk−1,Z )

as a consequence of “wrong conditioning”.
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Biased estimation II

I The result is known as omitted variables bias of the OLS
estimators, as when the chosen conditional model is

Yi = γ0 + γ1Xi + ει

while the correct conditional model, relative to f (Y ,X1,X2) is

Yi = β0 + β1X1i + β2X2i + ε ι

I In practical modelling, a main cause of wrong or incomplete
modelling, is that the researcher has not formulated a clear
picture of the joint distribution, i.e., the economic system.
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Unstable parameters (direction of regression) I

I Parameter instability may stem from:

I Irrelevance of the regression model (this is the Lucas-critique
that we will review later)

I Wrong conditioning

I Mistaken direction of the regression:

I If there are regime-shifts in the economic system (the joint
pdf), f (Y ,X ), then at most one of the two conditional
regression models can have parameters that are invariant to
(autonomous) the regime shift.

I Examples:

I Is the Phillips-curve a model for the rate of inflation or a
short-run aggregate supply curve?

I Can consumption be a stable conditional function of income
when there are changes in income anticipations?
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Unreliable statistical inference (functional form) I

I Even if the regression model is relevant and the conditioning
is correct, the question about the linearity of the conditional
expectations function

I Comment to DM example in section 1.3

Yt = E (Yt | Xt) + ut

where

E (Yt | Xt) = β1 + β2Xt

It then follows that

E (ut | Xt) = 0.
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Unreliable statistical inference (functional form) II
Now consider that the true model is

Yt = γ1 + γ2Xt + γ3X
2
t + vt (1.18)

with
E (vt | Xt) = E (vt | X 2

t ) = 0

DM actually write (1.18) as

Yt = β1 + β2Xt + β3X
2
t + vt (1.18)

Even then, when we consider ut conditional on Xt and the
information set in (1.18):

E (ut | Xt , (1.18)) = E (β1 + β2Xt + β3X
2
t + vt − β1 − β2Xt | X 2

t , (1.18))

= β3X
2
t + E (vt | X 2

t , (1.18))

= β3X
2
t
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Unreliable statistical inference (functional form) III

I This shows that orthogonality between disturbance and
regressors only holds conditional on the information set of a
regression model.

I The disturbance is in general correlated with variables that are
part of relevant extensions of an information set.

I In this example, the extension is in terms the squared
regressor, so another interpretation is that of misspecified
functional form:

I Moreover, ut is heteroskedastic which in any case makes
inference about β1 unreliable:

Var(ut) = β2
3X

4
t + σ2

v
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Simulation example I

Create a data set for the DM example with the following Data
Generating Process.(DGP)

algebra{
eps1=rann();
eps2=rann();
X=eps2;
”Xˆ2”=X*X;
Y = 0.5 + 1*X-0.2*Xˆ2+eps1 ;
}

Then investigate E (ut | Xt) = 0 and E (ut | X 2
t , (1.18)) = β3X

2
t

empirically.
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Information set. Encompassing I

I DM uses the concept information set, symbolized by Ωt , to
denote a longer list of variables than (X0,X1, . . . ,Xk) that are
used in the (final) regression model

I With the aid of joint pdf decomposition, we can express this as

f (Y ,X1, . . . ,Xk ,Xk+1, . . . ,Xl )

= f (Y ,X1, . . . ,Xk | Xk+1, . . . ,Xl ) · f (Xk+1, . . . ,Xl )

instead of (1) which we started with above.
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Information set. Encompassing II
I If (Y ,X1, . . . ,Xk) are independent from (Xk+1, . . . ,Xl ) we

have

f (Y ,X1, . . . ,Xk | Xk+1, . . . ,Xl ) = f (Y ,X1, . . . ,Xk)

and we have

f (Y ,X1, . . . ,Xk ,Xk+1, . . . ,Xl ) = f (Y ,X1, . . . ,Xk) · f (Xk+1, . . . ,Xl )

= f (Y | X1, . . . ,Xk)︸ ︷︷ ︸
↓

Y = E (Y | X1, . . . ,Xk) + ε

· f (X1, . . . ,Xk) · f (Xk+1, . . . ,Xl )

I It it easy to predict that if information sets are imprecisely
formulated, or even implicit, different researchers will end up
with different regression models for the same variable.
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Information set. Encompassing III

I Therefore an important part of applied research is to
encompass earlier models and findings: A new model should
explain the results of existing models!

I Encompassing has both informal (in your master thesis you
will review existing studies and discuss you results in the light
of those studies), and formal aspects: later in the course we
will introduce encompassing tests.
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Endogenous and exogenous variables I

I The distinction between endogenous and exogenous variables
is important in both economics and in econometrics

I In regression models, all regressors are exogenous, or at least
predetermined, in the sense that they are uncorrelated with
the disturbances, at least asymptotically

I Endogeneity problems, inconsistent parameter estimation, do
however arise if we wrongly apply OLS to a structural
equation of the joint distribution, i.e., the economic systemic.

I We will have plenty of opportunity to train ourselves in being
precise about this.
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The regression model in matrix notation I
Let X be a n× k matrix with the regressors of the model

y = Xβ + ε (3)

where y is n× 1and ε is the n× 1 vector with disturbances and
the parameter vector β is k × 1.

Y1

Y2
...
Yn

 =


X11 X12 . . . X1k

X21 X22 . . . X2k
...

...
...

Xn1 Xn2 . . . Xnk




β1

β2
...

βk

+


ε1

ε2
...

εn


A typical row in this equation is

Yi = Xi β+ ε i =
k

∑
j=1

Xijβj + ε i , i = 1, 2, . . . , n (4)
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The regression model in matrix notation II

if we let Xi denote the i th row in X. (1× k matrix)
As usual, unless both the regressand and all the regressors are
measured as deviations from mean, there us an intercept in the
model. When we need to make this explicit, we partition X as

X =
[

ι
... X2

]
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The regression model in matrix notation III

where

ι =


1
1
...
1


n×1

X2 =


X12 . . . X1k

X22 . . . X2k
...

...
Xn2 . . . Xnk
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OLS estimator I

I By solving the question B to the first seminar, you will show
that both the Method-of-Moments (MM) and the Ordinary
Least Squares (OLS) principle gives the estimator

β̂ = (X′X)−1X′y (5)

for β.

I Here, (X′X)−1 is the inverse of the X′X matrix with
(uncentered) moments between the regressors.

I For the inverse to exist, rank(X′X) = k , (full rank). This is
the generalization of the “absence of perfect multicollinearity”
condition.
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OLS estimator II

I DM uses XT as symbol for the transpose. We use the more
common ′ notation, which also avoids confusion with T for
the sample size of a sample with time series data.

I By solving the first Exercise B to the first seminar, you can

show that β̂
′
= ( β̂1

... β̂
′
2
) and

β̂2 =
[
(X2 − X̄2)

′(X2 − X̄2)
]−1

(X2 − X̄2)
′y (6)

In X̄2, the typical row is ιX̄k , k = 1, 2, . . . , k − 1.

I (6) is the generalization of our old friend the “x-deviation
from mean” form of OLS estimators that we have studied in
detail for the case of k = 1 and k = 2!
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Properties of OLS estimators I

I (5) and (6) are “only” matrix formulations of the OLS
estimators for multiple regression that we know from before, it
is clear that all the properties that we know from an
introductory course still hold.

I Specifically

β̂ = ( X′X)−1X′y =

= (X′X)−1X′(Xβ + ε)

= β + (X′X)−1X′ε

reminds us that the conditional expectation E (β̂ | X) and
variance Var(β̂ | X) depend on the assumption about the
disturbances in ε.

I Ch 3.1-3.5 in DM is good exposition for review.
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Two important matrices I

I From Ch 2.3 we highlight two important matrices in
regression theory

I The “residual maker”

M = I−X(X′X)−1X′ (7)

plays a central role in many derivations.

I The name stems for the fact that

My = y−X(X′X)−1X′y

= y−Xβ̂ ≡ ε̂

29 / 36



Introduction Specification and modelling concepts Regression in matrix notation Orthogonal projections

Two important matrices II

The following properties are worth noting:

M = M′, symmetric matrix

M2 = M, idempotent matrix

MX = 0, regression of X on X gives perfect fit

I The prediction matrix

P = X(X′X)−1X′ (8)

gives

ŷ = Py = Xβ̂

It is also symmetric and idempotent.
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Two important matrices III

I M and P are orthogonal:

MP = PM = 0

DM say that the annihiliate each other.

M and P are complementary projections

M + P = I (9)

which gives

y = ŷ + ε̂ = Py + My

31 / 36



Introduction Specification and modelling concepts Regression in matrix notation Orthogonal projections

TSS, SSE, and all that I

From

y = ŷ + ε̂ = Py + My

we get

y′y=(y′P + y′M)(Py + My)

= ŷ′ŷ + ε̂′ε̂

Written out, this is:

n

∑
i=1

Yi
2

︸ ︷︷ ︸
”TSS”

=
n

∑
i=1

Ŷi
2

︸ ︷︷ ︸
”ESS”

+
n

∑
i=1

ε̂2
i︸ ︷︷ ︸

RSS

(10)
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TSS, SSE, and all that II
You may be more used to write this famous decompostion as:

n

∑
i=1

(Yi − Ȳ )2

︸ ︷︷ ︸
TSS

=
n

∑
i=1

(Ŷi − Ŷ )2

︸ ︷︷ ︸
ESS

+
n

∑
i=1

ε̂2
i︸ ︷︷ ︸

RSS

(11)

There is no conflict here, since

X′ε̂ = X′(y−Xβ̂) =
MM
OLS

0,

and, when there is an intercept in the regression:

X =
[

ι
... X2

]
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TSS, SSE, and all that III

this gives

ι′ε̂ =
n

∑
i=1

ε̂ i = 0 (12)

in the first row of X′ε̂ = 0, and therefore:

Ȳ = Ŷ . (13)

Using this, you can show that (11) can be written as (10).
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TSS, SSE, and all that IV

I Memo: Alternative ways of writing RSS :

ε̂′ε̂ = (y′M′)My =y′My = y′ε̂ = ε̂′y (14)

ε̂′ε̂=y′y− y′P′Py = y′y− y′
[
X(X′X)−1X′

] [
X(X′X)−1X′

]
y

(15)

= y′y− y′X(X
′
X)−1X′y = y′y− y′Xβ̂ = y

′
y−β̂

′
X′y.
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TSS, SSE, and all that V

I The coefficient of determination (R2) is defined with reference
to (11):

R2 = 1− ε̂′ε̂

∑n
i=1(Yi − Ȳ )2

= 1− ε̂′ε̂

(Mιy)′(Mιy)

Mι = I− 1

n
ιι′

where we have “sneaked in” the idempotent centering matrix
Mι, which we will come back to when we talk about the
Frisch-Waugh theorem.

36 / 36


	Introduction
	Specification and modelling concepts
	Regression in matrix notation
	Orthogonal projections

