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References to Lecture 2

I Ch 3-5

I Ch 10.1-10.2, 10.5, and Lecture note 2.

I 6.1-6.3
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Classical inference theory I

I Chapter 3-5 in D&M contain the classical inference theory
for the parameters of in the conditional expectation function
(regression model), with the use of matrix algebra. The basic
result is, if the “classical assumptions” hold for the
disturbances, test stastics and confidence intervals can be
based on:

β̂ = ( X′X)−1X′y (1)

Var(β̂) = σ2(X′X)−1 (2)

σ̂2 =
ε̂′ε̂

n− k
(3)
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Classical inference theory II
at least asymptotically. But remember also:

Disturbances ε are:
X heteroscedastic autocorrelated

β̂ V̂ar(β̂) β̂ V̂ar(β̂)

exogenous
unbiased

consistent
wrong

unbiased

consistent
wrong

predetermined
biased

consistent
wrong

biased

inconsistent
wrong

I Since there is nothing new here compared to an introductory
course, read it as an advanced review.
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Classical inference theory III

I Despite the change from scalar notation to matrices: Note the
familiar role of restricted and unrestricted sum of squared
residuals in many of the tests!

I Take care to note:

I The importance of ε ∼ N(0, σ2I | X) assumption for the
regression ,model disturbances for obtaining exact tests

I and the importance of ε ∼ IID(0, σ2I | X) for the
corresponding asymptotic tests.

I Note that the asymptotic tests are also valid for the case
where the explanatory variables are predetermined, rather
than strictly exogenous.

5 / 17



Hypothesis testing in the regression model Maximum likelihood Non-linear regression

Classical inference theory IV

I Note also chapter 4.6, explaining the role of simulation as a
method of assessing the relevance of the asymptotic test for
the cases of known DGP and unknown DGP. We speak of
Monte Carlo simulation in the first case and Bootstrap
simulation in the second case.

I We will use Monte Carlo simulation, but bootstrap methods
are becoming more common in practical research, and the
book gives an introduction.

I Chapter 5 reviews in particular the role of heteroscedasticity
consistent covariance matrices (ch 5.5), in situations where
V̂ar(β̂) above is “wrong”. We use the PcGive version of these
in seminar exercises.
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The delta method I

I When we estimate a linear-in-parameter conditional
expectation function, the purpose is sometimes to test
hypotheses about derived parameters that are non-linear
functions of the regression coefficients.

I The so called delta-method (Ch 5.6) is based on
Taylor-expansions and relatively weak assumptions.

I It gives the asymptotically valid estimate of the variance of
the derived parameter
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The delta method II

Assume the simple regression model

Yi = β1 + β2Xi + ε i

and that we are interested in the derived parameter

θ =
β2

β1

The asymptotic variance is then

V̂ar(θ̂) ≈
(

1

β̂1

)2 [
V̂ar(β̂2) + θ̂2V̂ar(β̂1)− 2θ̂ ̂Cov(β̂1, β̂2)

]
(4)

which actually covers many applications in econometrics.
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The delta method III

I Ch. 5.6 covers the case of θ = g( β2

β1
) where g(·) is a

monotonic and differentiable function, as well as the vector
case.

I But we shall see that in our course, slight modifications of (4)
will cover most of our needs.
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Maximum Likelihood Estimation (MLE) I

I We now jump briefly to Ch. 10 to review the third estimation
principle that we will use: MLE.

I If the joint pdf f (Yi ,Xi ) is normal, and
(Y1,X1), (Y2,X2), . . . , (Yn,Xn) are independet pairs of
variables, we can derive the conditional model of Y given X
as the regression model:

Yi = β1 + β2Xi + ε i , i = 1, 2, . . . , n (5)

whith ε i ∼ N(0, σ2). This is often called a Gaussian
disturbance, and the model is also known as the Gaussian
regression model.
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Maximum Likelihood Estimation (MLE) II
I By straight-forward extension of the results from this simple

Gaussian regression model, we know that the MLE estimator
of β in

y = Xβ + ε (6)

ε ∼ N(0, σ2I | X) (7)

is identical to the OLS and MM estimator β̂ = (X′X)−1X′y.

I But

σ̂2
ML =

ε̂′ε̂

n
is biased. So the unbiased estimator

σ̂2 =
ε̂′ε̂

n− k

is used instead to construct test-statistics.
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Likelihood ratio tests I

I When MLE estimates are inserted back into the
(log)likelihood function, we obtain the maximized likelihood.

I For (6) and (7) this value is

l(β̂, σ̂2
ML) = constant− n

2
lnSSR(β̂) (8)

where SSR(β̂) is the minimized sum of squared residuals after
OLS estimation, i.e.

SSR(β̂) = ε̂′ε̂ (9)

I We can now think of (8) and (9) as the outcome of
unrestricted estimation.
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Likelihood ratio tests II

I If we impose a number of r parameter restrictions on the
model and estimate by ML, we obtain new, restricted,
estimators β̃ and σ̃2

ML. The corresponding restricted
log-likelihood cannot be larger than the unrestricted l(β̂, σ̂2

ML)
in (8).

I The Likelihood-Ratio test statistic for the regression model
is:

LR = 2(l(β̂, σ̂2
MLE )− l(β̃, σ̃2

MLE ) =
n

2

[
lnSSR(β̃)− lnSSR(β̂)

]
(10)

I LR is asymptotically distributed as χ2(r).
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Likelihood ratio tests III

I The LR statistic is closely connected to the F -statistic for
r -restrictions that we know from an introductory course:

F =
SSR(β̃)− SSR(β̂)

SSR(β̂)

(n− k)

r
∼ F (r , n− k) (11)

I On page 421, DM show that:

LR u rF

I Since the “F-version” of the test basically corrects for degrees
of freedom, it is advisable to use it in small samples (e.g.,
n < 40).
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Likelihood ratio tests IV

I LR is one of three test principles in use in modern
econometrics. The others are called Wald-test and
Lagrange-Multiplier test.

I In principle a Wald-test is based on (only) the unrestricted
estimation. Examples: Standard t-test and asymptotic t-test
for H0:θ = θ0 using (4) above (an exercise to Seminar 2 will
provide an example).

I A LM-test is in principle only based on the restricted
estimation.

I Asymptotically LR, W and LM are equivalent.

I See Ch 10.5 for more about the W- and LM test principle. Or
the separate Lecture note 2.
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NLS estimation I

I So far the conditional expectation functions have been linear
in parameters.

I As we know, this allows a great deal of flexibility (trough
non-linear variable transformation) in the specification of the
functional form.

I Nevertheless: Sometimes necessary or appealing to estimate a
model which is non-linear in the parameters.

I The sum of squared residuals that we want to minimize is then

SSR(β̂) =
n

∑
i=1

(Yi − xi (β̂))2 (12)

where xi (β̂) is the analogue to xi β̂ in the linear case.
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NLS estimation II
I The NLS estimator is consistent under mild assumptions

I Minimization of (12) requires numerical optimization, for
example Newton’s method, see Ch 6.4.

I PcGive has a good algorithm for computing NLS estimates.
Illustrate by estimation of Phillips curve natural rate:

INFi = β1(Ui − β2) + ε i , i = 1, 2, . . . , n (13)

I A non-linear regression function. β2 can be interpreted as the
natural rate (a parameter), since

E (INF | U = β2) = 0

I Estimate by PcGive with Norwegian annual data.
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