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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Some references to Lecture 3

I DM Ch 7.1–7.5, (Generalized least squares)

I DM Ch 7.6 and 13.1 (Lag-operators and Stationarity)

I DM CH 13.4 (ADL model)
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

GLS I

I We know that both heteroskedasticty and autocorrelation
require a different specification than Var(ε) = E (εε

′
) = σ2I

in the linear regression model

y = Xβ + ε (1)

More generally we have:

Var(ε) = σ2Ω, σ2 > 0

where Ω is n× n is symmetric and Positive Definite:

z′Ωz︸ ︷︷ ︸
quadratic form in n variables

> 0 for all z 6= 0

with z′ = (Z1,Z2, . . . ,Zn).
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

GLS II

I Result from linear algebra: For a PD matrix Ω there exists a
n× n matrix Ψ which is invertible (non-singular), with
properties

ΨΩΨ′ = I (2)

Ψ
′
Ψ = Ω−1 ⇔ ΨΨ′ = Ω−1 (symmetry of Ω) (3)

I Multiplication from the left in (1) by Ψ
′

gives:

Ψ
′
Y︸︷︷︸

y∗

= Ψ
′
X︸︷︷︸

X∗

β + Ψ
′
ε︸︷︷︸

ε∗

(4)
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

GLS III
I Because

Var(ε∗) = E (ε∗ε
′
∗) = E (Ψ

′
εε
′
Ψ) = Ψ

′
σ2ΩΨ = σ2I (5)

the OLS estimator for β from (4) is BLUE under the
assumption of strict exogeneity of the X-variables.

I This estimator is the Generalized Least Squares estimator
(GLS) and is, by reference to minimization of residuals and to
method-of-moments, given by:

β̂GLS = (X
′
∗X∗)

−1X
′
∗y∗ = (X′ΨΨ

′
X)−1X

′
ΨΨ

′
y

= (X′Ω−1X)−1X
′
Ω−1y (6)

with covariance matrix.

Var(β̂GLS ) = (X
′
∗σ
−2IX∗)

−1 = σ2(X′Ω−1X)−1

5 / 41



Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Weighted Least Squares example I
Assume that the only departure from the classical assumptions is
heteroskedasticity, and that it takes the form:

Var(ε) = σ2Ω =σ2


X21 0 · · · 0

0 X22 · · · 0
...

...
. . .

...
0 0 · · · X2n

 .

Then (show!):

Ω−1=


1

X21
0 · · · 0

0 1
X21

· · · 0
...

...
. . .

...
0 0 · · · 1

X2n


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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Weighted Least Squares example II

and we can compute the GLS estimator from (6).
Moreover, we see that ΨΩΨ′ = I if Ψ = Ψ

′
is specified as :

Ψ′ =



√
1

X21
0 · · · 0

0
√

1
X21

· · · 0

...
...

. . .
...

0 0 · · ·
√

1
X2n


which gives the weights that we apply to obtain y∗ and X∗ in (4).
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Feasible GLS I

I In most practical situations Ω, is unknown as is replaced by a
consistent estimator Ω̂. This is based on

I the OLS residuals ε̂i
I and an assumed form of the heteroskedasticity or

autocorrelation (see DM section 7.4 for examples).

I In practice: an auxiliary regression between ε̂ i and a set of
observable variables (often some of the X variables).

I As long as this procedure gives a consistent estimator of Ω,
the feasible GLS estimator

β̃GLS = (X′Ω̂
−1

X)−1X′Ω̂
−1

y

is both consistent and asymptotically efficient.
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Conditional and marginal models I

I A model of the simultaneous pdf f (Y , X1, X2,. . . ,Xk) is an
econometric simultaneous equations model.

I That simultaneous equation model is one of the main topic
later in the course.

I First we will however wee how we can represent a system of
variables with what we can loosely call, a system of
regression models.

I The conditional of Y model based on the conditional pdf
f (Y | X1, . . . ,Xk) is a regression model.

y = Xβ + ε (7)

where we assume linearity and that ε have the classical
properties for simplicity
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Conditional and marginal models II
I Clearly (7) is only a partial model of the system.

I Can “close the model” if we supplement (7) with equations
that represent the marginal pdf f (X1, . . . ,Xk).

I If the variables in X are IID, the marginal model will be the k
(super) simple regressions:

Xj=φj+υj j = 1, 2, . . . , k (8)

where φj (j = 1, 2, . . . , k) are parameters and

E (υj ) = 0, , ∀j
Var(υj ) = E (υjυ

′
j ) = σ2

v I, ∀j
E (υjυl ) = 0 , ∀j 6= l
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Conditional and marginal models III

I (7) and (8) give a model representation of the joint pdf f (Y ,
X1, X2,. . . ,Xk) for the case of IID regressors.

I The assumption of IID regressors is often unrealistic in
particular for time series data.

I Hoever,there are purposes that require us to model the
marginal model, for example if the purpose is to forecast Y
one or more periods ahead.

I In the rest of the course we therefore turn to time series
data, and to dynamic equations and systems.

I As a stepping stone, we need some basic concepts and
theorems from time series econometrics, before we return to
model specification and estimation (CC 2 and Lecture4)
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Time series I

I We define a time series Yt as the realization of a stochastic
process {Yt ; t ε T}. In any period t the variable Yt can take
a number of values consistent with the the sample space.
(Norwegian: “utfallsrom”).

I A stochastic process has therefore a random distribution for
each Yt . It is consistent with this definition that T can be
{0,±1,±2, . . .}, {1, 2, 3, . . .}, [0, ∞} or (−∞, ∞).

I However, when there is no room for misunderstanding, we
follow convention and use the term time series both for a data
series, and for the process of which it is a realization.

I We will mainly study stochastic processes given by linear
stochastic difference equations.
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Difference equations

A time series of order p, (AR(p) I

I We write a time series of order p as the stochastic difference
equation

Yt = γ + ρ1Yt−1 + ρ2Yt−2 + ... + ρpYt−p + εt (9)

where γ, ρj (j = 1, 2, . . . , p) are parameters, and where

εt ∼ IID
(
0, σ2

ε

)
∀ t. (10)

as in equation (13.01) in DM who refer to this εt as
white-noise.

I Together they are known as the AR(p) model.

I (9) may of interest “on its own”, as a general model of single
time series.
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Difference equations

A time series of order p, (AR(p) II
I One example is when Yt is not a an observable variable, but a

residual from OLS estimation.

I In that interpretation (9) becomes a model of autocorrelated
regression residuals, as covered in Ch 7.6 in DM.

I Estimate by NLS or feasible GLS, possibly iterated.

I When Yt is an observable, the main motivation for using (9)
is for forecasting.

I The reason for studying (9) in econometics is however, more
fundamental: It gives the framework for defining the all
important concepts of dynamic stability and stationarity
both for individual time series and for systems of variables (for
example dynamic stochastic general equilibirum
models,DSGE).
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Final equation

Prelude: AR(p) as the final equation of a system I

I We ofen study systems of stochastic difference equations

I The simplest case is two time series that are connected in a
the first order system .(

Yt

Xt

)
=

(
a11 a12

a21 a22

)(
Yt−1

Xt−1

)
+

(
εyt
εxt

)
, (11)

where

(
a11 a12

a21 a22

)
is the matrix of autoregressive

coefficients and we assume that(
εyt
εxt

)
∼ IID

(
0,

σ2
y σyx

σyx σ2
x

)
∀ t (12)
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Final equation

Prelude: AR(p) as the final equation of a system II

I In fact this is an example of a first order Vector
Autoregressive model, VAR.

I If (12) is replaced by the normal (Gaussian) distribution, the
system is called a Gaussian VAR.

I As an exercise, you can show that (11) can be reduced to the
so called final equation for Yt+1

Yt+1 = (a11 + a22︸ ︷︷ ︸
≡ρ1

)Yt +(a12a21 − a22a11︸ ︷︷ ︸
≡ρ2

)Yt + εyt+1 − a22εyt + a12εxt︸ ︷︷ ︸
≡εt

.

(13)

I The answer will be posted on web page after the lecture.
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Final equation

Prelude: AR(p) as the final equation of a system III

I But the same equation must hold for Yt so we obtain (9) for
the case of p = 2 and γ = 0 as

Yt = ρ1Yt−1 + ρ2Yt−2 + εt (14)

ρ1 = (a11 + a22) (15)

ρ2 = a12a21 − a22a11 (16)

εt = εy ,t − a22εy ,t−1 + a12εx ,t−1 (17)

I The omission of the intercept (which implies γ = 0) is only to
save notation.
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Final equation

Prelude: AR(p) as the final equation of a system IV

I Note that when εt is defined as in (17) we have E (εt) = 0 and

Var(εt) = Var(εy ,t − a22εy ,t−1 + a12εx ,t−1)

= σ2
y + a2

22σyy + a2
12σ2

x + 2a22a12σyx

independent of t (homoskedasticity), but

Cov(εt , εt−1) = −a22σ2
y + a12σyx

Cov(εt , εt−j ) = 0 j = 2, 3, . . .

I In this interpretation the disturbance εt in the AR(2) model is
not white-noise, but a Moving Average (MA) process
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Dynamic stability and stationarity I

I Consider again the AR(p) process:

Yt = γ + ρ1Yt−1 + ρ2Yt−2 + ... + ρpYt−p + εt (18)

I Consider next the homogenous version of the difference
equation:

Y h
t − ρ1Y

h
t−1 − ρ2Y

h
t−2 − ...− ρpY

h
t−p = 0 (19)
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Dynamic stability and stationarity II
I From mathematics we know that (19) has a global

asymptotic stable solution (Y h
t → 0 when t → ∞) if and

only if all the p roots (eigenvalues) of the associated
characteristic polynomial

λp − ρ1λp−1 − ρ2λp−2 − ...− ρp = 0 (20)

are less than one in absolute value.

I From a result that is far from trivial, and which we leave for
ECON 5101, we have that the same condition is necessary
and sufficient for the stationarity of the stochastic process Yt

when it is given by (18) and εt is white-noise, or any other
stationary time series process (e.g., MA(q), q = 1, 2, ...).

I But now we have given the condition for stationarity without
a definition for stationarity...!
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Stationarity defined I

For the time series {Yt ; t = 0,±1,±2,±3, ...} we define the
autocovariances γj ,t as

τj ,t = E [(Yt − µt)(Yt−j − µt)], j = 0, 1, 2, . . . , (21)

whereE (Yt) = µt .
If neither µ nor γj , depend on time t:

E (Yt) = µ, ∀ t

and
E [(Yt − µ)(Yt−j − µ)] = τj , ∀ t, j .

the Yt process {Yt ; t = 0,±1,±2,±3, ...} is covariance
stationary (aka weakly stationary).
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Stationarity defined II

For a stationary Yt the variance is time independent

Var(Yt) = σ2
y ≡ τ0 for j = 0

and the autocovariances are symmetric backwards and forwards:
τj = τ−j
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

The autocorrelation function I

I For a stationary time series variable, the theoretical
autocovariances only depend on the distance j between
periods. We can regard the autocovariance as a function of j .

I The same is the case for the (theoretical) autocorrelation
function (ACF). In general, it is a function of j and t:

ζj ,t = {Yt ,Yt−j} =
Cov(Yt ,Yt−j )

Var(Yt)
=

τj ,t
τ0,t

, (22)

However
ζj =

τj
τ0

= ζ−j for j = 1, 2, ... (23)

in the stationary case.
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Why is stationarity so important? I

I For an observable time series {Yt ; t = 1, 2, 3, ...T}, we use
the empirical autocovariances,

τ̂j = 1/T
T

∑
t=j+1

(Yt − Ȳ )(Yt−j − Ȳ ), j = 0, 1, 2, . . . ,T − 1

(24)
where Ȳ = 1/T ∑T

t=1 Yt .

I If the process {Yt ; t = 0,±1,±2,±3, ...} is stationary, τ̂j
(j = 0, 1, 2, . . .) are consistent estimators of the theoretical
autocovariances

I This in turn gives the main premise for consistent estimation
of the coefficients of dynamic regression models, of which
AR(p) is an example
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Why is stationarity so important? II

I In short: stationary is the main premise for why we can extend
the OLS based estimation and inference theory to time series
data!

I Note that, although stationarity depends on the
characteristics roots, it can be “mapped back” to the ρ1 and
ρ2 parametes in the AR(2) case. See Figure 13.1 in DM
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

AR(2) example I

γ = 0, ρ1 = 1, 6, ρ2 = −0, 9:

Yt = 1, 6Yt−1 − 0, 9Yt−2 + εt , (25)

The roots are a complex pair. The “absolute value” of the roots is
0.94868.

I Show homogenous solution,

I and solution when εt ∼ IID(0, 1) in class
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Lag operators I

I When we work with stochastic difference equations, it is often
useful to express relationships with the use of the lag-operator
L.

I The lag operator L changes the dating of a variable Yt one or
more period back in time. It works in the following way:

LYt = Yt−1,
LLYt = L2Yt = LYt−1 = Yt−2,

LpYt = Yt−p.

I From the last property it follows that if p = 0, then

L0 = 1,
L0Yt = Yt .
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Lag operators II

I We also have

LpLs = LpLk = L(p+s),

and

(aLp + bLs)Yt = aLpYt + bLsYt = aYt−p + bYt−s .

I If we want to shift a variable forward in time, we use the
forward operator L−1:

L−1Yt = Yt+1

and generally

L−s = Yt+s .
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Lag operators III

I Because constants are independent of time, we have for the
constant b

Lb = b.

and by induction

Lpb = L(p−1)Lb = L(p−1)b = b.
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Lag-polynomial representation of AR(p) I

I We can now write (9) more compactly as

φ(L)Yt = γ + εt (26)

where is the lag polynomial of order p.

φ(L)Yt = 1− ρ1L− ρ2L
2 − ...ρpL

p (27)

and we keep the assumption of white-noise εt .
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Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

Lag-polynomial representation of AR(p) II

I A root of the characteristic equation associated with the
lag-polynomial is:

1− ρ1z − ρ2z − ...ρpz
p = 0 (28)

Comparison with the characteristic equation (20) shows that

z =
1

λ

meaning that the condition for stationarity can also be
expressed in terms of the roots: (z1, z2, ..., zp):

I Yt is stationary if all the z−roots are larger than one in
absolute value (“outside the unit circle” DM page 273).
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Companion form I

Consider again the VAR system (11)(
Yt

Xt

)
=

(
a11 a12

a21 a22

)
︸ ︷︷ ︸

A

(
Yt−1

Xt−1

)
+

(
εyt
εxt

)
,

I (Yt ,Xt)
′

and (εyt ,εxt)
′

are two bivariate time series.

I Assume that (εyt ,εxt)
′

are made up of two stationary series.
This is secured by (12) for example.
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Companion form II
I By obtaining the characteristic polynomial to A:

p(λ) = |A− λI|

you find that the eigenvalues of A are the roots of

|A− λI| = 0 (29)

which is the characteristic equation associated with the final
equation (13) that we derived above.

I Hence the necessary and sufficient condition for stationary of
the vector (Yt ,Xt)

′
is that the two eigenvalues of both less

than one in absolute value.

I A is a simple example of a so called companion form matrix.
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Companion form III

I In ECON 5101 we will show that if we have a general VAR
with n time series variables and p lags, that VAR can be
written as a first order system

zt = Fzt−1 + ε (30)

where zt and εt are 1× np and the companion form matrix F
is np × np.

I For such a general VAR system, the condition for stationarity
and stability is that all the np eigenvalues from

|F− λI| = 0 (31)

are less than one in magnitude.
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Companion form IV

I When we estimate a dynamic system in PcGive, the
eigenvalues of the companion form are always available after
estimation.
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The VAR revisited I

Let us now take care to write the Gaussian disturbances of the
VAR (now including two intercepts)(

Yt

Xt

)
=

(
π10

π20

)
+

(
π11 π12

π21 π22

)(
Yt−1

Xt−1

)
+

(
εyt
εxt

)
(32)

as conditional on period t − 1:(
εyt
εyt

)
∼ N

(
0,

(
σ2
x σxy

σxy σ2
y

)
| Yt−1,Xt−1

)
. (33)

Now, (32) can be written as

Yt = µy ,t−1 + εyt (34)

Xt = µx ,t−1 + εxt (35)
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The VAR revisited II

where the conditional expectations µy ,t−1 ≡ E (Yt | Yt−1,Xt−1)
and µx ,t−1 ≡ E (Xt | Yt−1,Xt−1) are

µy ,t−1 = π10 + π11Yt−1 + π12Xt−1 (36)

µx ,t−1 = π20 + π21Yt−1 + π22Xt−1. (37)

Interpretation: Conditional on the history of the system up
to time t − 1, Yt and Xt are jointly normally distributed.
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The conditional model for Y I

The conditional distribution for Yt given the history and Xt is also
normal,
In Lecture note 3 (posted after the lecture for self-study) we
show that the conditional distribution for Yt is:

Y ∼ N(φ0 + φ1Yt−1 + β0Xt + β1Xt−1, σ2 | Xt ,Yt−1,Xt−1) (38)

which can be written in “model form” as

Yt = φ0 + φ1Yt−1 + β0Xt + β1Xt−1 + εt (39)

εt ∼ N(0, σ2 | Xt ,Yt−1,Xt−1) (40)
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The conditional model for Y II

φ0 = π10 −
σx y
σ2
x

π20 (41)

φ1 = π11 −
σx y
σ2
x

π21 (42)

β0 =
σx y
σ2
x

(43)

β1 = π12 −
σx y
σ2
x

π22 (44)

and

σ2 = σ2
y (1− ρ2

xy ). (45)

ρxy =
σxy

σxσy
. (46)
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The conditional model for Y III

I Some small differences in notation apart, this is the same
ADL model as in Ch 13.5 eq (13.58) for p = q = 1.

I The same ADL type model can be derived from a VAR with
IID disturbances, rather than strictly normal.

I ADL(p,q) model can be derived from a VAR or order p.
Consequently we must then have p = q in the ADL.

I We will study such ADL models, and their estimation over the
next weeks.
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The conditional model for Y IV

I Finally, note that the ADL model

Yt = φ0 + φ1Yt−1 + β0Xt + β1Xt−1 + εt (47)

together with the second row in the VAR:

Xt = π20 + π21Yt−1 + π22Xt−1 + εxt (48)

give a regression representation of the VAR, in terms of a
conditional model (47) and a marginal model (47).

I Meaning that we have extende the regression model
representation of the static simultaneous system to the
dynamic model case.
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