# ECON 4160, Spring term 2013. Lecture 3 GLS. Concepts of dynamic modeling

Ragnar Nymoen

University of Oslo

4 September 2013

Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

#### Some references to Lecture 3

- DM Ch 7.1–7.5, (Generalized least squares)
- ▶ DM Ch 7.6 and 13.1 (Lag-operators and Stationarity)
- DM CH 13.4 (ADL model)

| Generalized least squares | Regression modelling of the system | Time series<br>000000 | Stationarity | Stability of systems | ADL model |
|---------------------------|------------------------------------|-----------------------|--------------|----------------------|-----------|
|                           |                                    |                       |              |                      |           |
|                           |                                    |                       |              |                      |           |

# GLS I

• We know that both heteroskedasticty and autocorrelation require a different specification than  $Var(\varepsilon) = E(\varepsilon \varepsilon') = \sigma^2 \mathbf{I}$  in the linear regression model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{1}$$

More generally we have:

$$Var(oldsymbol{arepsilon})=\sigma^2oldsymbol{\Omega}$$
 ,  $\sigma^2>0$ 

where  $\Omega$  is  $n \times n$  is symmetric and **Positive Definite**:

$$z'\Omega z$$
 > 0 for all  $z \neq 0$  quadratic form in *n* variables

with 
$$\mathbf{z}' = (Z_1, Z_2, ..., Z_n)$$
.

| Generalized least squares | Regression modelling of the system | Time series<br>000000 | Stationarity | Stability of systems | ADL model |
|---------------------------|------------------------------------|-----------------------|--------------|----------------------|-----------|
|                           |                                    |                       |              |                      |           |
|                           |                                    |                       |              |                      |           |

# GLS II

 Result from linear algebra: For a PD matrix Ω there exists a n × n matrix Ψ which is invertible (non-singular), with properties

$$\Psi \Omega \Psi' = \mathbf{I} \tag{2}$$

$$\Psi^{'}\Psi=\Omega^{-1}\Leftrightarrow\Psi\Psi^{\prime}=\Omega^{-1} \ (\text{symmetry of }\Omega) \ \ (3)$$

• Multiplication from the left in (1) by  $\Psi'$  gives:

$$\underbrace{\Psi'_{\mathbf{y}_{*}}}_{\mathbf{y}_{*}} = \underbrace{\Psi'_{\mathbf{X}}}_{\mathbf{X}_{*}} \beta + \underbrace{\Psi'_{\varepsilon}}_{\varepsilon_{*}}$$
(4)

| Generalized least squares | Regression modelling of the system | Time series<br>000000 | Stationarity | Stability of systems | ADL model |
|---------------------------|------------------------------------|-----------------------|--------------|----------------------|-----------|
|                           |                                    |                       |              |                      |           |

# GLS III

Because

$$Var(\boldsymbol{\varepsilon}_*) = E(\boldsymbol{\varepsilon}_*\boldsymbol{\varepsilon}'_*) = E(\boldsymbol{\Psi}'\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'\boldsymbol{\Psi}) = \boldsymbol{\Psi}'\sigma^2\boldsymbol{\Omega}\boldsymbol{\Psi} = \sigma^2\boldsymbol{I} \quad (5)$$

the OLS estimator for  $\beta$  from (4) is BLUE under the assumption of strict exogeneity of the X-variables.

 This estimator is the Generalized Least Squares estimator (GLS) and is, by reference to minimization of residuals and to method-of-moments, given by:

$$\begin{split} \hat{\boldsymbol{\beta}}_{GLS} &= (\mathbf{X}_{*}^{'}\mathbf{X}_{*})^{-1}\mathbf{X}_{*}^{'}\mathbf{y}_{*} = (\mathbf{X}^{'}\mathbf{\Psi}\mathbf{\Psi}^{'}\mathbf{X})^{-1}\mathbf{X}^{'}\mathbf{\Psi}\mathbf{\Psi}^{'}\mathbf{y} \\ &= (\mathbf{X}^{'}\mathbf{\Omega}^{-1}\mathbf{X})^{-1}\mathbf{X}^{'}\mathbf{\Omega}^{-1}\mathbf{y} \end{split}$$
(6)

with covariance matrix.

$$\mathit{Var}(\hat{\pmb{\beta}}_{\mathit{GLS}}) = (\pmb{\mathsf{X}}_{*}^{'}\sigma^{-2}\pmb{\mathsf{I}}\pmb{\mathsf{X}}_{*})^{-1} = \sigma^{2}(\pmb{\mathsf{X}}^{\prime}\pmb{\Omega}^{-1}\pmb{\mathsf{X}})^{-1}$$

#### Weighted Least Squares example I

Assume that the only departure from the classical assumptions is heteroskedasticity, and that it takes the form:

$$Var(\varepsilon) = \sigma^2 \mathbf{\Omega} = \sigma^2 \begin{pmatrix} X_{21} & 0 & \cdots & 0\\ 0 & X_{22} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & X_{2n} \end{pmatrix}$$

Then (show!):

$$\mathbf{\Omega}^{-1} = \left(egin{array}{cccc} rac{1}{X_{21}} & 0 & \cdots & 0 \ 0 & rac{1}{X_{21}} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & rac{1}{X_{2n}} \end{array}
ight)$$

# Weighted Least Squares example II

and we can compute the GLS estimator from (6). Moreover, we see that  $\Psi \Omega \Psi' = \mathbf{I}$  if  $\Psi = \Psi'$  is specified as :

$$\mathbf{\Psi}' = \begin{pmatrix} \sqrt{\frac{1}{X_{21}}} & 0 & \cdots & 0\\ 0 & \sqrt{\frac{1}{X_{21}}} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \sqrt{\frac{1}{X_{2n}}} \end{pmatrix}$$

which gives the weights that we apply to obtain  $\mathbf{y}_*$  and  $\mathbf{X}_*$  in (4).

# Feasible GLS I

- In most practical situations Ω, is unknown as is replaced by a consistent estimator Ω̂. This is based on
  - the OLS residuals  $\hat{\varepsilon}_i$
  - and an assumed form of the heteroskedasticity or autocorrelation (see DM section 7.4 for examples).
- In practice: an auxiliary regression between \u00ecc<sub>i</sub> and a set of observable variables (often some of the X variables).
- As long as this procedure gives a consistent estimator of Ω, the feasible GLS estimator

$$\boldsymbol{\tilde{\beta}_{GLS}} = (\mathbf{X}'\boldsymbol{\hat{\Omega}}^{-1}\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\hat{\Omega}}^{-1}\mathbf{y}$$

is both consistent and asymptotically efficient.

# Conditional and marginal models I

- ► A model of the simultaneous pdf f(Y, X<sub>1</sub>, X<sub>2</sub>,...,X<sub>k</sub>) is an econometric simultaneous equations model.
- That simultaneous equation model is one of the main topic later in the course.
- First we will however wee how we can represent a system of variables with what we can loosely call, a system of regression models.
- ► The conditional of Y model based on the conditional pdf f(Y | X<sub>1</sub>,..., X<sub>k</sub>) is a regression model.

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{7}$$

where we assume linearity and that  $\varepsilon$  have the classical properties for simplicity

# Conditional and marginal models II

- Clearly (7) is only a partial model of the system.
- ► Can "close the model" if we supplement (7) with equations that represent the marginal pdf f(X<sub>1</sub>,..., X<sub>k</sub>).
- If the variables in X are IID, the marginal model will be the k (super) simple regressions:

$$\mathbf{X}_{j} = \boldsymbol{\phi}_{j} + \boldsymbol{v}_{j} \ j = 1, 2, \dots, k \tag{8}$$

where  $oldsymbol{\phi}_{j}$   $(j=1,2,\ldots,k)$  are parameters and

$$E(v_j) = \mathbf{0}$$
, ,  $\forall j$   
 $Var(v_j) = E(v_j v'_j) = \sigma_v^2 \mathbf{I}$ ,  $\forall j$   
 $E(v_j v_l) = \mathbf{0}$ ,  $\forall j \neq l$ 

# Conditional and marginal models III

- (7) and (8) give a model representation of the joint pdf f(Y, X<sub>1</sub>, X<sub>2</sub>,...,X<sub>k</sub>) for the case of IID regressors.
- The assumption of IID regressors is often unrealistic in particular for time series data.
- Hoever, there are purposes that require us to model the marginal model, for example if the purpose is to forecast Y one or more periods ahead.
- In the rest of the course we therefore turn to time series data, and to dynamic equations and systems.
- As a stepping stone, we need some basic concepts and theorems from time series econometrics, before we return to model specification and estimation (CC 2 and Lecture4)

### Time series I

- We define a time series Y<sub>t</sub> as the realization of a stochastic process {Y<sub>t</sub>; t ∈ T}. In any period t the variable Y<sub>t</sub> can take a number of values consistent with the the sample space. (Norwegian: "utfallsrom").
- A stochastic process has therefore a random distribution for each Y<sub>t</sub>. It is consistent with this definition that T can be {0, ±1, ±2,...}, {1, 2, 3, ...}, [0, ∞} or (-∞, ∞).
- However, when there is no room for misunderstanding, we follow convention and use the term *time series* both for a data series, and for the process of which it is a realization.
- We will mainly study stochastic processes given by linear stochastic difference equations.



# A time series of order p, (AR(p) |

We write a time series of order p as the stochastic difference equation

$$Y_{t} = \gamma + \rho_{1}Y_{t-1} + \rho_{2}Y_{t-2} + \dots + \rho_{p}Y_{t-p} + \varepsilon_{t}$$
(9)

where  $\gamma, \rho_j \ (j=1,2,\ldots,p)$  are parameters, and where

$$\varepsilon_t \sim IID\left(0, \sigma_{\varepsilon}^2\right) \quad \forall \ t.$$
 (10)

as in equation (13.01) in DM who refer to this  $\varepsilon_t$  as white-noise.

- Together they are known as the AR(p) model.
- (9) may of interest "on its own", as a general model of single time series.

#### Difference equations

# A time series of order p, (AR(p) II)

- One example is when Y<sub>t</sub> is not a an observable variable, but a residual from OLS estimation.
- In that interpretation (9) becomes a model of autocorrelated regression residuals, as covered in Ch 7.6 in DM.
- Estimate by NLS or feasible GLS, possibly iterated.
- ▶ When Y<sub>t</sub> is an observable, the main motivation for using (9) is for forecasting.
- The reason for studying (9) in econometics is however, more fundamental: It gives the framework for defining the all important concepts of **dynamic stability** and **stationarity** both for individual time series and for systems of variables (for example dynamic stochastic general equilibirum models,DSGE).



### Prelude: AR(p) as the final equation of a system 1

- We ofen study systems of stochastic difference equations
- The simplest case is two time series that are connected in a the first order system .

$$\begin{pmatrix} Y_t \\ X_t \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ X_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{xt} \end{pmatrix}, \quad (11)$$

where  $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$  is the matrix of autoregressive coefficients and we assume that

$$\begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{xt} \end{pmatrix} \sim IID \begin{pmatrix} \mathbf{0}, & \sigma_y^2 & \sigma_{yx} \\ \sigma_{yx} & \sigma_x^2 \end{pmatrix} \forall t$$
(12)



# Prelude: AR(p) as the final equation of a system II

- In fact this is an example of a first order Vector Autoregressive model, VAR.
- If (12) is replaced by the normal (Gaussian) distribution, the system is called a Gaussian VAR.
- As an exercise, you can show that (11) can be reduced to the so called **final equation** for Y<sub>t+1</sub>

$$Y_{t+1} = (\underbrace{a_{11} + a_{22}}_{\equiv \rho_1})Y_t + (\underbrace{a_{12}a_{21} - a_{22}a_{11}}_{\equiv \rho_2})Y_t + \underbrace{\varepsilon_{yt+1} - a_{22}\varepsilon_{yt} + a_{12}\varepsilon_{yt}}_{\equiv \varepsilon_t}$$
(13)

The answer will be posted on web page after the lecture.



### Prelude: AR(p) as the final equation of a system III

▶ But the same equation must hold for Y<sub>t</sub> so we obtain (9) for the case of p = 2 and γ = 0 as

$$Y_t = \rho_1 Y_{t-1} + \rho_2 Y_{t-2} + \varepsilon_t \tag{14}$$

$$\rho_1 = (a_{11} + a_{22}) \tag{15}$$

$$\rho_2 = a_{12}a_{21} - a_{22}a_{11} \tag{16}$$

$$\varepsilon_t = \varepsilon_{y,t} - \mathsf{a}_{22}\varepsilon_{y,t-1} + \mathsf{a}_{12}\varepsilon_{x,t-1} \tag{17}$$

The omission of the intercept (which implies γ = 0) is only to save notation.



### Prelude: AR(p) as the final equation of a system IV

• Note that when  $\varepsilon_t$  is defined as in (17) we have  $E(\varepsilon_t) = 0$  and

$$Var(\varepsilon_t) = Var(\varepsilon_{y,t} - a_{22}\varepsilon_{y,t-1} + a_{12}\varepsilon_{x,t-1})$$
  
=  $\sigma_y^2 + a_{22}^2\sigma_{yy} + a_{12}^2\sigma_x^2 + 2a_{22}a_{12}\sigma_{yx}$ 

independent of t (homoskedasticity), but

$$Cov(\varepsilon_t, \varepsilon_{t-1}) = -a_{22}\sigma_y^2 + a_{12}\sigma_{yx}$$
$$Cov(\varepsilon_t, \varepsilon_{t-j}) = 0 \ j = 2, 3, \dots$$

In this interpretation the disturbance ε<sub>t</sub> in the AR(2) model is not white-noise, but a Moving Average (MA) process

### Dynamic stability and stationarity I

Consider again the AR(p) process:

$$Y_{t} = \gamma + \rho_{1}Y_{t-1} + \rho_{2}Y_{t-2} + \dots + \rho_{p}Y_{t-p} + \varepsilon_{t}$$
(18)

Consider next the homogenous version of the difference equation:

$$Y_t^h - \rho_1 Y_{t-1}^h - \rho_2 Y_{t-2}^h - \dots - \rho_p Y_{t-p}^h = 0$$
 (19)

Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

#### Dynamic stability and stationarity II

From mathematics we know that (19) has a **global** asymptotic stable solution  $(Y_t^h \to 0 \text{ when } t \to \infty)$  if and only if all the *p* roots (eigenvalues) of the associated characteristic polynomial

$$\lambda^{p} - \rho_{1}\lambda^{p-1} - \rho_{2}\lambda^{p-2} - \dots - \rho_{p} = 0$$
 (20)

are less than one in absolute value.

- From a result that is far from trivial, and which we leave for ECON 5101, we have that the same condition is necessary and sufficient for the **stationarity** of the stochastic process Y<sub>t</sub> when it is given by (18) and ε<sub>t</sub> is white-noise, or any other stationary time series process (e.g., MA(q), q = 1, 2, ...).
- But now we have given the condition for stationarity without a definition for stationarity...!

# Stationarity defined I

For the time series  $\{Y_t; t=0,\pm 1,\pm 2,\pm 3,\ldots\}$  we define the autocovariances  $\gamma_{j,t}$  as

$$\tau_{j,t} = E[(Y_t - \mu_t)(Y_{t-j} - \mu_t)], \ j = 0, 1, 2, \dots,$$
 (21)

where  $E(Y_t) = \mu_t$ . If neither  $\mu$  nor  $\gamma_{j_t}$  depend on time t:

$$E(Y_t) = \mu, \forall t$$

and

$$E[(Y_t - \mu)(Y_{t-j} - \mu)] = \tau_j, \forall t, j.$$

the  $Y_t$  process  $\{Y_t; t = 0, \pm 1, \pm 2, \pm 3, ...\}$  is covariance stationary (aka weakly stationary).

# Stationarity defined II

For a stationary  $Y_t$  the variance is time independent

$$Var(Y_t) = \sigma_y^2 \equiv \tau_0 \text{ for } j = 0$$

and the autocovariances are symmetric backwards and forwards:  $\tau_j = \tau_{-j}$ 

#### The autocorrelation function I

- For a stationary time series variable, the theoretical autocovariances only depend on the distance *j* between periods. We can regard the autocovariance as a function of *j*.
- The same is the case for the (theoretical) autocorrelation function (ACF). In general, it is a function of j and t:

$$\zeta_{j,t} = \{Y_t, Y_{t-j}\} = \frac{Cov(Y_t, Y_{t-j})}{Var(Y_t)} = \frac{\tau_{j,t}}{\tau_{0,t}}, \quad (22)$$

However

$$\zeta_j = \frac{\tau_j}{\tau_0} = \zeta_{-j} \text{ for } j = 1, 2, ...$$
 (23)

in the stationary case.

### Why is stationarity so important? I

▶ For an observable time series {Y<sub>t</sub>; t = 1, 2, 3, ... T}, we use the empirical autocovariances,

$$\hat{\tau}_{j} = 1/T \sum_{t=j+1}^{T} (Y_{t} - \bar{Y})(Y_{t-j} - \bar{Y}), \ j = 0, 1, 2, \dots, T - 1$$
(24)

where  $\bar{Y} = 1/T \sum_{t=1}^{T} Y_t$ .

- If the process {Y<sub>t</sub>; t = 0, ±1, ±2, ±3, ...} is stationary, τ̂<sub>j</sub> (j = 0, 1, 2, ...) are consistent estimators of the theoretical autocovariances
- This in turn gives the main premise for consistent estimation of the coefficients of dynamic regression models, of which AR(p) is an example

# Why is stationarity so important? II

- In short: stationary is the main premise for why we can extend the OLS based estimation and inference theory to time series data!
- Note that, although stationarity depends on the characteristics roots, it can be "mapped back" to the ρ<sub>1</sub> and ρ<sub>2</sub> parametes in the AR(2) case. See Figure 13.1 in DM

# AR(2) example I

$$\gamma = 0, \ \rho_1 = 1, 6, \ \rho_2 = -0, 9:$$
  
 $Y_t = 1, 6Y_{t-1} - 0, 9Y_{t-2} + \varepsilon_t,$ 
(25)

The roots are a complex pair. The "absolute value" of the roots is 0.94868.

- Show homogenous solution,
- and solution when  $\varepsilon_t \sim IID(0, 1)$  in class

#### Lag operators I

- When we work with stochastic difference equations, it is often useful to express relationships with the use of the lag-operator L.
- The lag operator L changes the dating of a variable Y<sub>t</sub> one or more period back in time. It works in the following way:

$$LY_{t} = Y_{t-1},$$
  

$$LLY_{t} = L^{2}Y_{t} = LY_{t-1} = Y_{t-2},$$
  

$$L^{p}Y_{t} = Y_{t-p}.$$

From the last property it follows that if p = 0, then

$$L^0 = 1,$$
$$L^0 Y_t = Y_t,$$

#### Lag operators II

We also have

$$L^p L^s = L^p L^k = L^{(p+s)},$$

and

$$(aL^p + bL^s) Y_t = aL^p Y_t + bL^s Y_t = aY_{t-p} + bY_{t-s}.$$

If we want to shift a variable forward in time, we use the forward operator L<sup>-1</sup>:

$$L^{-1}Y_t = Y_{t+1}$$

and generally

$$L^{-s} = Y_{t+s}$$

#### Lag operators III

 Because constants are independent of time, we have for the constant b

$$Lb = b.$$

and by induction

$$L^{p}b = L^{(p-1)}Lb = L^{(p-1)}b = b.$$

Lag-polynomial representation of AR(p) I

We can now write (9) more compactly as

$$\phi(L)Y_t = \gamma + \varepsilon_t \tag{26}$$

where is the lag polynomial of order p.

$$\phi(L)Y_t = 1 - \rho_1 L - \rho_2 L^2 - \dots \rho_p L^p$$
(27)

and we keep the assumption of white-noise  $\varepsilon_t$ .

# Lag-polynomial representation of AR(p) II

A root of the characteristic equation associated with the lag-polynomial is:

$$1 - \rho_1 z - \rho_2 z - \dots \rho_p z^p = 0 \tag{28}$$

Comparison with the characteristic equation (20) shows that

$$z = \frac{1}{\lambda}$$

meaning that the condition for stationarity can also be expressed in terms of the roots:  $(z_1, z_2, ..., z_p)$ :

Y<sub>t</sub> is stationary if all the z−roots are larger than one in absolute value ("outside the unit circle" DM page 273).

# Companion form I

Consider again the VAR system (11)

$$\begin{pmatrix} Y_t \\ X_t \end{pmatrix} = \underbrace{\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}}_{A} \begin{pmatrix} Y_{t-1} \\ X_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{xt} \end{pmatrix},$$

- $(Y_t, X_t)'$  and  $(\varepsilon_{yt}, \varepsilon_{xt})'$  are two bivariate time series.
- Assume that (\varepsilon\_{yt}, \varepsilon\_{xt})' are made up of two stationary series. This is secured by (12) for example.

# Companion form II

By obtaining the characteristic polynomial to A:

$$p(\lambda) = |\mathbf{A} - \lambda \mathbf{I}|$$

you find that the  $\mathbf{eigenvalues}\ \mathbf{of}\ \mathbf{A}$  are the roots of

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \tag{29}$$

which is the characteristic equation associated with the final equation (13) that we derived above.

- Hence the necessary and sufficient condition for stationary of the vector (Y<sub>t</sub>, X<sub>t</sub>)' is that the two eigenvalues of both less than one in absolute value.
- A is a simple example of a so called **companion form** matrix.

### Companion form III

In ECON 5101 we will show that if we have a general VAR with n time series variables and p lags, that VAR can be written as a first order system

$$\mathbf{z}_t = \mathbf{F}\mathbf{z}_{t-1} + \boldsymbol{\epsilon} \tag{30}$$

where  $\mathbf{z}_t$  and  $\boldsymbol{\epsilon}_t$  are  $1 \times np$  and the companion form matrix  $\mathbf{F}$  is  $np \times np$ .

For such a general VAR system, the condition for stationarity and stability is that all the *np* eigenvalues from

$$|\mathbf{F} - \lambda \mathbf{I}| = 0 \tag{31}$$

are less than one in magnitude.

# Companion form IV

When we estimate a dynamic system in PcGive, the eigenvalues of the companion form are always available after estimation.

#### The VAR revisited I

Let us now take care to write the Gaussian disturbances of the VAR (now including two intercepts)

$$\begin{pmatrix} Y_t \\ X_t \end{pmatrix} = \begin{pmatrix} \pi_{10} \\ \pi_{20} \end{pmatrix} + \begin{pmatrix} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ X_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{xt} \end{pmatrix}$$
(32)

as conditional on period t - 1:

$$\begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{yt} \end{pmatrix} \sim N\left(\mathbf{0}, \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} \mid Y_{t-1}, X_{t-1}\right).$$
(33)

Now, (32) can be written as

$$Y_t = \mu_{y,t-1} + \varepsilon_{yt}$$
(34)  
$$X_t = \mu_{x,t-1} + \varepsilon_{xt}$$
(35)

### The VAR revisited II

where the conditional expectations  $\mu_{y,t-1} \equiv E(Y_t \mid Y_{t-1}, X_{t-1})$ and  $\mu_{x,t-1} \equiv E(X_t \mid Y_{t-1}, X_{t-1})$  are

$$\mu_{y,t-1} = \pi_{10} + \pi_{11} Y_{t-1} + \pi_{12} X_{t-1}$$
(36)

$$\mu_{x,t-1} = \pi_{20} + \pi_{21} Y_{t-1} + \pi_{22} X_{t-1}.$$
 (37)

Interpretation: Conditional on the history of the system up to time t - 1,  $Y_t$  and  $X_t$  are jointly normally distributed.

# The conditional model for Y I

The conditional distribution for  $Y_t$  given the history **and**  $X_t$  is also normal,

In **Lecture note 3** (posted after the lecture for self-study) we show that the conditional distribution for  $Y_t$  is:

$$Y \sim N(\phi_0 + \phi_1 Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1}, \sigma^2 \mid X_t, Y_{t-1}, X_{t-1})$$
(38)

which can be written in "model form" as

$$Y_{t} = \phi_{0} + \phi_{1}Y_{t-1} + \beta_{0}X_{t} + \beta_{1}X_{t-1} + \varepsilon_{t}$$
(39)

$$\varepsilon_t \sim N(0, \sigma^2 \mid X_t, Y_{t-1}, X_{t-1})$$
(40)

Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

### The conditional model for Y II

$$\phi_0 = \pi_{10} - \frac{\sigma_{xy}}{\sigma_x^2} \pi_{20} \tag{41}$$

$$\phi_1 = \pi_{11} - \frac{\sigma_{xy}}{\sigma_x^2} \pi_{21} \tag{42}$$

$$\beta_0 = \frac{\sigma_{xy}}{\sigma_x^2} \tag{43}$$

$$\beta_1 = \pi_{12} - \frac{\sigma_{xy}}{\sigma_x^2} \pi_{22} \tag{44}$$

and

$$\sigma^2 = \sigma_y^2 (1 - \rho_{xy}^2).$$
 (45)

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}.$$
 (46)

# The conditional model for Y III

- Some small differences in notation apart, this is the same ADL model as in Ch 13.5 eq (13.58) for p = q = 1.
- The same ADL type model can be derived from a VAR with IID disturbances, rather than strictly normal.
- ADL(p,q) model can be derived from a VAR or order p. Consequently we must then have p = q in the ADL.
- We will study such ADL models, and their estimation over the next weeks.

Generalized least squares Regression modelling of the system Time series Stationarity Stability of systems ADL model

### The conditional model for Y IV

Finally, note that the ADL model

$$Y_{t} = \phi_{0} + \phi_{1}Y_{t-1} + \beta_{0}X_{t} + \beta_{1}X_{t-1} + \varepsilon_{t}$$
(47)

together with the second row in the VAR:

$$X_t = \pi_{20} + \pi_{21} Y_{t-1} + \pi_{22} X_{t-1} + \varepsilon_{xt}$$
(48)

give a **regression representation** of the VAR, in terms of a **conditional model** (47) and a **marginal model** (47).

Meaning that we have extende the regression model representation of the static simultaneous system to the dynamic model case.