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Some references to Lecture 4

I Ch. 13.4-13.5 and 13.7 in DM,

I Lecture note 3 and 4 about VARs and ADL models.
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Estimation of AR(1)

Theoretical moments of AR(1) I

I The simplest VAR is the univariate and stationary AR(1)
model (here in the Gaussian version with normal disturbances)

Yt = φ0 + φ1Yt−1 + εt , |φ1| < 1, εt ∼ IN
(
0, σ2

ε

)
∀t (1)

I Obtain the solution conditional on Y0 by repeated backward
solution

Yt = φ0

t−1
∑
i=0

φi
1 + φt

1Y0 +
t−1
∑
i=0

φi
1εt−i (2)
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Estimation of AR(1)

Theoretical moments of AR(1) II
I The conditional expectation and variance become

E (Yt | Y0) = E (φ0

t−1
∑
i=0

φi
1 + φt

1Y0)

= φ0
1− φt

1

1− φ1
+ φt

1Y0 (3)

Var(Yt | Y0) = σ2
ε

1− φ2t
1

1− φ2
1

(4)

The unconditional expectation and variance can be found by
setting t −→ ∞ in these two expressions, or by calculating
E (Yt) and Var(Yt) from the unconditional solution:

Yt = φ0

∞

∑
i=0

φi
1 +

∞

∑
i=0

φi
1εt−i (5)
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Estimation of AR(1)

Theoretical moments of AR(1) III

E (Yt) =
φ0

1− φ1
= µ (6)

Var(Yt) =
σ2

ε

1− φ2
1

= τ0 (7)

I What about the autocovariance function? Note that we can
re-write

Yt = φ0 + φ1Yt−1 + εt , |φ1| < 1

as

Yt − µ = φ1(Yt−1 − µ) + εt , |φ1| < 1 (8)

by adding and subtracting (µ− φ1µ).
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Estimation of AR(1)

Theoretical moments of AR(1) IV
I Then the first autocovariance

τ1 = E [(Yt − µ)(Yt−1 − µ)]

is found by multiplying (8) by (Yt−1 − µ) and then taking the
expectation:

τ1 = E [(Yt − µ)(Yt−1 − µ)] = E
[
φ1(Yt−1 − µ)2 + εt(Yt−1 − µ)

]
= φ1τ0

I The second autocovariance τ2 is

τ2 = E [(Yt − µ)(Yt−2 − µ)]

= E [φ1(Yt−1 − µ)(Yt−2 − µ) + εt(Yt−2 − µ)]

= φ1τ1 = φ2
1τ0
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Estimation of AR(1)

Theoretical moments of AR(1) V

I This shows that the autocovariance function τj
(j = 0, 1, 2, . . .) follows the same dynamics as the variable
Yt itself.

I The same is true for the autocorrelation function (ACF)

ζj =
τj
τ0

= φj
1 for j = 0, 1, 2, ... (9)

I This generalizes to AR(2) and AR(p), but we skip the exact
expressions here. ECON 5101 stuff.
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Estimation of AR(1)

ML estimation of AR(1) I

I The following is a self-contained argument for why OLS
estimation of AR(1) results in conditional ML estimators that
are good approximations to exact MLEs if the time series is
long enough.

I In particular we avoid the references to the Kalman filter,
mentioned by DM, which is important, but beyond the scope
of this course, and it is not need to understand the
relationship between MLE and OLS estimation
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Estimation of AR(1)

ML estimation of AR(1) II

I For the model AR(1) (1) the unconditional pdf for Y1 is:

f (Y1) =
1

√
2π
√

σ2
ε /(1− φ2

1)
exp

(
−[Y1 − φ0/(1− φ1)]2

2σ2
ε /(1− φ2

1)

)
(10)

The conditional distribution if Y2 given Y1 follows directly
from (1)

(Y2 | Y1) ∼ N(φ0 + φ1Y1, σ2
ε ),

with pdf

f (Y2 | Y1) =
1√

2π
√

σ2
ε

exp

(
−[Y2 − φ0 − φ1Y1]2

2σ2
ε

)
. (11)
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Estimation of AR(1)

ML estimation of AR(1) III

The simultaneous pdf of Y2 and Y1 is

f (Y2,Y1) = f (Y2 | Y1) · f (Y1)

f (Y3 | Y2,Y1) will be similar to (11) (Y3 replaces Y2; Y2

replaces Y1) and f (Y3, Y2, Y1) becomes

f (Y3, Y2, Y1) = f (Y3 | Y2) · f (Y2, Y1)

= f (Y3 | Y2) · f (Y2 | Y1) · f (Y1).
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Estimation of AR(1)

ML estimation of AR(1) IV

By induction the likelihood for the whole sample can be
written as

f (YT ,YT−1, . . . , Y1) =

f (Y1) ·
T

∏
t=2

f (Yt | Yt−1). (12)

MLE is found by maximisation of the log-likelihood function

L = ln(f (Y1))−
T

2
(ln(2π/σ2

ε ))−
T

∑
t=2

[Yt − φ0 − φ1Yt−1]2

2σ2
ε

.

(13)
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Estimation of AR(1)

ML estimation of AR(1) V
I If we consider the first term as known, we see that the ML

estimators of φ0 and φ1 are found as the OLS estimators

min
φ̂0,φ̂1

{
T

∑
t=2

[Yt − φ̂0 − φ̂1Yt−1]
2} (14)

in the same way as for static regression model, see for Lecture
2.

I Conditioning on known Y1 means that the OLS estimators of
φ0 and φ1 in the AR(1) model are conditional MLE.

I Since Y1 is without importance for the likelihood function
when T −→ ∞, the practical interpretation is that OLS
estimation gives a good approximation to the exact ML
estimators when T is sufficiently large.
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Estimation of AR(1)

ML estimation of AR(1) VI

I The OLS estimators are biased, since Yt−1 is only
pre-determined, not strictly exogenous (write (2) for Yt−1 if
you need a reminder about this).

I The OLS estimators are consistent, because asymptotically,
Yt−1 is uncorrelated with the sequence of future distubances.
For φ0 = 0, we can write this as

plim
(
φ̂1 − φ1

)
=

plim 1
T ∑T

t=2 Yt−1εt

plim 1
T ∑T

t=2 Y 2
t−1

=
0
σ2

ε

1−φ2
1

= 0.

if E (Yt−1εt) = 0 and |φ1| < 1 (stationarity), and with
reference to the Law of large numbers and Slutsky’s theorem
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Estimation of AR(1)

How large is “large”? I

I As usual, we should ask how relevant the asymptotic
estimation theory is.

I By experimentation with Monte Carlo analysis of the AR(1)
model in PcGive, you will get an impression about the
importance of the values of φ1 and σ2

ε in the DGP

I In particular, find that for φ1 = 0.99 (“almost
non-stationary”) the bias declines very slowly, but much faster
already with φ1 = 0.95 and φ1 = 0.80 for example.

I This shows that with time series, the answer to “How large is
large?“ (or “How small is large?”); depends no only on T but
also on φ1 in particular.
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Estimation of AR(1)

Estimation of ARMA models I

I First: The condition about invertibility of MA processes has
nothing to with the question about stationarity.

I In is a more technical requirement about the roots or the
polynomial associated the MA part of the process: Invertible
MA processes can be represented as an infinite AR process

I By a similar argument as we have given for AR(1),
approximate MLE of ARMA(1,1) models are obtained by NLS
estimation.

I In this course, focus on AR(p) and VAR(p).

15 / 25



ML estimation of VAR and derived models Dynamic and long run multipliers in ADL models Single equation model typology

Estimation of VAR(p)

The VAR estimation theorem I

I The results about OLS estimators of AR(1) being
approximately MLE generalizes directly to AR(p) and to
VAR(p).

I The condition is that the roots of the associated polynomials
are on the stationary side of the unit-circle, and that the
disturbances (“input series”) are white–noise, as secured by a
univariate (AR(p) case) or multivariate (VAR(p)) normal
distribution.

I (The following states the same as on page 595-597 in DM.)
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Estimation of VAR(p)

The VAR estimation theorem II
I Assume the VAR(p) for the vector time series

yt = (Y1t , Y1t , . . . , Ykt)
′

t = 1, 2, . . . , T :

yt =
p

∑
i=1

Πiyt−i + ΥDt + εt (15)

where Πi (i = 1, 2, . . . , p) contains the AR coefficients, ΥDt

contains constant terms and other deterministic term, and εt

is multivariate Gaussian εt ∼ IN(0, Σ).

I The following important results about estimation and
inference in the VAR are true:

1. If yt is stationary, the OLS estimators for Πi (i = 1, 2, . . . , p),
and Υ are conditional MLEs.

17 / 25



ML estimation of VAR and derived models Dynamic and long run multipliers in ADL models Single equation model typology

Estimation of VAR(p)

The VAR estimation theorem III
2. These OLS estimators are consistent and asymptotically

normally distributed.

3. If Σ is consistently estimated, hypotheses about single
parameters can be tested by OLS t-ratios that have
asymptotical standard normal distributions.

4. OLS estimated coefficients standard errors can be used to
construct confidence intervals that are accurate in large
samples

5. An LR tests for a joint hypothesis with r restrictions is
−2(L∗R− L∗U) and is asymptotically χ2(r) under the null
hypothesis the the r restrictions are valid.

I Remark to 3 and 4: Nothing wrong in using the t-distribution
rather than N(0, 1) !

18 / 25



ML estimation of VAR and derived models Dynamic and long run multipliers in ADL models Single equation model typology

Estimation of VAR(p)

The VAR estimation theorem IV

I Remark to 5: As in standard regression: L∗R and L∗U are
one-to-one with RSSR and RSSU , meaning that they can be
used to construct F -versions of the joint test.
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Estimation of ADL

Consequence for ADL estimation I

Since an ADL model is a conditional model based on a VAR, all
the results 1.- 5. from the VAR estimation theorem carry over to
estimation of the coefficients of single equation ADL models and
to hypothesis testing and confidence intervals.

I The delta method can be used to make inference about
non-linear derived parameters.

I Since there are many models that are special cases of the
ADL model, the estimation theorems also for these models
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Multipliers and Granger Causality I

I In line with Lecture note 4 we can write the ADL model with
k regressors as

φ(L)Yt = φ0 +
k

∑
j=1

βj (L)Xjt + εt (16)

where

φ(L) = 1−
p

∑
i=1

φi L
i (17)

βj (L) =
p

∑
i=0

βjiL
i , j = 1, 2, . . . k (18)

and εt ∼ IN(0, σ2
ε M).
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Multipliers and Granger Causality II
I The dynamic response of Yt to temporal and/or permanent

shifts in one of the X variables are called dynamic multipliers.

I The period t responses to shocks in period t are simply the
regression coefficients βj0 (j = 1, 2, . . . , k) and are often
called called the impact multipliers

I The long-run multipliers are the partial derivatives of the
static solution for Yt = Y ∗ and Xt = X ∗

φ(1)Y = φ0 +
k

∑
j=0

βj (1)Xjt

(note that the disturbance is omitted by convention), i.e.

∂Y ∗

∂X ∗j
=

∑p
i=0 βji

1−∑p
i=1 φi

(19)
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Multipliers and Granger Causality III

I After estimation in PcGive, (19) is obtained from
Test-Dynamic Analysis-Static long-run solution

I The long-run multipliers are given with delta-method type
standard errors.

I Clearly, (19) only has good meaning if

Xt−i → Yt for i = 0, 1, 2, ...and Yt−j 9 Xt for j = 1, 2, ...
(20)

which is called one-way Granger-causality from X to Y .
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Multipliers and Granger Causality IV

I We can also be interested in the dynamic multipliers:

∂Yt

∂Xt−j
for j = 1, 2,

and the cumulation of these, which show how the effects of a
permanent change in X build up from the impact multiplier to
the long-run multiplier.

I In PcGive they are given in normalized form, divided by the
corresponding long-run multiplier, under the name Cumulative
normalized lag-weights.
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ADL based typology I

I Many relevant models are either re-parameterizations or
special cases of (16).

I We briefly review the most useful in class
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