ECON 4160, Spring term 2013. Lecture 6 Identification and estimation of SEMs (Part 1)

Ragnar Nymoen

Department of Economics

25 Sep 2013

- \blacktriangleright References to Davidson and MacKinnon,
	- \triangleright Ch 8.1-8.5
	- Ch $12.4.15$
- \triangleright For both Lecture 6 and 7 (need more than one to cover all this)

Structural form and reduced form I

 \triangleright Consider the following two equations for simultaneous equilibrium in a single marked (partial equilibrium)

$$
Q_t = \beta_{11} + \beta_{12}P_t + \varepsilon_{dt} \text{ (demand)}
$$

\n
$$
Q_t = \beta_{21} + \beta_{22}P_t + \varepsilon_{st} \text{ (supply)}
$$
\n(2)

- \triangleright ε_{dt} and ε_{st} are white-noise processes, e.g., (ε_{dt} , $(\varepsilon_{st})' \sim \textit{IN}(\mathbf{0}, \boldsymbol{\Sigma}).$
- In this lecture we will not require from the outset that Σ is diagonal: We want to study identification both without imposing any restrictions of the covariance matrix Σ , and with such restrictions (typically that Σ is diagonal).

Structural form and reduced form II

$$
\blacktriangleright
$$
 In matrix notation, the model is

$$
\left(\begin{array}{cc} 1 & -\beta_{12} \\ 1 & -\beta_{22} \end{array}\right)\left(\begin{array}{c} Q_t \\ P_t \end{array}\right) = \begin{array}{c} \beta_{11} + \varepsilon_{dt} \\ \beta_{21} + \varepsilon_{st} \end{array}
$$

Since the market is always in equilibrium, we observe not (1) and [\(2\)](#page-2-2), but a sequence of equilibrium variables $\{ \ldots, (Q_{t-1}, P_{t-1}), (Q_t, P_t), (Q_{t+1}, P_{t+1}), \ldots \}$ from the reduced-form of the simultaneous equations model

$$
\left(\begin{array}{c} Q_t \\ P_t \end{array}\right) = \left(\begin{array}{cc} 1 & -\beta_{12} \\ 1 & -\beta_{22} \end{array}\right)^{-1} \left(\begin{array}{c} \beta_{11} + \varepsilon_{dt} \\ \beta_{21} + \varepsilon_{st} \end{array}\right) (3)
$$

Since

$$
\left(\begin{array}{cc} 1 & -\beta_{12} \\ 1 & -\beta_{22} \end{array}\right)^{-1}=\left(\begin{array}{cc} -\frac{\beta_{22}}{\beta_{12}-\beta_{22}} & \frac{\beta_{12}}{\beta_{12}-\beta_{22}} \\ -\frac{\beta_{12}}{\beta_{12}-\beta_{22}} & \frac{\beta_{12}-\beta_{22}}{\beta_{12}-\beta_{22}} \end{array}\right)
$$

Structural form and reduced form III

the Reduced Form (RF) becomes:

$$
Q_{t} = \frac{\beta_{12}\beta_{21} - \beta_{11}\beta_{22}}{\beta_{12} - \beta_{22}} + \frac{\beta_{12}\varepsilon_{st} - \beta_{22}\varepsilon_{dt}}{\beta_{12} - \beta_{22}} \tag{4}
$$

$$
P_{t} = \frac{\beta_{21} - \beta_{11}}{\beta_{12} - \beta_{22}} + \frac{\varepsilon_{st} - \varepsilon_{dt}}{\beta_{12} - \beta_{22}} \tag{5}
$$

- \blacktriangleright The identification issue: From the RF [\(4\)](#page-4-1)-[\(5\)](#page-4-2), can we obtain consistent estimators of the parameters of the simultaneous equation model [\(1\)](#page-2-1)-[\(2\)](#page-2-2)?
- \triangleright NOTE: We discuss identification from as a logical property of the theoretical model. This corresponds to the term "Asymptotic Identification" (page 529) used by Davidson and MacKinnon.

Under-identification I

- \triangleright Given the assumptions we have made, OLS estimation of the RF parameters in [\(4\)](#page-4-1) and [\(5\)](#page-4-2) will be consistent MLE estimators.
- \blacktriangleright Let us therefore assume a **perfect sample**, that gives us knowledge of the *plim*-values of the OLS estimators of $E(Q_t)$ and $E(P_t)$. Denote these *plim*-values by γ_{Q0} and γ_{P0}

$$
\gamma_{Q0} = \frac{\beta_{12}\beta_{21} - \beta_{11}\beta_{22}}{\beta_{12} - \beta_{22}} \tag{6}
$$

$$
\gamma_{P0} = \frac{\beta_{21} - \beta_{11}}{\beta_{12} - \beta_{22}}\tag{7}
$$

► Two equations in two known RF parameters, $γ_{00}$ and $γ_{P0}$, and four unknown structural parameters.

Under-identification II

- \triangleright Cannot determine $β_{11}$, $β_{12}$, $β_{21}$ and $β_{22}$ from [\(6\)](#page-5-1) and [\(7\)](#page-5-2) even if we have perfect knowledge of the reduced form parameters $γ_{O0}$ and $γ_{P0}$
- \blacktriangleright The parameters of neither [\(1\)](#page-2-1) nor [\(2\)](#page-2-2) are identified.
- \triangleright Neither of the equations in the SEM are identified.

Partial identification by imposing restrictions I

I Let us assume completely inelastic supply, $\beta_{22} = 0$. The SEM is now

$$
Q_t = \beta_{11} + \beta_{12} P_t + \varepsilon_{dt} \text{ (demand)}
$$
\n
$$
Q_t = \beta_{21} + \varepsilon_{st} \text{ (supply)}
$$
\n(9)

and keep $(\varepsilon_{dt}, \, \varepsilon_{st})' \sim \textit{IN}(\mathbf{0}, \boldsymbol{\Sigma})$ as before.

 \blacktriangleright RF for this case:

$$
\gamma_{Q0} = \frac{\beta_{12}\beta_{21}}{\beta_{12}} = \beta_{21}
$$
 (10)

$$
\gamma_{P0} = \frac{\beta_{21} - \beta_{11}}{\beta_{12}}
$$
 (11)

Partial identification by imposing restrictions II

- **►** Assume again that $γ_{Q0}$ and $γ_{P0}$ are known (the same perfect sample assumption as above).
	- **Fi** The structural parameter β_{21} is found (determined) from [\(10\)](#page-7-1), hence the supply equation [\(9\)](#page-7-2) is identified
	- \blacktriangleright In [\(11\)](#page-7-3) we still have "two unknowns" and only one equation: The demand equation [\(8\)](#page-7-4) is not identified
- \blacktriangleright This is an example of partial identification (i.e. of one equation namely ([\(9\)](#page-7-2)) in a SEM.

Full identification by imposing restrictions I

In addition to $\beta_{22} = 0$ we assume that **Σ** is diagonal:

$$
\mathbf{\Sigma} = \left(\begin{array}{cc} \sigma_{d\varepsilon}^2 & 0 \\ 0 & \sigma_{s\varepsilon}^2 \end{array} \right)
$$

 \blacktriangleright Does this lead to (more) identification?

Full identification by imposing restrictions II

 \triangleright To find the answer, write down all the first and second order parameters (moments) from the reduced form

$$
E(Q_t) \equiv \gamma_{Q0} = \beta_{21} \tag{12}
$$

$$
E(P_t) \equiv \gamma_{P0} = \frac{\beta_{21} - \beta_{11}}{\beta_{12}} \tag{13}
$$

$$
Var(Q_t) = \frac{\beta_{12}^2 \sigma_{se}^2}{\beta_{12}^2} \tag{14}
$$

$$
Var(P_t) = \frac{\sigma_{se}^2 - \sigma_{de}^2}{\beta_{12}^2}
$$
 (15)

$$
Cov(Q_t, P_t) = \frac{\beta_{12}\sigma_{se}^2}{\beta_{12}^2}
$$
 (16)

Full identification by imposing restrictions III

- \triangleright We now have a determined equation system for det RF parameters and the structural form parameters: 5 independent equations in the five unknown structural parameters: *β*11, $β_{12}$, $β_{21}$, $σ_{sε}^2$ and $σ_{dε}^2$.
- \triangleright Both equations are therefore identified, we call this exact-identification or just-identification.

Interpreting the exact identified case: recursive structure I

- **I** The implication of $\beta_{21} = 0$ (inelastic supply) and diagonal Σ diagonal is that the structure become recursive:
- \triangleright The expected supply is fixed from period to period, and there is no indirect correlation between ε_{st} and ε_{dt} via Σ
- In effect, Q_t is strictly exogenous in a regression between P_t and Q_t , and the $plim$ of the OLS estimated regression coefficient is

$$
\frac{\text{Cov}(Q_t, P_t)}{\text{Var}(Q_t)} = \frac{\frac{\beta_{12}\sigma_{se}^2}{\beta_{12}^2}}{\frac{\beta_{12}^2\sigma_{se}^2}{\beta_{12}^2}} = \frac{\frac{\sigma_{se}^2}{\beta_{12}}}{\sigma_{se}^2} = \frac{1}{\beta_{12}}
$$

Interpreting the exact identified case: recursive structure II

 \blacktriangleright Hence, the slope parameter $\beta_{11}^{'}$ of the *inverted demand* function

$$
P_t = \beta'_{11} + \beta'_{12} Q_t + \varepsilon'_{st}
$$

is consistently estimated by OLS, and a consistent estimator of β_{12} is the reciprocal of that OLS estimator β_{12}' .

Summing up the first example I

- \triangleright Identification is a logical property of the structural (theory) model. In particular it is not a property of the sample.
- \triangleright Consistent estimation of the RF parameters is necessary for identification of structural parameters.
- **F** Restriction on one or more of the structural parameters (β_{22}) above), may lead to at least partial identification
- \triangleright Restriction on the covariance matrix of the structural disturbances ($\sigma_{sd} = 0$, above) can also increase the degree of identification.
- In the following we shall concentrate on developing an easy-to-use method of checking identification without considering any restrictions on the Σ matrix for the disturbances

Summing up the first example II

- \blacktriangleright This is the method of the Order- and Rank-conditions
- \triangleright Before presenting the general result, we try to develop our understanding through several steps.

Another partially identified structure I

 \triangleright Before we restricted [\(1\)](#page-2-1) and [\(2\)](#page-2-2), call it *Structure 1*, none of the structural parameters were identified. We can make it more concrete by writing it as

> Structure 1 $Q_t = 15 - P_t + \varepsilon_{dt}$ $Q_t = -0.2 + 0.5P_t + \varepsilon_{ct}$

In CC4singlemarked1.fl data is generated for Q_t and P_t according to this structure.

Intuitively, the lack of identification is due to the fact that there is no independent variation in the supply schedule that can help "trace out" the demand curve, and vice versa for the supply curve.

Another partially identified structure II

 \triangleright When we discuss identification, it is often useful use an "identification table"

- \triangleright Note that we regard the constant term as an exogenous variable, denoted by the "1" in the table.
- In the detailed *Structure 1* $\beta_{11} = 15$, $\beta_{22} = 0.5$ and so on.

Another partially identified structure III

 \triangleright Now consider a second structure:

Structure 2 $Q_t = 15 - P_t + 1.5X_{dt} + \varepsilon_{dt}$ $Q_t = -0.2 + 0.5P_t + \epsilon_{st}$

where X_{dt} is an observable variable, so the identification table is

where the exclusion X_d from the supply equation is market by the "0".

Another partially identified structure IV

- Intuition: the supply equation is now identified, because the demand equation shifts due to changes in X_d , and the supply is unaffected by the X_d shifts
- \triangleright More formally: We cannot obtain an observationally equivalent supply-equation by taking a linear combination of the two relationships in Structure 2 (expect by giving zero weight to the demand equation).
- \blacktriangleright However, such a linear relationship is observationally equivalent to the Demand equation which is not identified in Structure 2
- \triangleright CC4singlemarked2.fl illustrates Structure 2.

What about?

$$
Structure 3
$$
\n
$$
Q_t = 15 - P_t + \varepsilon_{dt}
$$
\n
$$
Q_t = -0.2 + 0.5P_t + 2X_{st} + \varepsilon_{st}
$$
\n
$$
Demand equation \quad \frac{Q}{1} \quad \frac{P}{\beta_{11}} \quad \frac{X_s}{\beta_{12}} \quad 0
$$
\n
$$
Supply equation \quad 1 \quad \beta_{21} \quad \beta_{22} \quad \beta_{23}
$$

 \blacktriangleright Use CC4singlemarked3.fl for this case

Exact identification I

- \triangleright No linear combination can "give back" the original two structural equations, hence both are identified
- \triangleright Use CC4singlemarked4.fl to illustrate

The order and rank conditions for exact identification

- \triangleright The following identification rule suggests itself: In a SEM with g equations, any structural equation is identified if that equation excludes $g - 1$ variables. The excluded variables can be endogenous or exogenous.
- \blacktriangleright This is called the order condition.
- \triangleright An equivalent formulation says that the number of excluded exogenous variables from the equation must be equal to the number of included endogenous variables minus one.
- In fact the order condition is only necessary. The necessary and sufficient condition says that the excluded variables in the equation under inspection must have coefficients that are different from zero in the other equations in the SEM. This is called the rank condition for identification.

Overidentification

- \triangleright We typically distinguish between just (or exact) identification and overidentification.
- \triangleright Overidentification means that we can derive, from the RF parameters, more than one solution for the structural parameters.
- \triangleright Hence the RF form in this case has more information than we need in order to estimate the structural parameters consistently.
- \triangleright Overidentification is not an obstacle to estimation of the SEM, as we shall see later, the only problem is how to use the information to give efficient estimation (lowest possible standard errors).

Order and rank condition, general formulation I

Rank condition

In a SEM with g linear equations, an equation is identified if and only if at least one non-zero $(g - 1) \times (g - 1)$ determinant is contained in the array of the coefficients which those variables excluded from the equation in question appear in the other equations of the SEM.

Remarks:

- \triangleright Recall that the rank of a matrix is the order of the largest non-zero determinant that it contains.
- \blacktriangleright If the rank condition is satisfied, the order condition is automatically satisfied, but not vice versa
- If the order of the non-zero determinant is larger than $(g - 1)$ the equation is overidentified.

Order and rank condition, general formulation II

- \blacktriangleright Identities are often part of SEMs. They are counted among the g equation of the model. Identities are identified equations, but the identification of the other structural equations should be investigated with the identities taken into account.
- \triangleright Exclusion restrictions are a special case of linear restrictions on the parameters and an even more general formulation of the order condition is:

In a SEM with g linear equations, a necessary condition for identification of an equation is that there are

 $(g - 1) \times (g - 1)$ linearly independent restrictions on the parameters of the equation.

Order and rank condition, general formulation III

 \blacktriangleright In PcGive: Identification is always checked prior to estimation, hence it is asymptotic identification that is checked by the program.

Identification of dynamic SEMs

- \triangleright Predetermined variables count as exogenous variables when we investigate identification
- \triangleright This is because identification is about obtaining consistent estimators of structural parameters, and as we know, predeterminedness is enough for conistent estimation of RF paramaters, cf. the estimation theory of for VARs!
- \triangleright Therefore the order and rank conditions apply to dynamic simultaneous equations models

Identification in recursive systems I

- In our first example, we saw that the supply-demand system could be identified if the structure was recursive
- \triangleright Recursive generally requires two thing:
	- 1. The matrix of contemporanous coefficients must be (upper or lower) triangular)
	- 2. The **Σ** matric must be diagonal
- \triangleright Note from previous lectures, that this is exactly what we achieve if we model the system in terms of conditional and marginal models.

Identification in recursive systems II

 \blacktriangleright Suppose that the RF of a dynamic SEM for Y_t and X_t is the stationary VAR with white-noise Gaussian:

$$
\underbrace{\left(\begin{array}{c} Y_t \\ X_t \end{array}\right)}_{\mathbf{y}_t} = \underbrace{\left(\begin{array}{cc} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{array}\right)}_{\Pi} \underbrace{\left(\begin{array}{c} Y_{t-1} \\ X_{t-1} \end{array}\right)}_{\mathbf{y}_{t-1}} + \underbrace{\left(\begin{array}{c} \varepsilon_{yt} \\ \varepsilon_{xt} \end{array}\right)}_{\varepsilon_t},\tag{17}
$$

 \triangleright Cov($\varepsilon_{vt}, \varepsilon_{xt}$) $\neq 0$ usually. but if we represent the VAR in terms of a conditional ADL and the second line in the VAR

$$
Y_t = \phi_1 Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1} + \varepsilon_t \tag{18}
$$

$$
X_t = \pi_{21} Y_{t-1} + \pi_{22} X_{t-1} + \varepsilon_{xt} \tag{19}
$$

Identification in recursive systems III

we have a model with a recursive structure

$$
Y_t - \beta_0 X_t = \phi_1 Y_{t-1} + \beta_1 X_{t-1} + \varepsilon_t \tag{20}
$$

$$
X_t = \pi_{21} Y_{t-1} + \pi_{22} X_{t-1} + \varepsilon_{xt} \tag{21}
$$

 ${\sf since\ }\ {\sf Cov}(\varepsilon_t,\! \varepsilon_{\mathsf{x}t}) = 0$ from the construction of the conditional model

- \blacktriangleright Because of $Cov(\varepsilon_t, \varepsilon_{xt}) = 0$ OLS on the marginal model and ADL separately give consistent estimators of all the parameters.
- \triangleright One way to say this, is that, if our parameters of interest are the parameters of the conditional-marginal equation, then that model is the structure, and it is identified.

Notation for a structural equation I

- \triangleright Without loss of generality, we consider equation $\#$ 1 in a SEM
- \triangleright Apart from the disturbance, adopt the notation in DM page 522:

$$
\mathbf{y}_1 = \mathbf{Z}_1 \boldsymbol{\beta}_{11} + \mathbf{Y}_1 \boldsymbol{\beta}_{21} + \boldsymbol{\epsilon}_1
$$
 (22)

- \blacktriangleright \mathbf{v}_1 is $n \times 1$, with observations of the variable that $\#$ 1 in the SEM is normalized on.
- \triangleright Z₁ is $n \times k_{11}$ with observations of the k_{11} included predetermined or exogenous variables.
- \blacktriangleright Y₁, $n \times k_{12}$ holds the included endogenous explanatory variables.

Notation for a structural equation II

The total number of explanatory variable in the first equation is

$$
k_{11} + k_{12} = k_1 \tag{23}
$$

For simplicity assume that the structural disturbance is Gaussian white-noise.

$$
\epsilon_1 = \mathit{IN}(\mathbf{0}, \sigma_1^2 \mathbf{I}_{n \times n})
$$

Simultaneity bias of OLS estimators I

By defining the two partitioned matrices:

$$
\mathbf{X}_1 = (\mathbf{Z}_1 : \mathbf{Y}_1) \quad (\text{iii}) \n\beta_1 = (\beta_{11} : \beta_{21})' \tag{25}
$$

[\(22\)](#page-31-1) can be written compactly as

$$
\mathbf{y}_1 = \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{\epsilon}_1 \tag{26}
$$

which is the notation in Ch 8.3 in DM

Simultaneity bias of OLS estimators II

 \triangleright [\(26\)](#page-33-0) looks like an ordinary regression, but of course we know better: Since it is the first structural equation in a SEM (a system!) we have

$$
plim(\frac{1}{n}\mathbf{X}'_1\varepsilon_1) \neq \mathbf{0}
$$
 (27)

since X_1 includes k_{12} endogenous explanatory variables.

- \blacktriangleright Hence the OLS estimator $\hat{\beta}_1$ will be inconsistent by simultaneous equations bias.
- \blacktriangleright All the estimators will be affected, not only $\hat{\beta}_{21}$.

Instrumental variables matrix I

 \triangleright Since [\(22\)](#page-31-1) is assumed to be exactly identified, it is logically consistent to assume that the SEM defines a matrix W_1 with the properties

$$
plim(\frac{1}{n}\mathbf{W}'_1\mathbf{X}_1) = \mathbf{S}_{W'_1X_1} \text{ (invertible)}
$$
 (28)

$$
plim(\frac{1}{n}\mathbf{W}'_1\varepsilon_1) = \mathbf{0} \text{ (independence)}
$$
 (29)

$$
plim(\frac{1}{n}\mathbf{W}'_1\mathbf{W}_1) = \mathbf{S}_{W'_1W_1}
$$
 (positive definite) (30)

 \triangleright Since [\(28\)](#page-35-0) required invertibility, the number of columns in \mathbf{W}_1 must k_1 .

Instrumental variables matrix II

- \triangleright The k_{11} predetermined variables included eq $\#$ 1 are of course in W_1 . In addition we need k_{12} instrumental variables for the included endogenous explanatory variables in eq $# 1$.
- \blacktriangleright The k_{12} instrumental variables must be "taken from" the predetermined variables in the SEM that are excluded from the first equation.
- But if structural equation $# 1$ is just-identified, the number of excluded predetermined variables is exactly equal to the number of included endogenous variables in the equation minus one. Hence we can write W_1 as

$$
\mathbf{W}_1 = \begin{pmatrix} \mathbf{Z}_1 & \mathbf{X}_{01} \end{pmatrix} \tag{31}
$$

where \mathbf{X}_{01} is $n \times k_{11}$ (number of included endogenous variables minus one).

Instrumental variables matrix III

 \triangleright We see that defined in this way, W_1 will satisfy both

- **Finstrument relevance** [\(28\)](#page-35-0), and
- instrument validity in (29)

 \blacktriangleright In the absence of perfect collinearity among instruments, also [\(30\)](#page-35-2).

The IV estimator I

If we apply the method of moments to the structural equation $y_1 = X_1\beta_1+\epsilon_1$, but with W_1 instead of X_1 , we obtain the IV-estimator

$$
\hat{\beta}_{1,IV} = (W_1'X_1)^{-1}W_1'y_1
$$
\n(32)

which an introductory course usually presents for the case of a single endogenous X .

Among the results for the IV-estimator that we know are:

- $\blacktriangleright \; \hat{\beta}_{1,{I\!V}}$ is a consistent estimator but it is biased in finite sample
- ▶ Asymptotic inference based on "t-ratios" and Chi-squared statistics for joint hypotheses are valid

The IV estimator II

- \blacktriangleright The estimated standard error of $\hat{\beta}_{1,IV}$ can be considerably larger than $\hat{\beta}_{1,\,OLS}$ if the instruments are **weak**, meaning that they are almost independent from the endogenous variables that they act as instrumenst for.
- \triangleright Building on the asymptotic theory in Ch 6, DM show that the asymptotic covariance matrix of the vector $(\boldsymbol{\hat{\beta}}_{1,IV} - \boldsymbol{\beta}_1)$ is

$$
Var(\hat{\beta}_{1,IV} - \beta_1) = \sigma_1^2 \mathbf{S}_{W_1'X_1}^{-1} \mathbf{S}_{W_1'W_1} \mathbf{S}_{W_1'X_1}^{-1}
$$
 (33)

see (8.17)

$$
Var(\hat{\beta}_{1,IV} - \beta_1) = \sigma_1^2 \rho \lim (n^{-1} \mathbf{X}_1' \mathbf{P}_{W_1} \mathbf{X}_1)^{-1}
$$
 (34)

where:

$$
\textbf{P}_{W_1} = \textbf{W}_1 (\textbf{W}_1' \textbf{W}_1)^{-1} \textbf{W}_1
$$

The IV estimator III

our old friend the prediction maker.

 \blacktriangleright What role does it take here?