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Generalized Method of Moments An example of IV and GMM estimation FIML estimation of dynamic systems

I References to Davidson and MacKinnon,

I Ch 9.1-9.4 (GMM linear single equations), 9.5 (Non-linear
equations, just the motivation)

I Ch 12.4 (the section Efficient GMM for systems, and the text
about 3SLS )

I Ch 12.5 (the line of argument in the Full-Information
Maximum Likelihood section) and the last part of p. 536 (test
of overidentifying restrictions)

I NOBEL PRICE TO GMM!
GMM is an extension of the GIV estimator that accounts for
heteroskedasticity and autocorrelation. A famous paper by
Lars Petter Hansen from 1982 (joint Nobel prize winner 2013)
was the “.. the first to propose GMM estimation under that
name“ (Davidson and MacKinnon page 367).
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I The last part of the lecture gives and intuitive explanation of
full information maximum likelihood estimation, FIML, of
identified linear dynamic simultaneous equations models
(FIML).

I FIML is the workhorse estimation method in the
multi-equation dynamic modelling part of OxMetrics/PcGive
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GMM for a structural equation, motivation I

I Consider again equation # 1 in a SEM as in DM page 522:

y1= X1β1+ε1 (1)

I Memo:

X1 =
(

Z1 : Y1

)
(2)

β1 = ( β11 : β21 )′ (3)

I y1 is n× 1, with observations of the variable that equation #
1 in the SEM is normalized on.

I Z1 is n× k11 with observations of the k11 included
predetermined or exogenous variables.

I Y1, n× k12 holds the included endogenous explanatory
variables.
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GMM for a structural equation, motivation II
Change assumption about hite-noise disturbances to
autocorrelated/heteroskedastic disturbances:

E (ε1ε
′
1) = Ω1. (4)

I Consider the just-identified or over-identified case (by the rank
and order conditions)

I When E (ε1ε
′
1) = IN(0,σ2

1 Inxn) we know how to find optimal
instruments: Use the reduced form to find the linear
combination of exogenous and predetermined variables that
give the best predictors of the variables in Y1.

I When we have the more general E (ε1ε
′
1) = Ω1, the best

predictors for Y1 should take the correlation structure between
the random variables in ε1 into account.
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GMM for a structural equation, motivation III

I Generalized (weighted) LS analogy: The regressors in the
model are weighted so as to whiten the residuals to get back
to the “classical assumptions”

I In the case of IV estimation, the weights must include the
instruments as well—this leads to Generalized Method of
Moments
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GMM-criterion function and the GMM estimator I

I In the same way as for the GIV estimator, the GMM estimator
of β1can be found by minimization of the GMM-criterion
function:

QGMM(β1, Ω1, y1) = (y1 −X1β1)
′PgW1(y1 −X1β1). (5)

where

PgW1 = W1(W
′
1Ω1W1)

−1W′
1. (6)

is the generalization of the GIV prediction maker matrix.
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GMM-criterion function and the GMM estimator II

I Assume that Ω1 is a matrix of known parameters. The first
order conditions (i.e. Method of Moments!) are then
compactly written as

X
′
1PgW1(y1 −X1β̂1,GMM) = 0 (7)

which gives β̂1,GMM as the solution

β̂1,GMM = (X′1PWg1X1)
−1X′1PW1y1

I If you “write it out”, you get expression (9.10) on page 355 in
DM (with some small changes in notation)
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GMM-criterion function and the GMM estimator III

I The generalization of the J1 matrix from GIV estimation is
found from:

X
′
1PgW1 = J

′
g1W′

1

and becomes (check)

Jg1 = (W′
1Ω1W1)

−1W′
1X1 (8)

which gives the optimal weights to the instruments in the
GMM case.
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MM an IV summary

1. When E (ε1ε
′
1) = Ω1 6= I , β̂1,GMM is asymptotically more

efficient than β̂1,GIV .

2. When Ω1=σ2
1 I: β̂1,GMM = β̂1,GIV and Jg1 = σ−2

1 J1 (the
reduced form gives the optimal iv weights).

3. Ω1=σ2
1 I and exact identification: β̂1,GMM = β̂1,GIV = ffîIV

4. If the structural equation is a regression model, as in a
recursive system of equations, we can set Z1 = X1 and the
optimal matrix with instruments is W1 = X1. So
β̂1,GMM = β̂1,OLS in this case.
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Feasible GMM

I Have seen that GMM is the generalization of GIVE, to the
case of non-white-noise error terms. Just as GLS generalized
OLS estimation to that case.

I In the same way as with GLS, to make GMM a feasible of
practical method, Ω1 has to be estimated by a consistent
estimator Ω̂1. Use GIV residuals to get a first estimate.

I Can choose to iteration over β̂1,GMM and/or Ω̂1.

I The covariance matrix of the feasible GMM estimator is

V̂ar(β̂1,GMM) = (X1W1(W
′
1Ω̂1W1)

−1W′
1X1)

−1 (9)

and t-ratios are asymptotically N(0, 1) under their respective
null hypotheses. So the inference procedure is as are before.

11 / 30



Generalized Method of Moments An example of IV and GMM estimation FIML estimation of dynamic systems

Hansen-Sargan test for GMM I

I Since the GMM criterion function only depends on Ω1 trough
the square matrix W′

1Ω1W1 it is not surprising that the IV
Specfication test is also defined for GMM.

I It is usually interpreted as a test of the validity of the
instruments (orthogonality conditions), but as Davidson and
MacKinnon (DM) discuss on

I p 338, for IV
I p 367-368 for GMM

the second possibility is that the Specification test becomes
significant when an explanatory variable has incorrectly been
classified as an instrument instead of (correctly) as an
predetermined of exogenous variable (i.e., would go into W1

via Z1 not via X01).
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Hansen-Sargan test for GMM II

I The general implication of a significant specification test is
therefore re-specification.
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GMM for non-linear equations I

I Economic theory of intertemporal decisions leads to
Euler-equations that are formulated as (say) l orthogonality
conditions that are similar to the moments conditions

I If the number of parameters to be estimated is less than or
equal to l , we have identification.

I The moments conditions can be linear or non-linear in
parameters

I The non-linear GMM can be obtained by minimization of
certain quadratic forms. Chapter 9.5 is a relatively advanced
chapter on non-linear GMM that you use as a reference if you
apply this method.
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New Keynesian Phillips curve (PCM) I

I DSGE macro models to a large extent are made up of
structural equations that are

I first order conditions of agents intertemporal optimization
problems

I price and wage equations that are based on Calvo-pricing: New
Keynesian Phillips curves (PCM)

I We will look at a famous example of IV estimation of a PCM
from the euro area.

I Let pt be the log of a price level index. The (hybrid) PCM
states that inflation, defined as ∆pt ≡ pt − pt−1, is explained
by
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New Keynesian Phillips curve (PCM) II

I Et(∆pt+1), expected inflation one period ahead conditional
upon information available at time t, lagged inflation and a
variable

I xt , often called a forcing variable, representing excess demand
or marginal costs (e.g., output gap, the unemployment rate or
the wage share in logs):

∆pt = bfp1Et(∆pt+1) + bbp1∆pt−1 + bp2xt + εpt , (10)

I εpt is assumed to be white noise

I Theory predicts (a little simplified) : 0 < bf
p1 < 1 and

0 < bb
p1 < 1 and bp2 > 0 if xt is measured by the logarithm

of the wage-share.
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The NPC system

I We cannot find Et(∆pt+1) from (10) alone.

I To make progress, we need a “completing” system.

I The term ’forcing variable’ suggests that xt is exogenous, so
we specify

∆pt = bf
p1Et(∆pt+1) + bb

p1∆pt−1 + bp2xt + εpt (11)

xt = bx1xt−1 + εxt , − 1 < bx1 < 1 (12)

where εxt is white-noise, and uncorrelated with εpt
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The NPC in terms of observables

I A popular approach is to substitute the theoretical Et(∆pt+1)
by the lead variable ∆pt+1.

I After substitution, the NPC is:

∆pt = bf
p1∆pt+1 + bb

p1∆pt−1 + bp2xt + νpt (13)

the disturbance νpt contains the forecast error
{∆pt+1 − Et(∆pt+1)} in addition to the white noise εpt .

I As usual with error-in-variables models, ∆pt+1is correlated
with the νpt .

I OLS on (13) is inconsistent. Need IV estimation

I We postpone to E 5101 to show that νpt follow a first order
Moving-Average process

I In principle GMM should give more efficient estimation.
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Euro-area NPC I

I We replicate the results in European inflation dynamics, Gali,
Gertler and Lopez-Solado, European Economic Review (2001).

I Reference: Econometric evaluation of the New Keynesian
Phillips Curve, Bårdsen, Jansen and Nymoen Oxford Bulletin
of Economics and Statistics (2004)

I With the log of the wage-share wst as the forcing variable (xt):

∆pt = 0.60
(0.06)

∆pt+1 + 0.35
(0.06)

∆pt−1 + 0.03
(0.03)

wst + 0.08
(0.06)

(14)

GMM, T = 107 (1972 (4) to 1997 (4))

χ2
J (8) = 6.74 [0.35]
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Euro-area NPC II
I Note that χ2

J (8) is the J−form of the Specification test

I Note that there are 8 overidentifying restrictions, indicating
that implicitly GGL had a larger NPC-system in mind.

I The results in (14) are not very robust to the details about
how we estimate Ω̂1. When we iterate over Ω̂1:

∆pt = 0.731
(0.052)

∆pt+1 + 0.340
(0.069)

∆pt−1 − 0.042
(0.029)

wst

− 0.102
(0.070)

(15)

GMM, T = 107 (1971 (3) to 1998 (1))

χ2
J (8) = 7.34 [0.50]
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Euro-area NPC III

Lack of robustness with respect to such details need not e a
problem, but it is here.

I GIV estimation results

∆pt = 0.66
(0.14)

∆pt+1 + 0.28
(0.12)

∆pt−1 + 0.07
(0.09)

wst + 0.10
(0.12)

(16)

2SLS, T = 104 (1972 (2) to 1998 (1))
χ2

Specification (6) = 11.88[0.06]

I Misspecification tests show that there is heavy residual
autocorrelation in (16).
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Euro-area NPC IV

I Consistent with NPC but could also be a result
misspecification: ∆pt+1 acting as a proxy for omitted current
and lagged variables.
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The VAR system and dynamic SEM I

I We now switch attention back to dynamic systems and
dynamic models of the system such as a the bivariate VAR(

Y1t

Y2t

)
︸ ︷︷ ︸

yt

=

(
π11 π12

π21 π22

)
︸ ︷︷ ︸

Π

(
Y1t−1

Y2t−1

)
︸ ︷︷ ︸

yt−1

+

(
ε1t

ε2t

)
︸ ︷︷ ︸

εt

, (17)

εt = IN(0, Σ2×2) (18)
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The VAR system and dynamic SEM II

I or the bivariate open-VAR (also called VARX)(
Y1t

Y2t

)
︸ ︷︷ ︸

yt

=

(
π11 π12

π21 π22

)
︸ ︷︷ ︸

Π1

(
Yt−1

Yt−1

)
︸ ︷︷ ︸

yt−1

+

(
γ11 γ12

γ21 γ22

)
︸ ︷︷ ︸

Γ1

(
Z1t

Z2t

)
︸ ︷︷ ︸

zt

+

(
ε1t

ε2t

)
︸ ︷︷ ︸

εt

(19)
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The VAR system and dynamic SEM III
Generalizations to higher dimensions (more variables) and longer
lags are unproblematic, as long as yt and zt are covariance
stationary:

yt =
p

∑
i=0

Πiyt−i +
q

∑
i=0

Γizt−i + εt (20)

εt = IN(0, Σ) (21)
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The VAR system and dynamic SEM IV

I As we have seen (!), dynamic linear structural models of
(20)-(21) can be obtained by pre-multiplying (20) by a
non-singular matrix B:

Byt =
p

∑
i=0

BΠiyt−i +
q

∑
i=0

BΓizt−i + Bεt (22)

so that the structural coefficients are in B, BΠi , BΓi and the
vector of structural disturbances are εt = Bεt with
E (εtε

′
t) = Ω.

I Assume just identification, or overidentification of (22).
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ML estimation of the system and the SEM I

I We know already that ML estimation of the Gaussian VAR
system (20)-(21) is obtained by OLS on each reduced form
equation.

I The maximum likelihood estimator of the linear SEM (22) is
called the full information maximum likelihood estimator or
FIML.

I Intuitively, FIML estimators of the structural parameters B,
BΠi , BΓi are obtained by “solving back” from the ML
estimates of the reduced form parameters

I In the just identified case, the maximized SEM log-likelihood
is exactly the same as the unrestricted reduced form log
likelihood value LURF from the OLS estimation of the (20).
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ML estimation of the system and the SEM II
I In the over-identified case, the SEM restricts the maximized

log likelihood value LRRF through the over-identifying
restrictions.

I The over-identifying can be tested by the use of the LR
test-statistic

−2(LRRF − LURF )

which is Chi squared distributed with d.f equal to the degree
of overidentification.

I PcGive reports this LR statistic as the LR test of
over-identifying restrictions when a SEM is estimated by
FIML, or any one of the other estimation methods in the
Multiple-Equation Dynamic Modelling part of the program:

I 2SLS
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ML estimation of the system and the SEM III

I 3SLS
I 1SLS (OLS equation by equation)
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3SLS estimation I

I 3SLS is a GMM type estimator which is efficient when
E (εtε

′
t) = Ω is not-diagonal.

I We first estimate the SEM, equation by equation, with 2SLS
I From the 2SLS residuals, we construct the consistent Ω̂.
I Using Ω̂ in a GMM estimator of the structural coefficients

gives the 3SLS estimator

I See p 531-532 (3SLS) and p 522-524 (GMM for
contemporaneously correlated residuals)

I But since Since PcGive does an excellent FIML, little practical
need for 3SLS.
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