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I References to Davidson and MacKinnon,

I MLE for SEMs, see Lecture 8
I Ch 12.2 SUR systems
I Ch 15.3 Encompassing
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VAR systems (unrestricted reduced forms) I

I With the notation from the FIML part of Lecture 8, consider
the open-VAR (also known as VARX) that we typically
specify when we do (explicit) Multiple-Equation Modelling:

yt =
p

∑
i=1

Πiyt−i +
q

∑
i=0

Γizt−i + εt (1)

εt = IN(0, Σ) (2)

t = 1, 2, . . . ,T (3)

I In the program, this is called the “ Unrestricted System”
also called “Unrestricted Reduced Form”, URF

I Why should we want to “go beyond” the VAR?
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VAR systems (unrestricted reduced forms) II

I May be interested in other “equation parameters” than Πi ,
and Γi :

I The parameters of the identified structural equations and of
conditional equations are parameters that are derived from the
VAR parameters

I The impulse responses (dynamic multipliers) of random
shocks.
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The lack of identification of VAR impulse responses I

I Consider the bivariate case VARX(1)(
Y1t

Y2t

)
︸ ︷︷ ︸

yt

=

(
π11 π12

π21 π22

)
︸ ︷︷ ︸

Π1

(
Y1t−1
Y2t−1

)
︸ ︷︷ ︸

yt−1

+

(
γ11 γ12

γ21 γ22

)
︸ ︷︷ ︸

Γ0

(
Z1t

Z2t

)
︸ ︷︷ ︸

zt

+

(
ε1t
ε2t

)
︸ ︷︷ ︸

εt

(4)

I After estimation of this VAR we can study the estimated
partial derivatives of Y1t+j and Y2t+j with respect to shocks
in ε1t and ε2t .
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The lack of identification of VAR impulse responses II
I These estimated parameters are called impulse-responses

(mathematically they are exactly like the lag-weights or
dynamic multipliers from the final equation that can be solved
out from the VAR (by setting Γ0 = 0).

I But we cannot identify, or give economic interpretation to,
these impulse-responsens as for example the partial effects of
supply or demand shocks.

I The reason is easily illustrated: Assume that we have a SEM
that we write compactly as:

Byt = Φ1yt−1 + Υ0zt + εt (5)

where the structural disturbances are εt = (ε1t , ε2t)′, for
example a demand shock ε1t and a supply-shock ε2t , if the
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The lack of identification of VAR impulse responses III

first structural equation is a demand function, and the second
structural equation is a supply function.

I The covariance between the structural disturbances is ω12,
the variances are ω2

1 and ω2
2.

I The VAR disturbances are then (in general) just a linear
combination of the structural disturbances:

εt = B−1εt

i.e. they are reduced form disturbances and the estimated
impulse responses from the VAR cannot be interpreted as the
dynamics effect of unique demand and supply shocks.

I The VAR disturbances are (in general) correlated even if the
structural disturbances are uncorrelated.

7 / 23



Structural VARs and recursive models Encompassing Seemingly unrelated regressions (SUR)

The lack of identification of VAR impulse responses IV

I To obtains estimates of identified impulse responses we need
to go beyond the VAR. The models of the VAR that we
concentrate on here is:

I An identified SEM
I A model made up of a system of recursive equations.

Since we have already discussed SEMs a good deal, we spend a
little time on the recursive model (sometimes called causal chain
model)
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SVAR and recursive model I

I For simplicity set Υ0 = 0 to give the SEM(1) (no loss of
generality)(

1 b12
b21 1

)(
Y1t

Y2t

)
=

(
φ11 φ12

φ21 φ22

)(
Y1t−1
Y2t−1

)
+

(
ε1t
ε2t

)
(6)

I The unrestricted reduced form, URF, i.e. the VAR is:(
Y1t

Y2t

)
=

(
φ21b12

b12b21−1 −
φ11

b12b21−1
φ22b12

b12b21−1 −
φ12

b12b21−1
φ11b21

b12b21−1 −
φ21

b12b21−1
φ12b21

b12b21−1 −
φ22

b12b21−1

)(
Y1t−1
Y2t.1

)

+

(
− 1

b12b21−1ε1t +
b12

b12b21−1ε2t
b21

b12b21−1ε1t − 1
b12b21−1ε2t

)
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SVAR and recursive model II
I If we impose the recursive structure: b21 = 0 = φ21 = 0 we

obtain the structural VAR, SVAR:(
Y1t

Y2t

)
=

(
− φ11

−1 φ22
b12
−1 −

φ12

−1
0 − φ22

−1

)(
Y1t−1
Y2t−1

)
+

(
− 1
−1ε1t +

b12
−1ε2t

0ε1t − 1
−1ε2t

)
(

Y1t

Y2t

)
=

(
φ11 φ12 − φ22b12
0 φ22

)(
Y1t−1
Y2t−1

)
+

(
ε∗1t
ε∗2t

)
(7)

I What is the difference between this SVAR and the VAR
(URF)?

I First: We have one-way Granger causality
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SVAR and recursive model III

I Second: The SVAR disturbances ε∗1t and ε∗2t :

ε∗1t = ε1t − b12ε2t

ε∗2t = ε2t

are uncorrelated if b12 ≡ ω12/ω2
2.

I This means that if b12 ≡ ω12/ω2
2, the impulse-responses with

respect to ε∗1t and ε∗1t are identified.

I Now, go back to the SEM in (6) and see what
b21 = 0 = φ21 = 0 entail there:(

1 b12
0 1

)(
Y1t

Y2t

)
=

(
φ11 φ12

0 φ22

)(
Y1t−1
Y2t−1

)
+

(
ε∗1t
ε∗2t

)
(8)
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SVAR and recursive model IV
I We have one-way causal ordering both contemporaneously

and in terms of Granger-Causality: There are two
lower-triangular matrices with coefficients

I In addition we see that

ε∗2t ≡ ε∗1t = ε2t

since the second line in the recursive model (8) is identical to
the second row of the structural VAR

I Moreover, if b12 ≡ ω12/ω2
2, the equation in the first row in

the recursive model is a regression model of Y1t given Y2t and
therefore

ε∗1t ≡ ε∗1t = ε1t −ω12/ω2
2ε2t ,

so that Cov(ε∗1t , ε∗2t) = 0 in the recursive model.
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SVAR and recursive model V

I Conclusion: The first equation in the recursive model (8) as
the conditional model of Y1t given Y2t , and the second row as
the marginal model for Y2t , the disturbances of the recursive
model is the same as the SVAR disturbances.

I Implication for estimation: OLS estimation, equation by
equation, give efficient ML estimation of both the dynamic
recursive model (8) and of the SVAR (7).

I The identification of the VAR disturbances by means of a
recursive one-way causality is called (more technically) a
Cholesky factorization in the VAR literature. But it amounts
to the same thing.

I We also see that both the SVAR (7) and the recursive model
(8) impose conditioning in a recursive order over equations.
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SVAR and recursive model VI
I In most textbooks, the conditioning is kept implicit. The

orthogonality of the disturbances is instead presented as a
condition that must be satisfied for recursive models, in
addition to the condition of triangular shapes of the
coefficient matrices.

I This way if defining recursive models is more practical for
systems with many varaibles and lags.
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SVAR and recursive model VII

Class questions:

I Why is the recursive model (8) exactly identified, even though
it fails on the order and rank conditions:

I Use orthogonality of disturbances as condition for a recursive
model. How would you specify the recursive model if we start
from:

Byt = Φ1yt−1 + Υ0zt + εt

where yt is 3× 1 and zt 2× 1?
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Encompassing the VAR I

I Like SEMs, recursive dynamic models can also be
overidentified.

I The maximized likelihood of (1) for the sample
t = 1, 2, . . . ,T denoted LURF can be regard as a benchmark
for such econometric models of the VAR.

I Therefore: For both SEMs and recursive dynamic models we
can compare the unrestricted reduced form log likelihood
value LURF of the VAR with the restricted maximized log
likelihood value LRRF from a SEM or a recursive model

I The LR test of over-identifying restrictions:

−2(LRRF − LURF ) ∼ χ2(number of overid restrictions)

can therefore be given a wider interpretation:
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Encompassing the VAR II

I If the test is insignificant if gives proof that our model of the
VAR (be it SEM or recursive) is explaining as much of the
joint variability of the yt vector as the VAR does, but with
fewer estimated parameters.

I We say the our dynamic econometric model parsimoniously
encompasses the VAR,
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Encompassing more generally I

I Encompassing means “putting a fence around”. In the case
we have discussed above, economic interpretable econometric
model puts a fence around the statistical model (the VAR):

I It predicts the yt vector just as well as the VAR but with
fewer estimated parameters.

I More generally, encompassing represents the methodological
position that new models of a variable (or vector of variables)
should explain the properties of preexisting models.

I More concrete:

I Start a research project by reviewing existing models;
I replicate the results of one or more of the models (obtain the

data, estimate on the same data and with the same method)
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Encompassing more generally II

I Present you own model, and make sure that you encompass
previous studies

I There are many versions of encompassing tests. One of the
most common is our friend the F-test of exclusion restrictions.
This can be used even though the “old model” M1 and the
“new model M2” are non-nested. How?

I Ch 15.3 in HG presents more of the theory of formal
encompassing tests. under the headline of “Nonnested Linear
Regression models”.
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Systems of regression equations I

I Refer back to Lecture 1 and the notation for a single
regression model:

I Let X be a n× k matrix with the regressors of the model

y = Xβ + ε (9)

where y and ε are T × 1, ε is white-noise E (εε′) = σ2I, and
the parameter vector β is k × 1.

I Assume that all variables in X are strictly exogenous or
predetermined, so that (9) is indeed a regression model.
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Systems of regression equations II

I Assume that we have a system of g such regression models:

yi = Xi βi +εi i = 1, 2, . . . , g (10)

E (εiε
′
i ) = σ2

ii I

where βi is ki × 1.

I Examples: A system of demand functions; a VAR
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SUR systems I

I The equations of the system of regression equations. are
unrelated if there is no correlation between the disturbances of
different equations

I However, the equations are only Seemingly Unrelated
Regressions (SUR) if there are any non-zero correlations
between the disturbances.

I As shown in HG Ch 12.2 the SUR system can be written
compactly by stacking vectors and matrices, and it can be
analysed by extending the usual matrix multiplication to the
Kronecker product (details are given).

I In that notation, the SUR system has the same structure as a
single regression model with E (εε′) = Σ.
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SUR systems II

I It then follows that there is a system version of the GLS
estimator which is more efficient than the OLS estimator.

I This is called the SUR estimator.

I There are two cases where SURE becomes numerically
identical to OLS (regression by regression)

I There is no correlation between disturbances
I All regressions have the same regressors: Xi = X for all i .

I A proof for the second case in a lecture note later this week
(for reference).

I An unrestricted VAR is a case of Xi = X for all i .

I What about a recursive model? is that a SUR system?
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