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Lecture note 4

From the Haavelmo distribution to the VAR and to ADL models.

The Haavelmo distribution and sequential factorization

In lecture 3, and in Lecture note 3, and in CC2, we learned that if we accept that the VAR(1)
with normally distributed (Gaussian) disturbances is conditioned on the history of the system up
to period “t-1”, we can show that the ADL model with one lag in both Y and X can be derived
as a valid conditional model of the VAR.

For those interested, we now give the more general argument for why we can regard not
only VAR(1), but also the VAR(p) as a model that is conditioned on history of the system.

We start by the letting the vector yt consist of (k + 1) stationary variables. There are
T such vector time series and we can write the whole sample as a (k + 1) × T matrix: Y1

T =
(y1, . . . ,yT ). Consistent with this, we write Y1

t−1 = (y1, . . . ,yt−1), and so on. We do not know
when the process begins, but we assume that there are p starting vaues which we collect in Y0 ≡(
y−(p+1), . . . ,y−1,y0

)
, so that we can write the whole history of the time series variables as

YT−1 ≡
(
Y0,Y

1
T−1

)
. The probabity density function of the variables in YT , for the given initial

values are therefore:
f
(
Y1

T | Y0,θ
)
.

This probability density function has become known as the Haavelmo distribution in moden
econometrics. This shows the recognition of the seminal methodological contribution Haavelmo
gave in the Probability Approach to Econometrics in 1944. The relevance for us is that we can
factorize the Haavelmo distribution just as any other pdf:

f
(
Y1

T | Y0;θ
)

= gT
(
yT | Y1

T−1,Y0;θ
)
gT−1

(
Y1

T−1 | Y0;θ
)
. (1)

where gT (yT | YT−1,Y0;θ) is a conditional pdf relative to the Haavelmo distribution, and gT−1

(
Y1

T−1 | Y0;θ
)

is a marginal pdf (also in that relative sense).
In the following, we can think of the initial conditions in Y0 as fixed numbers. Since it is

a conditional pdf, gT
(
yT | Y1

T−1,Y0;θ
)

motivates a regression between the (k + 1)-dimensional
vector yT and Y1

T−1. If we do a second factorization in (1), this time with resepct to T − 2 (1),

we get a second conditonal distribution gT−1

(
yT−1 | Y1

T−2Y0;θ
)
, which defines the regression

between yT−1 and Y1
T−2. We can repeat this factorization sequentially, all the way back to t = 1,

which is a regression between y1 and the p initial conditions. Since our goal is to represent all these
regressions by one common model, we assume that there are p lags in each of other regressions as
well. This is the same as assuming that only p lags are relevant for predicting each yt. We then
have

E (yt | Yt−1,θ) = E
(
yt | Yt−p

t−1 ,θ
)
, t = 1, 2, . . . , T

where Yt−p
t−1 = (yt−p, . . . ,yt−1)1.

We will assume that the multivariate conditional expectation is a linear function, and from
before we know that this is particularly the case when the Haavelmo distribution is a Gaussian,
and we can write the expectation as:

E
(
yt | Yt−p

t−1 ,θ
)

=

p∑
i=1

Πiyt−i (2)

1This is knows as a Markov-process of degree p.
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where we let Π replace θ as symbol for the parameters, to underline that linearity in the parameters
of the expectation function is a separate assumption.

In exactely the same way as the VAR(1) case (cf. Lecture 3 and Lecture note 1) we express
the variables as deviations from the expectations in (2):

εt = yt − E
(
yt | Yt−p

t−1 ,Π
)

= yt −
p∑

i=1

Πiyt−i.

and we can write the distributional properties for the variables i yt in “model form” as:

yt = Π1yt−1 + Π2yt−2+...+Πpyt−p + εt (3)

which is an n-dimensional VAR of order p,VAR(p). εtis multivariate Gaussian:

εt ∼ IN(0,Σ). (4)

From VAR(p) to the ADL(p,q) model.

In lecture 3, and in Lecture note 3, we studied the case of n = 2 and p = 1, and showed that the
ADL(1) model can be interpreted as a conditional model for one variable, given the other, obtained
from that VAR.

The same argument holds for the general VAR(p) in (3), and gives rise to general ADL
models as well. For example if we set yt = (Yt, X1t, . . . , Xkt) and choose Yt as the regressor, the
derived conditional model will be an ADL with k distributed lag polynomials, each of length p,
and an autoregressive lag polynomial of degree p:

φ(L)Yt = φ0 +

k∑
j=0

βj(L)Xjt + εt (5)

where

φ(L) = 1−
p∑

i=1

φ
i
Li (6)

βj(L) =

p∑
i=0

βjiL
i, j = 1, 2, . . . k (7)

By the assumptions of the model, all the X variables are exogenous (as in any Gaussian or IID
regression model), but Yt−1, Yt−2, . . . ,Yt−p are predetermined variables.

In Davidson and MacKinnon, the general ADL model is written as ADL(p, q) where p is the
lag order for the regressand and q are the number of lags in X. q 6= p does not create any logical
problems for the derivation above, it is just that p = q saves notation.

Constants and dummies of various sorts
ADL models also often include deterministic dummies and trends. They reason why such

dummies are absent in the derivations of the ADL in Lect 3 and aboves simply that we save
notation by not including them in the VAR. If they had been in the VAR they would logically also
end up in the conditional ADL model!

In practice we often use VAR models that include non-modelled (exogenous) variables. VARs
of this type are referred to as open VARs or VAR-EX. Again, if you start with a VAR-EX model
with e.g.. one exogoenous Z variable, and go through the same line of tought as in Lecture 3 and
above, that Z variable will logically “end up” in the dervied ADL
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