Lecture note 6

GIVE and 2SLS equivalence.

The equivalence of $\hat{\beta}_{GIV}$ and $\hat{\beta}_{2SLS}$ can be shown "both ways". DM page 323-324 has a short argument showing the equivalence by starting from β_{2SLS} .

In the slide set to Lecture 6 we take the opposite direction. This brief note fills in a couple of steps. We start by GIVE:

$$
\hat{\boldsymbol{\beta}}_{1,GIV} = (\widehat{\mathbf{W}}_1' \mathbf{X}_1)^{-1} \widehat{\mathbf{W}}_1' \mathbf{y}_1.
$$
\n(1)

with

$$
\widehat{\mathbf{W}}_1 = \left(\begin{array}{ccc} \mathbf{Z}_1 & : & \widehat{\mathbf{Y}}_1 \end{array} \right),\tag{2}
$$

$$
\mathbf{X}_1 = \begin{pmatrix} \mathbf{Z}_1 & \vdots & \mathbf{Y}_1 \end{pmatrix} \tag{3}
$$

and

$$
\widehat{\mathbf{Y}}_1 = \mathbf{P}_{W_1} \mathbf{Y}_1. \tag{4}
$$

where the matrices are given in the slide set, in particular:

$$
\mathbf{P}_{W_1} = \mathbf{W}_1 (\mathbf{W}_1' \mathbf{W}_1)^{-1} \mathbf{W}_1' \tag{5}
$$

Using the partitioning, the product $\widehat{\mathbf{W}}_1' \mathbf{X}_1$ becomes:

$$
\widehat{\mathbf{W}}_1' \mathbf{X}_1 = \left(\begin{array}{cc} \mathbf{Z}_1 & : & \widehat{\mathbf{Y}}_1 \end{array} \right)' \times \left(\begin{array}{ccc} \mathbf{Z}_1 & : & \mathbf{Y}_1 \end{array} \right) \\
= \left(\begin{array}{c} \mathbf{Z}_1' \\ \widehat{\mathbf{Y}}_1' \end{array} \right) \left(\begin{array}{ccc} \mathbf{Z}_1 & : & \mathbf{Y}_1 \end{array} \right) = \left(\begin{array}{cc} \mathbf{Z}_1' \mathbf{Z}_1 & \mathbf{Z}_1' \mathbf{Y}_1 \\ \widehat{\mathbf{Y}}_1' \mathbf{Z}_1 & \widehat{\mathbf{Y}}_1' \mathbf{Y}_1 \end{array} \right)
$$

so

$$
\hat{\beta}_{1,GIV}=\left(\begin{array}{cc}\mathbf{Z}_1'\mathbf{Z}_1 & \mathbf{Z}_1'\mathbf{Y}_1 \\ \mathbf{\hat{Y}}_1'\mathbf{Z}_1 & \mathbf{\hat{Y}}_1'\mathbf{Y}_1\end{array}\right)^{-1}\left(\begin{array}{c}\mathbf{Z}_1'\mathbf{y}_1 \\ \mathbf{\hat{Y}}_1'\mathbf{y}_1\end{array}\right)
$$

We now focus on $\mathbf{Z}_1' \mathbf{Y}_1$ and $\hat{\mathbf{Y}}_1' \mathbf{Y}_1$. Start with the second:

$$
\widehat{\mathbf{Y}}_1' \mathbf{Y}_1 = (\mathbf{P}_{\mathbf{W}_1} \mathbf{Y}_1)' \mathbf{Y}_1
$$

The reduced form residual e_1 matrix is given by

$$
\mathbf{e}_1 \equiv \mathbf{Y}_1 - \underbrace{\mathbf{P}_{W_1} \mathbf{Y}_1}_{\widehat{\mathbf{Y}}_1} = \mathbf{M}_{W_1} \mathbf{Y}_1
$$

where

$$
\mathbf{M}_{W_1} = \mathbf{I} - \mathbf{P}_{W_1}
$$

Using this we get

$$
(\mathbf{P}_{\mathbf{W}_1} \mathbf{Y}_1)' \mathbf{Y}_1 = (\mathbf{P}_{\mathbf{W}_1} \mathbf{Y}_1)' (\hat{\mathbf{Y}}_1 + \mathbf{e}_1)
$$

= $\mathbf{Y}_1' \mathbf{P}_{\mathbf{W}_1}' \hat{\mathbf{Y}}_1 = \hat{\mathbf{Y}}_1' \hat{\mathbf{Y}}_1$ (6)

since $(\mathbf{P}_{\mathbf{W}_1}\mathbf{Y}_1)' \mathbf{e}_1 = \mathbf{Y}_1' \mathbf{P}_{\mathbf{W}_1}' (\mathbf{I} - \mathbf{P}_{\mathbf{W}_1}) \mathbf{Y}_1 = \mathbf{0}.^1$

Next, consider $\mathbf{Z}_1' \mathbf{Y}_1$. We want to show that $\hat{\mathbf{Y}}_1' \mathbf{Z}_1 = \mathbf{Z}_1' \mathbf{Y}_1$. We can start by writing $\hat{\mathbf{Y}}_1' \mathbf{Z}_1$:

$$
\widehat{\mathbf{Y}}_1'\mathbf{Z}_1=(\mathbf{Y}_1'-\mathbf{e}_1')\mathbf{Z}_1=\mathbf{Y}_1'\mathbf{Z}_1-\mathbf{e}_1'\mathbf{Z}_1
$$

Here $e'_1Z_1 = 0$ (since the effect of the exogenous Z_1 has been regressed out, but try to show formally if you want). But then

$$
\widehat{\mathbf{Y}}_1' \mathbf{Z}_1 = \mathbf{Y}_1' \mathbf{Z}_1 \Leftrightarrow \mathbf{Z}_1' \widehat{\mathbf{Y}}_1 = \mathbf{Z}_1' \mathbf{Y}_1 \tag{7}
$$

Replacing $\hat{\mathbf{Y}}_1'\mathbf{Y}_1$ by $\hat{\mathbf{Y}}_1'\hat{\mathbf{Y}}_1$ and $\mathbf{Z}_1'\mathbf{Y}_1$ by $\mathbf{Z}_1'\hat{\mathbf{Y}}_1$ we get

$$
\hat{\beta}_{1,GIV} = \left(\begin{array}{cc} \mathbf{Z}_1^{'}\mathbf{Z}_1 & \mathbf{Z}_1^{'}\widehat{\mathbf{Y}} \\ \widehat{\mathbf{Y}}_1^{'}\mathbf{Z}_1 & \widehat{\mathbf{Y}}_1^{'}\widehat{\mathbf{Y}}_1 \end{array}\right)^{-1} \left(\begin{array}{c} \widehat{\mathbf{Y}}_1^{'}\mathbf{y}_1 \\ \mathbf{Z}_1^{'}\mathbf{y}_1 \end{array}\right)
$$

which is the expression for $\hat{\beta}_{1,2SLS}$.

 $^1\rm{Remember:}$

$$
\begin{aligned} \mathbf{P_{W_1}^{'}} &= \mathbf{P_{W_1}} \\ \mathbf{P_{W_1}^{'}}\mathbf{P_{W_1}} &= \left[\mathbf{W_1(W_1^{'}}\mathbf{W_1})^{-1}\mathbf{W_1^{'}}\right]'\left[\mathbf{W_1(W_1^{'}}\mathbf{W_1})^{-1}\mathbf{W_1^{'}}\right] = \mathbf{P_{W_1}} \end{aligned}
$$