ECON 4160: Seminars autumn semester 2013—FIRST SEMINAR

André K. Anundsen and Ragnar Nymoen September 16, 2013

Exercise set to seminar 1 (week 38, 16 & 19 Sep)

This exercise set is longer than the later ones. In Question A we review PcGive use from the first computer class as well as some important results from an introductory course in econometrics. Question B gives some training in the use of the matrix algebra and the theory from Lecture 1 and 2.

Question A

- 1. Download the zip file *KonsDataSim* and the pdf document *A first regression in OxMetrics/PcGive* from the course web page. Follow the step-by-step instructions and become acquainted with simple regression analysis in OxMetrics-PcGive. (This is basically a review of some of the things from the first computer class).
- 2. Estimate the same relationship using recursive estimation (see the note A first regression in OxMetrics/PcGive). In the Model-Test menu choose Recursive graphics and then Beta Coefficient $\pm 2SE$. This should produce graphs with the sequences of point estimates as a function of the sample, both for the constant and for the regression coefficient, with ± 2 estimated coefficient standard errors.
 - The graphs can be said to "contain" the sequences of approximate 95 % confidence intervals. Why?
 - The graphs show that the confidence intervals are wider for shorter samples than for the longer sample. Can you briefly explain this feature?
 - The estimates of the coefficients are unstable at the start but the variability becomes less as the sample becomes longer. Explain briefly.
- 3. Write the model we have estimated in Question A2 as
 - (1) $C_t = \beta_0 + \beta_1 I_t + \varepsilon_t, \ t = 1, 2, \dots, T$

with C_t for consumption and I_t for income.

(a) As you probably remember from introductory classes in econometrics and statistics, we let the expression

$$\hat{\sigma}_{CI} = \hat{\sigma}_{IC} = \frac{1}{T} \sum_{t=1}^{T} \left(C_t - \bar{C} \right) \left(I_t - \bar{I} \right)$$

denote the empirical covariance between the variables C and I (**NOTE:** Likewise, we define the variances of I and C as $\hat{\sigma}_{II} = \hat{\sigma}_I^2 = \frac{1}{T} \sum_{t=1}^T (I_t - \bar{I})^2$ and $\hat{\sigma}_{CC} = \hat{\sigma}_C^2 = \frac{1}{T} \sum_{t=1}^T (C_i - \bar{C})^2$). Show that the expression for the empirical covariance between C and I can be written in the 3 alternative ways shown in equation (2):

(2)

$$\hat{\sigma}_{CI} = \frac{1}{T} \sum_{t=1}^{T} \left(C_t - \bar{C} \right) \left(I_t - \bar{I} \right) = \frac{1}{T} \sum_{t=1}^{T} C_t \left(I_t - \bar{I} \right) = \frac{1}{T} \sum_{t=1}^{T} I_t \left(C_t - \bar{C} \right)$$

(b) Now, let $\hat{\beta}_1$ denote the OLS estimator of β_1 in (1) and show that it can be expressed as:

$$\hat{\beta}_1 = r_{CI} \frac{\hat{\sigma}_C}{\hat{\sigma}_I}$$

where $r_{CI} = \frac{\hat{\sigma}_{CI}}{\hat{\sigma}_C \hat{\sigma}_I}$ is the correlation coefficient and $\hat{\sigma}_C$ and $\hat{\sigma}_I$ are the two variables' empirical standard deviations.

(c) Consider the "inverse regression"

(3)
$$I_t = \beta_0' + \beta_1' C_t + \varepsilon_t'$$

and show that

$$\hat{\beta}_1 = \hat{\beta}_1' \frac{\hat{\sigma}_C^2}{\hat{\sigma}_I^2}$$

where $\hat{\beta}'_1$ is the OLS estimator for the "inverse regression".

- (d) Assume that the sequence of recursive $\hat{\beta}_1$ estimates supports the interpretation that β_1 in (1) is a parameter which is *stable* over time. Assume next that the ratio $\hat{\sigma}_C^2/\hat{\sigma}_I^2$ is *unstable* over time. We may call this a *regime-shift* in the *system* that determines C_t and I_t , where σ_C^2 and σ_I^2 are parameters. Can $\hat{\beta}'_1$ be recursively stable in this case? Explain, and show the graph.
- 4. Download the zip file *KonsData1Nor* from the course web page.
 - (a) Use the data for Norwegian consumption and income to estimate a loglinear "consumption function". Use the data series *CP* and *RCa* (click on the variable names to see a short description of the data) and transform to logs before estimating the consumption function. The data is quarterly and unadjusted, as a plot of the data will show, so include three seasonal dummies in the model . You do not have to create the dummies, just add *Seasonal* from the **Formulate** menu and Seasonal, Seasonal_1 and Seasonal_2 will be added to the model, representing dummies for the first, second and third quarter each year. Use the sample, 1970(1)-2012(1).

- (b) Why do we only include 3 seasonal dummies when there are four quarters in a year? Would your answer be different if you had omitted the constant from the model? Explain briefly.
- (c) What is the estimated elasticity of consumption with respect to income?
- (d) Define the variable s_t as $s_t = \ln(CP_t) \ln(RCa_t)$. Explain why this variable is approximately equal to (minus) the savings rate.
- (e) Regress s_t on $\ln(RCa_t)$, the constant and the three seasonal dummies. Compared to the regression in 4(a), why has R^2 changed, while the estimated standard error of the regression ($\hat{\sigma}$) is unchanged?
- (f) If you were asked to test the hypothesis that the savings rate is independent of income, what would the conclusion be when apply for example a 5 % significance level? Would this inference be reliable?

Question B

Let **X** be a $n \times k$ matrix with the regressors of the model

(4)
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where **y** is $n \times 1$ and $\boldsymbol{\varepsilon}$ is the $n \times 1$ vector with disturbances and the parameter vector $\boldsymbol{\beta}$ is $k \times 1$.

1. Define the residual vector $\hat{\boldsymbol{\varepsilon}}$

(5)
$$\hat{\boldsymbol{\varepsilon}} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$$

where $\hat{\boldsymbol{\beta}}$ is a random vector (an estimator). Show that by requiring that $\boldsymbol{X}' \hat{\boldsymbol{\varepsilon}} = \boldsymbol{0}$, the $\hat{\boldsymbol{\beta}}$ estimator is determined by

(6)
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

- 2. Show that the elements in $n^{-1}\mathbf{X}'\mathbf{X}$ and $n^{-1}\mathbf{X}'\mathbf{y}$ are (uncentered) second order empirical moments.
- 3. Explain why $\hat{\boldsymbol{\beta}}$ is interpretable as a method-of-moments (MM) estimator.
- 4. Assume that the first column in **X** has the number 1 in each position. Partition **X** as $\mathbf{X} = \begin{bmatrix} \boldsymbol{\iota} & \vdots & \mathbf{X}_2 \end{bmatrix}$ where $\boldsymbol{\iota}$ is the $n \times 1$ column vector with ones and \mathbf{X}_2 is the $n \times (k-1)$ matrix with random variables (and deterministic) variables $X_2, \ldots X_k$. Partition $\boldsymbol{\beta}$ accordingly as $\boldsymbol{\beta}' = (\beta_1 \ \vdots \ \beta_2')$ where β_1 is a scalar and $\boldsymbol{\beta}_2$ is $(k-1) \times 1$. Show that you can write

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + \boldsymbol{\varepsilon} = \boldsymbol{\iota} lpha + (\mathbf{X}_2 - \mathbf{X}_2)\boldsymbol{eta}_2 + \boldsymbol{\varepsilon}$$

where $\bar{\mathbf{X}}_2$ is the $n \times (k-1)$ matrix with the means of each variable in each column and

$$\alpha = \beta_1 + \bar{\mathbf{x}}_2' \boldsymbol{\beta}_2$$

where $\bar{\mathbf{x}}_2$ is the $(k-1) \times 1$ vector with the means of each of the k-1 variables $X_2, \ldots X_k$.

5. Explain why the MM estimator $\hat{\boldsymbol{\beta}}_2$ is found as

(7)
$$\hat{\boldsymbol{\beta}}_2 = \left[(\mathbf{X}_2 - \bar{\mathbf{X}}_2)' (\mathbf{X}_2 - \bar{\mathbf{X}}_2) \right]^{-1} (\mathbf{X}_2 - \bar{\mathbf{X}}_2)' \mathbf{y}$$

and why the MM estimator of α is

(8)
$$\hat{\alpha} = (\boldsymbol{\iota}'\boldsymbol{\iota})^{-1}\boldsymbol{\iota}'\mathbf{y} = \bar{Y}$$

where \overline{Y} is the mean of the *n* variables Y_i in the vector **y**.

- 6. Is the first element in $\hat{\beta}_2$ identical to the second element in $\hat{\beta}$; the second in $\hat{\beta}_2$ identical to the third in $\hat{\beta}$, and so on? Explain.
- 7. Use scalar notation to express $\hat{\beta}_2$ for the case of k-1=2 and show that the existence of these estimators depends on both the absence of perfect collinarity and the existence of variability in each of the two variables.
- 8. Show that the MM estimators $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\beta}}_2$ are interpretable as OLS estimators. Do this by finding the first order conditions for minimizing the sum of squared disturbances $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ with respect to the parameter $\boldsymbol{\beta}$.