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References to Lecture 2

I HN: CH: 6 (matrix algebra simple regression),7,8 (matrix
algebra multivariate regression)

I Lecture note 1 on the web-page.

I DM:Ch 1-4.5, 5.1-5.2.
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Regression models and other model equations I

I Hendry and Nilsen (HN), but also Davidson and MacKinnon
(DM), start with the joint probability function (pdf) for the
observable random variables.

I Extending the joint distribution of the data from Lecture 1,
we can think of

f (X0,X1, . . . ,Xk)

as the pdf for the k + 1 random variables (X0i ,X1i , . . . ,Xki ).

I When we choose to use a regression model equation, we
specify one random variable as a regressand and the other as
regressors.
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Regression models and other model equations II

I Let

Y = X0

define the regressand.

I We can always write the joint pdf as the product of a
conditional pdf and a marginal pdf:

f (Y ,X1, . . . ,Xk) = f (Y | X1, . . . ,Xk) · f (X1, . . . ,Xk) (1)

I Note that f (X1, . . . ,Xk ) is a joint pdf in its own right, but it
is marginal relative to the full pdf on the left hand side.
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Regression models and other model equations III
I From f (Y | X1, . . . ,Xk) we can always construct the

conditional expectation function:

E (Y | X1, . . . ,Xk)

and the disturbance

ε = Y − E (Y | X1, . . . ,Xk).

I For a realization of the X -variables, the conditional
expectation E (Y | x1, . . . , xk) is deterministic. But we can
consider the expectation for any realization of X , and by the
Law of iterated expectations we get:

E (E (ε | X1, . . . ,Xk)) = E (ε)

E ([Y − E (Y | X1, . . . ,Xk)] | X1, . . . ,Xk) = 0 =⇒ E (ε) = 0
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Regression models and other model equations IV

I For the population regresson:

Y = E (Y | X1, . . . ,Xk) + ε

we want to estimate the parameters of E (Y | X1, . . . ,Xk).

I To be relevant, the parameters of E (Y | X1, . . . ,Xk) should
correspond to the parameters of interest for our research.
Examples: The average response in Y to a change in one Xj .
The best prediction of Y given x1, . . . , xk .

I An altenative to regression modelling is instead to put the
joint pdf f (Y ,X1, . . . ,Xk) on model form. We call this
system modelling.
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Regression models and other model equations V
I The distinction between regression model equations and other

model equations cas be subtle: For example, we often focus
on a single equation in the joint pdf.

I This is one (of two ways, which is the other?) that you are
introduced to IV estimation in your introductory course. The
model equation may “look like” a linear regression model:

Y = γ1 + γ2X2 + γ3X3 + ε (2)

but because E (ε | X1,X2) 6= 0, it is not a regression equation
but a structural equation which is part of a model
representation of the the joint pdf.

I Terminology like “regression with endogenous variables”
should be avoided.
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Maximum likelihood estimation of the k-variable model

I The assumptions of the statistical model are identical to Ch.
5 in HN (end of slide set 1), but we allow for k regressors

I k = 2 in Ch 5 in HN and k = 1 in Ch 3 of HN because their
k includes the constant.

I Of course in other books k does not count the constant term.

I The likelihood function is constructed from the conditional
pdf: f (Y | X1, . . . ,Xk).

I Assume identical distributions of n independent sets of
variables (relevant for cross-section data)

f (Y1, . . .Yn | X11, . . . ,Xkn) = ∏n
i=1f (Yi | X1i , . . . ,Xki )

8 / 33



Model equations MLE and regression Regression in matrix notation Orthogonal projections Inference

Maximum likelihood estimation of the k-variable model

I Assume that each of the n conditonal pdfs are normal, the
likelihood is then:

L = ∏n
i=1f (Yi | X1i , . . . ,Xki ) =

(2πσ2)−n/2 exp

{
−1

2πσ2

n

∑
i=1

(Yi −∑k
j=1βjXji )

2

}

and the corresponding log-likelihood function

lY1,...,Yn |X = −n

2
log(2πσ2)− 1

2πσ2

n

∑
i=1

(Yi −∑k
j=1βjXji )

2

(3)
The log-likelihood function of Ch 5 in HN is obtained by
setting k = 2. (In Ch 3 by setting k = 1, and setting X1i = 1
for all i)
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Maximum likelihood estimation of the k-variable model

I As in that case we can find the MLEs for β1,. . . ,βk by
applying the OLS principle to the second part of the
expression: Therefeore OLS estimators of the β’s are MLE,
and vise versa.

I Next, from the concentrated log-likelihood function for σ2, we
find the MLE of the scale parameter as:

σ̂2 =
1

n

n

∑
i=1

ε̂2i

where the residuals are from the k-variable model of course.
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The regression model in matrix notation I

Let X be a n× k matrix with the regressors of the model

y = Xβ + ε (4)

where y is n× 1and ε is the n× 1 vector with disturbances and
the parameter vector β is k × 1.
Notation convention: Use lowercase bold for data vectors.
Uppercase bold for data matrices.

Y1

Y2
...
Yn

 =


X11 X12 . . . X1k

X21 X22 . . . X2k
...

...
...

Xn1 Xn2 . . . Xnk




β1

β2
...

βk

+


ε1
ε2
...

εn


11 / 33



Model equations MLE and regression Regression in matrix notation Orthogonal projections Inference

The regression model in matrix notation II

if we let Xi denote the i th row in X. (1× k matrix), a typical row
in equation (4) is:

Yi = Xi β+ ε i =
k

∑
j=1

Xijβj + ε i , i = 1, 2, . . . , n (5)

Unless both the regressand and all the regressors are measured as
deviations from their means, there is an intercept in the model.
When we need to make this explicit, we can rewrite X as the
partitioned matrix:

X =
[

ι
... X2

]
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The regression model in matrix notation III

where

ι =


1
1
...
1


n×1

X2 =


X12 . . . X1k

X22 . . . X2k
...

...
Xn2 . . . Xnk


n×(k−1)
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ML estimator I

I By solving Exercise B to the first seminar, you will show that
both the Method-of-Moments (MM) and the Ordinary Least
Squares (OLS) principle gives the estimator

β̂ = (X′X)−1X′y (6)

for β.

I Here, (X′X)−1 is the inverse of the X′X matrix with
(uncentered) moments between the regressors.

I For the inverse to exist, rank(X′X) = k , (full rank). This is
the generalization of the “absence of perfect multicollinearity”
condition.
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ML estimator II
I DM uses XT as symbol for the transpose. HN use the more

common ′ notation, which also avoids confusion with T for
the number of observations of time series data.

lY1,...,Yn |X = −n

2
log(2πσ2)− 1

2πσ2
(y−Xβ)′(y−Xβ)

I β̂ in (6) is minimizes (y−Xβ)′(y−Xβ) meaning that is
also the MLE of β.

I By solving the first Exercise B to the first seminar, you can

show that β̂
′
= ( β̂1

... β̂
′
2
) and

β̂2 =
[
(X2 − X̄2)

′(X2 − X̄2)
]−1

(X2 − X̄2)
′y (7)

In X̄2, the typical row is ιX̄i , i = 2, . . . , k .
15 / 33



Model equations MLE and regression Regression in matrix notation Orthogonal projections Inference

ML estimator III

I (7) is the generalization of our old friend the “x-deviation
from mean” form of OLS estimators that a course in
elementary econometrics study in detail for the case of k = 1
and k = 2! With k = 2, Making the two regressors
orthogonal to the reparameterized contant term.

I In § 7.2.2. in HN, they take the approach a step further and
orthonalize the two (non-contant) regressors also with respect
to each other.

I Of course, this can only be achieved by re-parameterizing not
only the constant, but also one of the regression coefficientes,
see p. 101 in HN for example

I This is fine for understanding how the maximum may be
achived in steps also in the k variable case.
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ML estimator IV

I But in practice, it is only helpfull if the parameters of interest
are the re-parameterized coefficients.
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Properties of OLS estimators I

I (6) and (7) are “only” matrix formulations of the OLS
estimators for multiple regression that we know from before, it
is clear that all the properties that we know from an
introductory course still hold.

I Specifically

β̂ = ( X′X)−1X′y =

= (X′X)−1X′(Xβ + ε)

= β + (X′X)−1X′ε

reminds us that the conditional expectation E (β̂ | X) and
variance Var(β̂ | X) depend on the assumption about the
disturbances in ε.

18 / 33



Model equations MLE and regression Regression in matrix notation Orthogonal projections Inference

Properties of OLS estimators II

I With reference to the exogenity assumption of the model
specifcation (in HN) it follows that E (β̂ | X) =β

I and E (β̂) =β from the law of iterated expectations.

I Ch 3.1-3.5 in DM is a good exposition for reviewing of the
Gauss-Markov/BLUE theorem and other results for the
classical regression model.l
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Two important matrices I

I From Ch 2.3 in DM we highlight two important matrices in
regression theory

I The “residual maker”

M = I−X(X′X)−1X′ (8)

plays a central role in many derivations.
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Two important matrices II

I The name stems for the fact that

My = y−X(X′X)−1X′y

= y−Xβ̂ ≡ ε̂

The following properties are worth noting:

M = M′, symmetric matrix

M2 = M, idempotent matrix

MX = 0, regression of X on X gives perfect fit
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Two important matrices III

I The prediction matrix

P = X(X′X)−1X′ (9)

gives

ŷ = Py = Xβ̂

It is also symmetric and idempotent.

I M and P are orthogonal:

MP = PM = 0

DM say that they annihiliate each other.
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Two important matrices IV

M and P are complementary projections

M + P = I (10)

which gives

y = ŷ + ε̂ = Py + My
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TSS, ESS and all that I

From

y = ŷ + ε̂ = Py + My

we get

y′y=(y′P + y′M)(Py + My)

= ŷ′ŷ + ε̂′ε̂

Written out, this is:

n

∑
i=1

Yi
2

︸ ︷︷ ︸
TSS

=
n

∑
i=1

Ŷi
2

︸ ︷︷ ︸
ESS

+
n

∑
i=1

ε̂2i︸ ︷︷ ︸
RSS

(11)
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TSS, ESS and all that II
You may be more used to write this famous decomposition as:

n

∑
i=1

(Yi − Ȳ )2︸ ︷︷ ︸
TSS

=
n

∑
i=1

(Ŷi − Ŷ )2︸ ︷︷ ︸
ESS

+
n

∑
i=1

ε̂2i︸ ︷︷ ︸
RSS

(12)

There is no conflict here, since

X′ε̂ = X′(y−Xβ̂) =
MM
OLS

0,

and, when there is an intercept in the regression:

X =
[

ι
... X2

]
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TSS, ESS and all that III

this gives

ι′ε̂ =
n

∑
i=1

ε̂ i = 0 (13)

in the first row of X′ε̂ = 0, and therefore:

Ȳ = Ŷ . (14)

Using this, you can show that (12) can be written as (11).
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TSS, ESS and all that IV

I Memo: Alternative ways of writing RSS :

ε̂′ε̂ = (y′M′)My =y′My = y′ε̂ = ε̂′y (15)

ε̂′ε̂=y′y− y′P′Py = y′y− y′
[
X(X′X)−1X′

] [
X(X′X)−1X′

]
y

(16)

= y′y− y′X(X
′
X)−1X′y = y′y− y′Xβ̂ = y

′
y−β̂

′
X′y.
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TSS, ESS and all that V

I The coefficient of determination (R2) is defined with reference
to (12):

R2 = 1− ε̂′ε̂

∑n
i=1(Yi − Ȳ )2

= 1− ε̂′ε̂

(Mιy)′(Mιy)

Mι = I− 1

n
ιι′

where we have used the the idempotent centring matrix Mι,
see Lecture note 1 for example.
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LR-tests and correlation coefficients I

I Consider the k = 3. As a direct extension of §5.5.2 in HN, the
LR test of H0: β2 = β3 = 0 in the classical regression case is
shown to be

LRβ2=β3=0 = −n ln(1− R2)
D≈ χ2(2) (17)

I Of course, if the exact normality assumption of the conditional
distribution holds, the finite sample test can be used:

Fβ2=β3=0 =
R2

1− R2

n− 3

2

D
= Fβ2=β3=0(2, n− 3)
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LR-tests and correlation coefficients II

I For a single hypothesis: H0: β3 = 0 the expression of the
LR-statistic is:

LRβ3=0 = −n ln(1− r2Y ,X3|X2
)

D≈ χ2(1) (18)

where rY ,X3|X2
is the partial correlation coefficient between

Y and X3 (HN use notation ry ,3·1,2)

I rY ,X3|X2
is the correlation coefficient between the residuals

from two regressions: Regressing Y and a constant and X2,
and regressing X3 on X2 and a constant, see Frisch-Waugh
Theorem part of Lecture Note 1.
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LR-tests and correlation coefficients III

I Finally, if β3 = 0 is true, then β2 = β3 = 0 can be tested
within the k = 2 model as

LRβ2=0|β3=0 = −n ln(1− r2Y ,X2
)

D≈ χ2(1) (19)

where r2Y ,X2
= R2 in the k = 2 model.
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Multiple testing I

I The three LR-statistics above are related by

LRβ2=β3=0 = LRβ3=0 + LRβ2=0|β3=0 (20)

I Within the k = 3 model, the two statistics on the right hand
side are independent. This means that if we test

H0 : β2 = β3 = 0

by two tests, the overall Type-I error probability is

P(LRβ3=0 < ca) · P(LRβ2=0|β3=0 < cα) ≈ (1− α)2 = 1− 2α + α2

≈ 1− 2α (21)

(eq 7.6.1 in HN) where α is the significance of the two
individual tests.
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Multiple testing II

I α = 0.05 means that the the Type-1 error probability of the
two tests inference procedure is closer to 10%.

I The same potential for accumulation of inferential errors arise
for sequences of t-tests.

I We will return to this issue, and refer §7.6.2 in HN, when we
discuss Automatic variable selection later in the course.
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