Answer to "Lecture question" in Lecture 5

In Lecture 5 under the heading Final equation, we studied the Gaussian VAR

$$
\binom{Y_{t}}{X_{t}}=\left(\begin{array}{ll}
\pi_{11} & \pi_{12} \tag{1}\\
\pi_{21} & \pi_{22}
\end{array}\right)\binom{Y_{t-1}}{X_{t-1}}+\binom{\varepsilon_{y t}}{\varepsilon_{x t}}
$$

where $\left(\begin{array}{cc}\pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22}\end{array}\right)$ is the matrix of autoregressive coefficients and we assume that

$$
\binom{\varepsilon_{y t}}{\varepsilon_{x t}} \sim I I D\left(\begin{array}{ccc}
\mathbf{0}, & \sigma_{y}^{2} & \sigma_{y x} \tag{2}\\
& \sigma_{y x} & \sigma_{x}^{2}
\end{array}\right) \forall t
$$

As an exercise, you were asked to show that (1) can be reduced to the so called final equation for Y_{t+1}

$$
\begin{equation*}
Y_{t+1}=(\underbrace{\pi_{11}+\pi_{22}}_{\equiv \rho_{1}}) Y_{t}+(\underbrace{\pi_{12} \pi_{21}-\pi_{22} \pi_{11}}_{\equiv \rho_{2}}) Y_{t}+\underbrace{\varepsilon_{y t+1}-\pi_{22} \varepsilon_{y t}+\pi_{12} \varepsilon_{x t}}_{\equiv \varepsilon_{t}} . \tag{3}
\end{equation*}
$$

Try by repeated substitution: The answer is on tne next page!

Answer:

Solve the equation in the first row in (1) for X_{t-1} :

$$
\begin{equation*}
X_{t-1}=\left(1 / \pi_{12}\right) Y_{t}-\left(\pi_{11} / \pi_{12}\right) Y_{t-1}-\left(1 / \pi_{12}\right) \varepsilon_{y t} \tag{4}
\end{equation*}
$$

Substitution in the second row of (1) gives

$$
\begin{equation*}
X_{t}=\frac{\pi_{22}}{\pi_{12}} Y_{t}+\left(\pi_{21}-\pi_{22} \frac{\pi_{11}}{\pi_{12}}\right) Y_{t-1}-\frac{\pi_{22}}{\pi_{12}} \varepsilon_{y t}+\varepsilon_{x t}, \pi_{12} \neq 0 \tag{5}
\end{equation*}
$$

Finally: Change t to $t+1$ in the first row of (1), and replace X_{t} by the expression on the right hand side of (5):

$$
\begin{equation*}
Y_{t+1}=\pi_{11} Y_{t}+\pi_{12}\left(\frac{\pi_{22}}{\pi_{12}} Y_{t}+\left(\pi_{21}-\pi_{22} \frac{\pi_{11}}{\pi_{12}}\right) Y_{t-1}-\frac{\pi_{22}}{\pi_{12}} \varepsilon_{y t}+\varepsilon_{x t}\right)+\varepsilon_{y t+1} \tag{6}
\end{equation*}
$$

Collecting terms gives

$$
\begin{equation*}
Y_{t+1}=\left(\pi_{11}+\pi_{22}\right) Y_{t}+\left(\pi_{12} \pi_{21}-\pi_{22} \pi_{11}\right) Y_{t-1}+\varepsilon_{y t+1}-\pi_{22} \varepsilon_{y t}+\pi_{12} \varepsilon_{x t} \tag{7}
\end{equation*}
$$

which is what we should find. Clearly this equation must hold for all periods, so we can write

$$
\begin{equation*}
Y_{t}=\left(\pi_{11}+\pi_{22}\right) Y_{t-1}+\left(\pi_{12} \pi_{21}-\pi_{22} \pi_{11}\right) Y_{t-2}+\varepsilon_{y t}-\pi_{22} \varepsilon_{y t-1}+\pi_{12} \varepsilon_{x t-1} \tag{8}
\end{equation*}
$$

the final equation for Y_{t} defined by the system (1).
A final equation expresses an endogenous variable by the "its own lags" and exogenous random variables. No lags of other endogenous variables are allowed in a final equation expression.

Additional questions, for review:

1. Write down the homogenous difference equation that correponds to the final equation for Y_{t}.
2. Write down the associated characteristic equation. How does the characteristic roots of the homogenous equation relate to the conditions for dynamic stability and covariance stationarity of Y_{t} ?
3. Derive the final equation for X_{t}. What are the requirements for stationarity of X_{t}.
4. What are the conditions for stationariy of the vector time-series $\mathbf{y}_{t}=$ $\left(Y_{t}, X_{t}\right)^{\prime} ?$
