ECON 4160, Spring term 2014. Lecture 5

Ragnar Nymoen

University of Oslo

12 September 2014

Some references to Lecture 5

- HN Ch 12 and 14, mainly. Ch 13, or equivalent from other books, as self study: Standard mis-specification tests of time series models.
- ► DM Ch 13.
- ► (BN 2014, kap 6,7)

A time series of order p, AR(p) I

Difference equations

- ▶ In Lecture 4, we motivated the AR(1) model by appealing to the idea that conditional independence can be "created" by conditioning on Y_{t-1} .
- As a direct generalization, conditional independence my require conditioning on p lags.
- ▶ We write a time series model of order p as the stochastic difference equation

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \varepsilon_t$$
 (1)

where ϕ_0 (j = 0, 2, ..., p) are parameters, and

$$\varepsilon_t \stackrel{D}{=} N(0, \sigma_{\varepsilon}^2) \ \forall t. \tag{2}$$

A time series of order p, AR(p) II

A weaker model formulation is that ε_t is **white-noise**, conditional on the p lags of Y_t .

- ▶ (1) may be of interest "on its own", as a general model of single time series.
- One example is when Y_t is not a an observable variable, but a residual from OLS estimation.
 - ▶ In that interpretation (1) becomes a model of autocorrelated regression residuals, as covered in introductory econometrics courses, see also §13.3.1 in HN.
 - ▶ Estimate by NLS or feasible GLS, possibly iterated.
- ▶ When Y_t is an observable, the main motivation for using (1) is for *forecasting*.

A time series of order p, AR(p) III

► The reason for studying (1) in econometics is however, more fundamental: It gives the framework for defining the all important concepts of **dynamic stability** and **stationarity** both for individual time series and for systems of variables (for example dynamic stochastic general equilibrium models,DSGE).

AR(p) as the final equation of a system | I

- ▶ We often study systems of stochastic difference equations
- ► The simplest case is two time series that are connected in a the first order system, without intercepts to save notation.

$$\begin{pmatrix} Y_t \\ X_t \end{pmatrix} = \begin{pmatrix} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ X_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{xt} \end{pmatrix}, \quad (3)$$

where $\begin{pmatrix} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{pmatrix}$ is the matrix of autoregressive coefficients and we assume that

$$\underbrace{\begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{xt} \end{pmatrix}}_{"} \stackrel{D}{=} N_2 \left(\mathbf{0}, \underbrace{\begin{pmatrix} \sigma_y^2 & \sigma_{yx} \\ \sigma_{yx} & \sigma_x^2 \end{pmatrix}}_{\mathbf{y}} \mid Y_{t-1}, X_{t-1} \right) \forall t \quad (4)$$

ADL model

MLE of VAR

AR(p) as the final equation of a system II

- ► In fact this is an example of a first order Vector Autoregressive model, VAR with gaussian disturbances.
- As an exercise, you can show that (3) can be reduced to the so called **final equation** for Y_{t+1}

$$Y_{t+1} = \underbrace{\left(\underline{\pi_{11} + \pi_{22}}\right) Y_t + \left(\underline{\pi_{12}\pi_{21} - \pi_{22}\pi_{11}}\right) Y_{t-1}}_{\equiv \phi_1} \qquad (5)$$

$$+ \underbrace{\varepsilon_{yt+1} - \pi_{22}\varepsilon_{yt} + \pi_{12}\varepsilon_{xt}}_{\equiv \varepsilon_t}.$$

AR(p) as the final equation of a system III

▶ But the same equation must hold for Y_t so we obtain (1) for the case of p=2 and $\phi=0$ as

$$Y_{t} = \phi_{1} Y_{t-1} + \phi_{2} Y_{t-2} + \varepsilon_{t}$$
 (6)

$$\phi_1 = (\pi_{11} + \pi_{22}) \tag{7}$$

$$\phi_2 = \pi_{12}\pi_{21} - \pi_{22}\pi_{11} \tag{8}$$

$$\varepsilon_t = \varepsilon_{yt} - \pi_{22}\varepsilon_{y,t-1} + \pi_{12}\varepsilon_{xt-1} \tag{9}$$

▶ The omission of the intercept (which implies $\phi_0 = 0$) is only to save notation.

AR(p) as the final equation of a system IV

▶ Note that when ε_t is defined as in (9) we have $E(\varepsilon_t) = 0$ and

$$Var(\varepsilon_t) = Var(\varepsilon_{y,t} - \pi_{22}\varepsilon_{y,t-1} + \pi_{12}\varepsilon_{x,t-1})$$

= $\sigma_y^2 + \pi_{22}\sigma_{yy} + \pi_{12}\sigma_x^2 + 2\pi_{22}\pi_{12}\sigma_{yx}$

independent of t (homoskedasticity), but

$$Cov(\varepsilon_t, \varepsilon_{t-1}) = -\pi_{22}\sigma_y^2 + \pi_{12}\sigma_{yx}$$

 $Cov(\varepsilon_t, \varepsilon_{t-j}) = 0 \ j = 2, 3, ...$

▶ In this interpretation, the disturbance ε_t in (6) is not white-noise, but a *Moving Average* (MA) process. Following custom the modelled is called ARMA(2,1).

Dynamic stability and stationarity of AR(p) I

► Consider again the AR(p) process:

$$Y_{t} = \phi_{0} + \phi_{1} Y_{t-1} + \phi_{2} Y_{t-2} + \dots + \phi_{p} Y_{t-p} + \varepsilon_{t}$$
 (10)

Consider next the **homogenous version** of the difference equation:

$$Y_t^h - \phi_1 Y_{t-1}^h - \phi_2 Y_{t-2}^h - \dots - \phi_p Y_{t-p}^h = 0$$
 (11)

Dynamic stability and stationarity of AR(p) II

From mathematics we know that (11) has a **global asymptotic stable solution** $(Y_t^h \to 0 \text{ when } t \to \infty)$ if and only if all the p roots (eigenvalues) of the associated characteristic polynomial

$$\lambda^{p} - \phi_{1}\lambda^{p-1} - \phi_{2}\lambda^{p-2} - \dots - \phi_{p} = 0$$
 (12)

are less than one in absolute value.

- From a result that is far from trivial, and which we leave for ECON 5101, we have that the same condition is necessary and sufficient for the **stationarity** of the stochastic process Y_t when it is given by (10) and ε_t is white-noise, or any other stationary time series process (e.g., MA(q), q = 1, 2, ...).
- But now we have given the condition for stationarity without a definition for stationarity...!

Stationarity defined I

For the time series $\{Y_t; t=0,\pm 1,\pm 2,\pm 3,...\}$ we define the autocovariances $\gamma_{i,t}$ in slightly more general way than in Lecture 4:

$$\tau_{j,t} = E[(Y_t - \mu_t)(Y_{t-j} - \mu_t)], \ j = 0, 1, 2, \dots,$$
 (13)

where $E(Y_t) = \mu_t$.

If neither μ nor γ_i depend on time t:

$$E(Y_t) = \mu, \forall t \tag{14}$$

and

Difference equations

$$E[(Y_t - \mu)(Y_{t-j} - \mu)] = \tau_j, \ \forall \ t, \ j.$$
 (15)

the Y_t process $\{Y_t; t = 0, \pm 1, \pm 2, \pm 3, ...\}$ is **covariance stationary** (aka weakly stationary).

Stationarity defined II

Difference equations

For a stationary Y_t the variance is time independent

$$Var(Y_t) = \sigma_y^2 \equiv \tau_0 \text{ for } j = 0$$

and the autocovariances are symmetric backwards and forwards:

$$\tau_j = \tau_{-j}$$

- ▶ For a stationary time series variable, the theoretical autocovariances only depend on the distance *i* between periods. We can regard the autocovariance as a function of i.
- The same is the case for the (theoretical) autocorrelation function (ACF). In general, it is a function of i and t:

$$\zeta_{j,t} = \{Y_t, Y_{t-j}\} = \frac{Cov(Y_t, Y_{t-j})}{Var(Y_t)} = \frac{\tau_{j,t}}{\tau_{0,t}}, \quad (16)$$

However

$$\zeta_j = \frac{\tau_j}{\tau_0} = \zeta_{-j} \text{ for } j = 1, 2, ...$$
(17)

in the stationary case.

MLE of VAR

MLE of AR(p)

▶ For an observable time series $\{Y_t; t = 1, 2, 3, ... T\}$, we use the empirical autocovariances,

$$\hat{\tau}_{j} = 1/T \sum_{t=j+1}^{I} (Y_{t} - \bar{Y})(Y_{t-j} - \bar{Y}), \ j = 0, 1, 2, \dots, T - 1$$
where $\bar{Y} = 1/T \sum_{t=1}^{T} Y_{t}$.
$$(18)$$

- ▶ If the process $\{Y_t; t=0,\pm 1,\pm 2,\pm 3,...\}$ is stationary, $\hat{\tau}_i$ (i = 0, 1, 2, ...) are consistent estimators of the theoretical autocovariances.
- ▶ This in turn gives the main premise for consistent estimation of the coefficients of dynamic regression models, of which AR(p) is an example

Why is stationarity so important? II

- In short: stationary is the main premise for why we can extend the MLE and OLS based estimation and inference theory to time series data!
- ▶ Hence the importance of $-1 < \phi_1 < 1$ in the AR(1) m model
- Note that, although stationarity depends on the characteristics roots, it can be "mapped back" to the ϕ_1 and ϕ_2 parameters in the AR(2) case.
- $1-\phi_1-\phi_2>$ 0, $1>-\phi_1+\phi_2$ and $1>-\phi_2\Longleftrightarrow \mathsf{AR}(2)$ is stationary

AR(2) example revisited I

$$\gamma = 0$$
, $\phi_1 = 1$, 6, $\phi_2 = -0$, 9:

$$Y_t = 1.6Y_{t-1} - 0.9Y_{t-2} + \varepsilon_t, \tag{19}$$

The characteristic equation is:

$$\lambda^2 - 1.6\lambda + 0.9 = 0$$

▶ The roots are a complex pair:

$$\lambda_1 = 0.8 - 0.5099i$$

 $\lambda_2 = 0.8 + 0.5099i$

▶ The module ("absolute value") of the roots is $|\lambda| = \sqrt{0.8^2 + 0.5^2} \approx 0.94$, inside the complex unit-circle.

- ► We now have better background for assessing the statistical properties of MLEs for AR models
- ▶ Consider the MLE for ϕ_1 that we derived in Lecture 4
- ▶ Simplify by setting $\phi_0 = 0$ in the model equation, the notations in the expression for $\widehat{\phi}_1$ can then be simplified:

$$\widehat{\phi}_{1} = \frac{\sum_{t=2}^{T} Y_{t} Y_{t-1}}{\sum_{t=1}^{T} Y_{t-1}^{2}} = \sum_{t=1}^{T} \left(\frac{\phi_{1} Y_{t-1}^{2}}{\sum_{t=1}^{T} Y_{t-1}^{2}} \right) + \sum_{t=1}^{T} \left(\frac{Y_{t-1} \varepsilon_{t}}{\sum_{t=2}^{T} Y_{t-1}^{2}} \right)$$

$$\Longrightarrow E\left(\widehat{\phi}_{1} - \phi_{1}\right) = E\left(\frac{\sum_{t=1}^{T} Y_{t-1} \varepsilon_{t}}{\sum_{t=1}^{T} Y_{t-1}^{2}} \right).$$
(20)

Consistency and distribution II

- ▶ Even if we assume $E(Y_{t-1}\varepsilon_t)=0$, we cannot state that the denominator and numerator are independent: For example will ε_2 "be in" the numerator and (because of $Y_2 = \phi_1 + \varepsilon_2$) also in $Y_2 \times Y_2$ in the denominator.
- ▶ This means that Y_{t-1} cannot be regarded as exogenous in the econometric sense, and therefore $E\left(\widehat{\phi}_1 - \phi_1\right) \neq 0$.
- What about asymptotic properties? With reference to the Law of large numbers and Slutsky's theorem we have

$$\operatorname{plim}\left(\widehat{\phi}_{1}-\phi_{1}\right)=\frac{\operatorname{plim}\frac{1}{T}\sum_{t=2}^{T}Y_{t-1}\varepsilon_{t}}{\operatorname{plim}\frac{1}{T}\sum_{t=2}^{T}Y_{t-1}^{2}}=\frac{0}{\frac{\sigma_{\varepsilon}^{2}}{1-\phi_{1}^{2}}}=0.$$

if
$$E(Y_{t-1}\varepsilon_t) = 0$$
 and $|\phi_1| < 1$.

MLE of AR(p)

- ▶ The zero in the numerator seems trivial since it is just a sum of terms with zero expectations, but closer inspection shows that we need that the variance of $Y_{t-1}\varepsilon_t$ is finite. The specification of the AR(1) model above is sufficient for this result.
- ▶ The denominator is due to the assumption $|\phi_1| < 1$, which entails that the variance of Y_t in (20) is finite and equal to $\sigma_{\varepsilon}^2/(1-\phi_1^2)$ from the solution of the AR(1) model.

Consistency and distribution IV

▶ The OLS/ML estimator $\hat{\phi}_1$ is consistent, and it is approximately normal when T is large enough, see §12.7 in HN:

$$\sqrt{T} \left(\widehat{\phi}_1 - \phi_1 \right) \stackrel{D}{pprox} N \left(0, \left(1 - \phi_1^2 \right) \right)$$
 (21)

which entails that t-tests can be compared with critical values from the normal distribution.

This result extend MLE estimators for the AR(1) in Lecture 4 (the model where $\phi_0 \neq 0$).

Hurwitz-hias

Difference equations

▶ In (??) the finite sample bias can be shown to be approximately

$$E\left(\widehat{\phi}_1-\phi_1\right)\approx\frac{-2\phi_1}{T}$$
,

this is called the Hurwitz-bias after Leo Hurwitz (1958).

▶ In CC we can make this more concrete with a Monte-Carlo analysis.

MLE of AR(p) I

Difference equations

- ► The likelihood function of AR(p) is constructed in the same manner as for AR(1), with white-noise or gaussian disturbances (MA is a bit more complicated)
- ▶ Since the condition distribution is $E(Y_t \mid Y_{t-1}, ..., Y_{t-p})$

$$Y_t \stackrel{D}{=} N(\phi_0 + \sum_{i=1}^p \phi_i Y_{t-i} + \varepsilon_t, \sigma^2)$$

we have p initial values. $Y_0, Y_{-1}, \ldots, Y_{-(p-1)}$

With $\mathbf{y}'=(Y_1,\ Y_2,\dots,\ Y_t)$, and suitably defined \mathbf{X} matrix the MLE estimators of $\phi=(\phi_0,\ \phi_1,\dots,\phi_p)$ are given by OLS formula

$$\hat{oldsymbol{eta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

• $\hat{\sigma}^2$ is the average of the squared residuals $\hat{\sigma}^2 = (1/T)\varepsilon'\varepsilon = \mathbf{y}'\mathbf{M}\mathbf{y}$ (cf. Lecture 3).

Lag operators I

- ▶ When we work with stochastic difference equations, it is often useful to express relationships with the use of the lag-operator *L*.
- ► The lag operator L changes the dating of a variable Y_t one or more period back in time. It works in the following way:

$$LY_t = Y_{t-1},$$

 $LLY_t = L^2Y_t = LY_{t-1} = Y_{t-2},$
 $L^pY_t = Y_{t-p}.$

From the last property it follows that if p = 0, then

$$L^0 = 1,$$

$$L^0 Y_t = Y_t.$$

Lag operators II

▶ We also have

$$L^pL^s = L^pL^k = L^{(p+s)}$$

and

$$(aL^p + bL^s) Y_t = aL^p Y_t + bL^s Y_t = aY_{t-p} + bY_{t-s}.$$

▶ If we want to shift a variable forward in time, we use the forward operator L^{-1} :

$$L^{-1}Y_t = Y_{t+1}$$

and generally

$$L^{-s} = Y_{t+s}$$
.

Lag-operator notation

Lag operators III

▶ Because constants are independent of time, we have for the constant b

$$Lb = b$$
.

and by induction

$$L^{p}b = L^{(p-1)}Lb = L^{(p-1)}b = b.$$

▶ We can now write (1) more compactly as

$$\phi(L)Y_t = \phi_0 + \varepsilon_t \tag{22}$$

where is the lag polynomial of order p.

$$\phi(L)Y_t = 1 - \phi_1 L - \phi_2 L^2 - ...\phi_p L^p$$
 (23)

and we keep the assumption of white-noise ε_t .

► A root of the characteristic equation associated with the lag-polynomial is:

$$1 - \phi_1 z - \phi_2 z - \dots \phi_p z^p = 0 \tag{24}$$

Comparison with the characteristic equation (12) shows that

$$z=rac{1}{\lambda}$$

meaning that the condition for stationarity can also be expressed in terms of the roots: $(z_1, z_2, ..., z_p)$:

 Y_t is stationary if all the z-roots are larger than one in absolute value ("outside the unit circle").

ADL model

Companion form I

Difference equations

Consider again the VAR system (3)

$$\left(\begin{array}{c} Y_t \\ X_t \end{array}\right) = \underbrace{\left(\begin{array}{cc} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{array}\right)}_{\mathbf{H}} \left(\begin{array}{c} Y_{t-1} \\ X_{t-1} \end{array}\right) + \left(\begin{array}{c} \varepsilon_{yt} \\ \varepsilon_{xt} \end{array}\right),$$

Assume that ε_{yt} , ε_{xt} are two stationary series the This is secured by (4) for example.

Companion form II

Difference equations

▶ By obtaining the characteristic polynomial to Π :

$$p(\lambda) = |\Pi - \lambda I|$$

you find that the **eigenvalues of** Π are the roots of

$$|\mathbf{\Pi} - \lambda \mathbf{I}| = 0 \tag{25}$$

which is the characteristic equation associated with the final equation (5) that we derived above.

- Hence the necessary and sufficient condition for stationary of the vector $(Y_t, X_t)'$ is that the two eigenvalues of both less than one in absolute value.
- ▶ A is a simple example of a so called **companion form** matrix.

Companion form III

Difference equations

▶ In ECON 5101 we will show that if we have a general VAR with *n* time series variables and *p* lags, that VAR can be written as a first order system

$$\mathbf{z}_t = \mathbf{F} \mathbf{z}_{t-1} + \boldsymbol{\epsilon}_t \tag{26}$$

where \mathbf{z}_t and $\boldsymbol{\epsilon}_t$ are $1 \times np$ and the companion form matrix \mathbf{F} is $np \times np$.

For such a general VAR system, the condition for stationarity and stability is that all the np eigenvalues from

$$|\mathbf{F} - \lambda \mathbf{I}| = 0 \tag{27}$$

are less than one in magnitude.

Companion form IV

▶ When we estimate a dynamic system in PcGive, the eigenvalues of the companion form are always available after estimation.

- ▶ Consider the VAR(1) made up of (3) and (4) so that ε_1 , ε_2 , \dots, ε_{T} are mutually independent and normal.
- ▶ The pdf of \mathbf{v}_t given \mathbf{v}_{t-1} is

$$f\left(\mathbf{y}_{t} \mid \mathbf{y}_{t-1}\right) = \frac{1}{\sigma_{y}\sigma_{x}2\pi\sqrt{\left(1-\rho_{xy}^{2}\right)}} \times \left(28\right)$$
$$\exp\left[-\frac{1}{2}\frac{\left(z_{yt}^{2}-2\rho_{xy}z_{yt}z_{xt}+z_{xt}^{2}\right)}{\left(1-\rho_{xy}^{2}\right)}\right]$$

MLE of VAR(1) II

where $\sigma_j=\sqrt{\sigma_j^2}\;j=$ x, y , $ho_{xy}=\sigma_{xy}/(\sigma_x\sigma_y)$ (correlation coefficient) and

$$z_{yt} = \frac{Y_t - \mu_{Y|t-1}}{\sigma_y}$$
$$z_{xt} = \frac{X_t - \mu_{x|t-1}}{\sigma_x}$$

where the conditional expectations are

$$\mu_{Y|t-1} = \pi_{10} + \pi_{11}Y_{t-1} + \pi_{12}X_{t-1}$$
 (29)

Stability and stationarity of systems

$$\mu_{X|t-1} = \pi_{20} + \pi_{21}Y_{t-1} + \pi_{22}X_{t-1} \tag{30}$$

where we have included the two intercepts.

MLE of VAR(1) III

Difference equations

▶ By invoking the Markov property we can write:

$$f\left(\mathbf{y}_{1},\mathbf{y}_{2},\ldots,\mathbf{y}_{T}\mid\mathbf{y}_{0}\right)=\prod_{t=1}^{T}f\left(\mathbf{y}_{t}\mid\mathbf{y}_{t-1}\right)$$

cf. page 204 in HN, which is the likelihood function for the gaussian VAR(1):

$$L_{VAR(1)} = \prod_{t=1}^{T} f(\mathbf{y}_t \mid \mathbf{y}_{t-1})$$
 (31)

with $f(\mathbf{y}_t \mid \mathbf{y}_{t-1})$ given by (28)

- ▶ Consider first the case of $\pi_{ij}=0$ for i,j=1,2 so that $\mu_{Y|t-1}=\pi_{10}$ and $\mu_{X|t-1}=\pi_{20}$. In this case the MLE are the OLS estimators $\hat{\pi}_{10}=\bar{Y}$ and $\hat{\pi}_{20}=\bar{X}$.
- ▶ The fact that $\rho_{xy} \neq 0$ in general does not change that result!

- ▶ Which also extends to (29) and (30) in general: The MLEs of $\pi_{10}, \pi_{11}, \pi_{21}, \pi_{20}, \pi_{21}, \pi_{22}$ are obtained by estimating each row in VAR(1) by OLS as if they were two separate regressions.
- ▶ This is a case of the SURE theorem with identical regressors.

MLE of VAR(p) I

Difference equations

► The result about ML estimation of the VAR by OLS on each row in the system extends to VAR(p) models:

$$\mathbf{y}_t = \sum_{i=1}^{p} \mathbf{\Pi}_i \mathbf{y}_{t-1-i} +_t$$

where Π_i $(i=1,2,\ldots,p)$ are autoregressive matrices and ε_t is normal.

We can also extend by other deterministic regressors than the intercepts. And by exogenous explanatory variables, such models are often called open-VARs or VAR-EX models

The VAR revisited I

Difference equations

Let us now take care to write the gaussian disturbances of the VAR (now including two intercepts)

$$\begin{pmatrix} Y_{t} \\ X_{t} \end{pmatrix} = \begin{pmatrix} \pi_{10} \\ \pi_{20} \end{pmatrix} + \begin{pmatrix} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ X_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{xt} \end{pmatrix}$$
(32)

as conditional on period t-1:

$$\begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{yt} \end{pmatrix} \sim N_2 \begin{pmatrix} \mathbf{0}, \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} \mid Y_{t-1}, X_{t-1} \end{pmatrix}. \tag{33}$$

Now, (32) can be written as

$$Y_t = \mu_{v,t-1} + \varepsilon_{vt} \tag{34}$$

$$X_t = \mu_{x,t-1} + \varepsilon_{xt} \tag{35}$$

where the conditional expectations
$$\mu_{y|t-1} \equiv E(Y_t \mid Y_{t-1}, X_{t-1})$$
 and $\mu_{x|t-1} \equiv E(X_t \mid Y_{t-1}, X_{t-1})$ are

$$\mu_{y,t-1} = \pi_{10} + \pi_{11} Y_{t-1} + \pi_{12} X_{t-1}$$
 (36)

$$\mu_{x,t-1} = \pi_{20} + \pi_{21}Y_{t-1} + \pi_{22}X_{t-1}. \tag{37}$$

Interpretation: Conditional on the history of the system up to time t-1, Y_t and X_t are jointly normally distributed.

The conditional model for Y I

The conditional distribution for Y_t given the history and X_t is also normal,

In **Lecture note 3** (posted after the lecture for self-study) we show that the conditional distribution for Y_t is:

$$Y \sim N(\phi_0 + \phi_1 Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1}, \sigma^2 \mid X_t, Y_{t-1}, X_{t-1})$$
 (38)

which can be written in model form as

$$Y_{t} = \phi_{0} + \phi_{1} Y_{t-1} + \beta_{0} X_{t} + \beta_{1} X_{t-1} + \varepsilon_{t}$$
(39)

$$\varepsilon_t \sim N(0, \sigma^2 \mid X_t, Y_{t-1}, X_{t-1}) \tag{40}$$

The conditional model for Y II

$$\phi_0 = \pi_{10} - \frac{\sigma_{xy}}{\sigma_x^2} \pi_{20} \tag{41}$$

$$\phi_1 = \pi_{11} - \frac{\sigma_{xy}}{\sigma_x^2} \pi_{21} \tag{42}$$

$$\beta_0 = \frac{\sigma_{xy}}{\sigma_x^2} \tag{43}$$

$$\beta_1 = \pi_{12} - \frac{\sigma_{xy}}{\sigma_{z}^2} \pi_{22} \tag{44}$$

and

Difference equations

$$\sigma^2 = \sigma_v^2 (1 - \phi_{xv}^2). \tag{45}$$

$$\phi_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}. (46)$$

The conditional model for Y III

- Some small differences in notation apart, this is the same ADL model as in DM Ch 13.5 eq (13.58) for p = q = 1.
- ► The same ADL type model can be derived from a VAR with IID disturbances, rather than strictly normal.
- ▶ ADL(p,q) model can be derived from a VAR or order p. Consequently we must then have p = q in the ADL.
- We will study such ADL models, and their estimation over the next weeks.

The conditional model for Y IV

Finally, note that the ADL model

$$Y_{t} = \phi_{0} + \phi_{1} Y_{t-1} + \beta_{0} X_{t} + \beta_{1} X_{t-1} + \varepsilon_{t}$$
 (47)

together with the second row in the VAR:

$$X_t = \pi_{20} + \pi_{21}Y_{t-1} + \pi_{22}X_{t-1} + \varepsilon_{xt}$$
 (48)

where the two disturbances are independent, give a regression representation of the VAR, in terms of a conditional model (47) and a marginal model (47).

- ► Correspondingly, HN shows in §14.1 how the likelihood-function (31) of the VAR can be factorized into a
 - ▶ a conditional likelihood (for (47) and
 - a marginal likelihood function (for (31).

The conditional model for Y V

- as long as there are no cross-equation restrictions, meaning exogeneity.
- ▶ Start with exogeneity in dynamic models in Lecture 6.