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Some references to Lecture 5

I HN Ch 12 and 14, mainly.
Ch 13, or equivalent from other books, as self study: Standard
mis-specification tests of time series models.

I DM Ch 13.

I (BN 2014, kap 6,7)
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A time series of order p, AR(p) I

I In Lecture 4, we motivated the AR(1) model by appealing to
the idea that conditional independence can be “created” by
conditioning on Yt−1.

I As a direct generalization, conditional independence my
require conditioning on p lags.

I We write a time series model of order p as the stochastic
difference equation

Yt = φ0 + φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + εt (1)

where φ0 (j = 0, 2, . . . , p) are parameters, and

εt
D
= N(0, σ2

ε ) ∀t. (2)
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A time series of order p, AR(p) II

A weaker model formulation is that εt is white-noise,
conditional on the p lags of Yt .

I (1) may be of interest “on its own”, as a general model of
single time series.

I One example is when Yt is not a an observable variable, but a
residual from OLS estimation.

I In that interpretation (1) becomes a model of autocorrelated
regression residuals, as covered in introductory econometrics
courses, see also §13.3.1 in HN.

I Estimate by NLS or feasible GLS, possibly iterated.

I When Yt is an observable, the main motivation for using (1)
is for forecasting.
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A time series of order p, AR(p) III

I The reason for studying (1) in econometics is however, more
fundamental: It gives the framework for defining the all
important concepts of dynamic stability and stationarity
both for individual time series and for systems of variables (for
example dynamic stochastic general equilibrium
models,DSGE).

5 / 43



Difference equations Stationarity MLE of AR(p) Stability and stationarity of systems MLE of VAR ADL model

Final equation

AR(p) as the final equation of a system I

I We often study systems of stochastic difference equations

I The simplest case is two time series that are connected in a
the first order system, without intercepts to save notation.(

Yt

Xt

)
=

(
π11 π12

π21 π22

)(
Yt−1

Xt−1

)
+

(
εyt
εxt

)
, (3)

where

(
π11 π12

π21 π22

)
is the matrix of autoregressive

coefficients and we assume that

(
εyt
εxt

)
︸ ︷︷ ︸

”

D
= N2

0,

(
σ2
y σyx

σyx σ2
x

)
︸ ︷︷ ︸

Σ

| Yt−1,Xt−1

 ∀ t (4)
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Final equation

AR(p) as the final equation of a system II

I In fact this is an example of a first order Vector
Autoregressive model, VAR with gaussian disturbances.

I As an exercise, you can show that (3) can be reduced to the
so called final equation for Yt+1

Yt+1 = (π11 + π22︸ ︷︷ ︸
≡φ1

)Yt + (π12π21 − π22π11︸ ︷︷ ︸
≡φ2

)Yt−1 (5)

+ εyt+1 − π22εyt + π12εxt︸ ︷︷ ︸
≡εt

.

7 / 43



Difference equations Stationarity MLE of AR(p) Stability and stationarity of systems MLE of VAR ADL model

Final equation

AR(p) as the final equation of a system III

I But the same equation must hold for Yt so we obtain (1) for
the case of p = 2 and φ = 0 as

Yt = φ1Yt−1 + φ2Yt−2 + εt (6)

φ1 = (π11 + π22) (7)

φ2 = π12π21 − π22π11 (8)

εt = εyt − π22εy ,t−1 + π12εxt−1 (9)

I The omission of the intercept (which implies φ0 = 0) is only
to save notation.
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Final equation

AR(p) as the final equation of a system IV

I Note that when εt is defined as in (9) we have E (εt) = 0 and

Var(εt) = Var(εy ,t − π22εy ,t−1 + π12εx ,t−1)

= σ2
y + π22σyy + π12σ2

x + 2π22π12σyx

independent of t (homoskedasticity), but

Cov(εt , εt−1) = −π22σ2
y + π12σyx

Cov(εt , εt−j ) = 0 j = 2, 3, . . .

I In this interpretation, the disturbance εt in (6) is not
white-noise, but a Moving Average (MA) process. Following
custom the modelled is called ARMA(2,1).
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Dynamic stability and stationarity of AR(p) I

I Consider again the AR(p) process:

Yt = φ0 + φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + εt (10)

I Consider next the homogenous version of the difference
equation:

Y h
t − φ1Y

h
t−1 − φ2Y

h
t−2 − ...− φpY

h
t−p = 0 (11)
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Dynamic stability and stationarity of AR(p) II
I From mathematics we know that (11) has a global

asymptotic stable solution (Y h
t → 0 when t → ∞) if and

only if all the p roots (eigenvalues) of the associated
characteristic polynomial

λp − φ1λp−1 − φ2λp−2 − ...− φp = 0 (12)

are less than one in absolute value.

I From a result that is far from trivial, and which we leave for
ECON 5101, we have that the same condition is necessary
and sufficient for the stationarity of the stochastic process Yt

when it is given by (10) and εt is white-noise, or any other
stationary time series process (e.g., MA(q), q = 1, 2, ...).

I But now we have given the condition for stationarity without
a definition for stationarity...!
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Stationarity defined I

For the time series {Yt ; t = 0,±1,±2,±3, ...} we define the
autocovariances γj ,t in slightly more general way than in Lecture 4:

τj ,t = E [(Yt − µt)(Yt−j − µt)], j = 0, 1, 2, . . . , (13)

whereE (Yt) = µt .
If neither µ nor γj , depend on time t:

E (Yt) = µ, ∀ t (14)

and
E [(Yt − µ)(Yt−j − µ)] = τj , ∀ t, j . (15)

the Yt process {Yt ; t = 0,±1,±2,±3, ...} is covariance
stationary (aka weakly stationary).
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Stationarity defined II

For a stationary Yt the variance is time independent

Var(Yt) = σ2
y ≡ τ0 for j = 0

and the autocovariances are symmetric backwards and forwards:
τj = τ−j
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The autocorrelation function of stationary AR(p) I

I For a stationary time series variable, the theoretical
autocovariances only depend on the distance j between
periods. We can regard the autocovariance as a function of j .

I The same is the case for the (theoretical) autocorrelation
function (ACF). In general, it is a function of j and t:

ζj ,t = {Yt ,Yt−j} =
Cov(Yt ,Yt−j )

Var(Yt)
=

τj ,t
τ0,t

, (16)

However
ζj =

τj
τ0

= ζ−j for j = 1, 2, ... (17)

in the stationary case.
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Why is stationarity so important? I

I For an observable time series {Yt ; t = 1, 2, 3, ...T}, we use
the empirical autocovariances,

τ̂j = 1/T
T

∑
t=j+1

(Yt − Ȳ )(Yt−j − Ȳ ), j = 0, 1, 2, . . . ,T − 1

(18)
where Ȳ = 1/T ∑T

t=1 Yt .

I If the process {Yt ; t = 0,±1,±2,±3, ...} is stationary, τ̂j
(j = 0, 1, 2, . . .) are consistent estimators of the theoretical
autocovariances.

I This in turn gives the main premise for consistent estimation
of the coefficients of dynamic regression models, of which
AR(p) is an example
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Why is stationarity so important? II

I In short: stationary is the main premise for why we can extend
the MLE and OLS based estimation and inference theory to
time series data!

I Hence the importance of −1 < φ1 < 1 in the AR(1) m model

I Note that, although stationarity depends on the
characteristics roots, it can be “mapped back” to the φ1 and
φ2 parameters in the AR(2) case.

1− φ1 − φ2 > 0, 1 > −φ1 + φ2 and 1 > −φ2 ⇐⇒ AR(2) is
stationary
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AR(2) example revisited I

γ = 0, φ1 = 1, 6, φ2 = −0, 9:

Yt = 1.6Yt−1 − 0.9Yt−2 + εt , (19)

I The characteristic equation is:

λ2 − 1.6λ + 0.9 = 0

I The roots are a complex pair:

I
λ1 = 0.8− 0.509 9i
λ2 = 0.8 + 0.509 9i

I The module (“absolute value”) of the roots is
|λ| =

√
0.82 + 0.52 ≈ 0.94, inside the complex unit-circle.
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Consistency and distribution I

I We now have better background for assessing the statistical
properties of MLEs for AR models

I Consider the MLE for φ1 that we derived in Lecture 4

I Simplify by setting φ0 = 0 in the model equation, the
notations in the expression for φ̂1 can then be simplified:

φ̂1 =
∑T

t=2 YtYt−1

∑T
t=1 Y

2
t−1

=
T

∑
t=1

(
φ1Y

2
t−1

∑T
t=1 Y

2
t−1

)
+

T

∑
t=1

(
Yt−1εt

∑T
t=2 Y

2
t−1

)
(20)

=⇒

E
(
φ̂1 − φ1

)
= E

(
∑T

t=1 Yt−1εt

∑T
t=1 Y

2
t−1

)
.
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Consistency and distribution II
I Even if we assume E (Yt−1εt) = 0, we cannot state that the

denominator and numerator are independent: For example will
ε2 “be in” the numerator and (because of Y2 = φ1 + ε2) also
in Y2 × Y2 in the denominator.

I This means that Yt−1 cannot be regarded as exogenous in the
econometric sense, and therefore E

(
φ̂1 − φ1

)
6= 0.

I What about asymptotic properties? With reference to the
Law of large numbers and Slutsky’s theorem we have

plim
(
φ̂1 − φ1

)
=

plim 1
T ∑T

t=2 Yt−1εt

plim 1
T ∑T

t=2 Y
2
t−1

=
0
σ2

ε

1−φ2
1

= 0.

if E (Yt−1εt) = 0 and |φ1| < 1.
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Consistency and distribution III

I The zero in the numerator seems trivial since it is just a sum
of terms with zero expectations, but closer inspection shows
that we need that the variance of Yt−1εt is finite. The
specification of the AR(1) model above is sufficient for this
result.

I The denominator is due to the assumption |φ1| < 1, which
entails that the variance of Yt in (20) is finite and equal to
σ2

ε /(1− φ2
1) from the solution of the AR(1) model.
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Consistency and distribution IV

I The OLS/ML estimator φ̂1 is consistent, and it is
approximately normal when T is large enough, see §12.7 in
HN: √

T
(
φ̂1 − φ1

) D≈ N
(
0,
(
1− φ2

1

))
(21)

which entails that t-tests can be compared with critical values
from the normal distribution.

I This result extend MLE estimators for the AR(1) in Lecture 4
(the model where φ0 6= 0).
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Hurwitz-bias

I In (??) the finite sample bias can be shown to be
approximately

E
(
φ̂1 − φ1

)
≈ −2φ1

T
,

this is called the Hurwitz-bias after Leo Hurwitz (1958).

I In CC we can make this more concrete with a Monte-Carlo
analysis.
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MLE of AR(p) I

I The likelihood function of AR(p) is constructed in the same
manner as for AR(1), with white-noise or gaussian
disturbances (MA is a bit more complicated)

I Since the condition distribution is E (Yt | Yt−1, . . . ,Yt−p)

Yt
D
= N(φ0 + ∑p

i=1φiYt−i + εt , σ2)

we have p initial values.Y0, Y−1, . . . ,Y−(p−1)

I With y
′
= (Y1, Y2,. . . ,Yt), and suitably defined X matrix the

MLE estimators of φ = (φ0, φ1,. . . ,φp) are given by OLS
formula

β̂= (X′X)−1X′y

I σ̂2 is the average of the squared residuals
σ̂2 =(1/T )ε′ε = y′My (cf. Lecture 3).
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Lag-operator notation

Lag operators I

I When we work with stochastic difference equations, it is often
useful to express relationships with the use of the lag-operator
L.

I The lag operator L changes the dating of a variable Yt one or
more period back in time. It works in the following way:

LYt = Yt−1,
LLYt = L2Yt = LYt−1 = Yt−2,

LpYt = Yt−p.

I From the last property it follows that if p = 0, then

L0 = 1,
L0Yt = Yt .
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Lag-operator notation

Lag operators II

I We also have

LpLs = LpLk = L(p+s),

and

(aLp + bLs)Yt = aLpYt + bLsYt = aYt−p + bYt−s .

I If we want to shift a variable forward in time, we use the
forward operator L−1:

L−1Yt = Yt+1

and generally

L−s = Yt+s .
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Lag-operator notation

Lag operators III

I Because constants are independent of time, we have for the
constant b

Lb = b.

and by induction

Lpb = L(p−1)Lb = L(p−1)b = b.
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Lag-operator notation

Lag-polynomial representation of AR(p) I

I We can now write (1) more compactly as

φ(L)Yt = φ0 + εt (22)

where is the lag polynomial of order p.

φ(L)Yt = 1− φ1L− φ2L
2 − ...φpL

p (23)

and we keep the assumption of white-noise εt .
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Lag-operator notation

Lag-polynomial representation of AR(p) II

I A root of the characteristic equation associated with the
lag-polynomial is:

1− φ1z − φ2z − ...φpz
p = 0 (24)

Comparison with the characteristic equation (12) shows that

z =
1

λ

meaning that the condition for stationarity can also be
expressed in terms of the roots: (z1, z2, ..., zp):

I Yt is stationary if all the z−roots are larger than one in
absolute value (“outside the unit circle”).
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Companion form I

Consider again the VAR system (3)(
Yt

Xt

)
=

(
π11 π12

π21 π22

)
︸ ︷︷ ︸

Π

(
Yt−1

Xt−1

)
+

(
εyt
εxt

)
,

I Assume that εyt , εxt are two stationary series the This is
secured by (4) for example.
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Companion form II
I By obtaining the characteristic polynomial to Π:

p(λ) = |Π− λI|

you find that the eigenvalues of Π are the roots of

|Π− λI| = 0 (25)

which is the characteristic equation associated with the final
equation (5) that we derived above.

I Hence the necessary and sufficient condition for stationary of
the vector (Yt ,Xt)

′
is that the two eigenvalues of both less

than one in absolute value.

I A is a simple example of a so called companion form matrix.
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Companion form III

I In ECON 5101 we will show that if we have a general VAR
with n time series variables and p lags, that VAR can be
written as a first order system

zt = Fzt−1 + εt (26)

where zt and εt are 1× np and the companion form matrix F
is np × np.

I For such a general VAR system, the condition for stationarity
and stability is that all the np eigenvalues from

|F− λI| = 0 (27)

are less than one in magnitude.
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Companion form IV

I When we estimate a dynamic system in PcGive, the
eigenvalues of the companion form are always available after
estimation.
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MLE of VAR(1) I

I Consider the VAR(1) made up of (3) and (4) so that ε1, ε2,
. . . ,εT are mutually independent and normal.

I The pdf of yt given yt−1 is

f (yt | yt−1) =
1

σyσx2π
√(

1− ρ2
xy

) × (28)

exp

[
−1

2

(
z2
yt − 2ρxyzytzxt + z2

xt

)(
1− ρ2

xy

) ]
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MLE of VAR(1) II

where σj =
√

σ2
j j = x , y , ρxy = σxy/(σxσy ) (correlation

coefficient) and

zyt =
Yt − µY |t−1

σy

zxt =
Xt − µx |t−1

σx

I where the conditional expectations are

µY |t−1 = π10 + π11Yt−1 + π12Xt−1 (29)

µX |t−1 = π20 + π21Yt−1 + π22Xt−1 (30)

where we have included the two intercepts.
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MLE of VAR(1) III
I By invoking the Markov property we can write:

f (y1,y2,. . . ,yT | y0) = ∏T
t=1f (yt | yt−1)

cf. page 204 in HN, which is the likelihood function for the
gaussian VAR(1):

LVAR(1) = ∏T
t=1f (yt | yt−1) (31)

with f (yt | yt−1) given by (28)

I Consider first the case of πij = 0 for i , j = 1, 2 so that
µY |t−1 = π10 and µX |t−1 = π20. In this case the MLE are
the OLS estimators π̂10 = Ȳ and π̂20 = X̄ .

I The fact that ρxy 6= 0 in general does not change that result!
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MLE of VAR(1) IV

I Which also extends to (29) and (30) in general: The MLEs of
π10,π11,π21, π20,π21,π22 are obtained by estimating each
row in VAR(1) by OLS as if they were two separate
regressions.

I This is a case of the SURE theorem with identical regressors.
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MLE of VAR(p) I

I The result about ML estimationof the VAR by OLS on each
row in the system extends to VAR(p) models:

yt = ∑p
i=1Πiyt−1−i+t

where Πi (i = 1, 2, . . . , p) are autoregressive matrices and εt
is normal.

I We can also extend by other deterministic regressors than the
intercepts. And by exogenous explanatory variables, such
models are often called open-VARs or VAR-EX models
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The VAR revisited I

Let us now take care to write the gaussian disturbances of the VAR
(now including two intercepts)(

Yt

Xt

)
=

(
π10

π20

)
+

(
π11 π12

π21 π22

)(
Yt−1

Xt−1

)
+

(
εyt
εxt

)
(32)

as conditional on period t − 1:(
εyt
εyt

)
∼ N2

(
0,

(
σ2
x σxy

σxy σ2
y

)
| Yt−1,Xt−1

)
. (33)

Now, (32) can be written as

Yt = µy ,t−1 + εyt (34)

Xt = µx ,t−1 + εxt (35)
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The VAR revisited II

where the conditional expectations µy |t−1 ≡ E (Yt | Yt−1,Xt−1)
and µx |t−1 ≡ E (Xt | Yt−1,Xt−1) are

µy ,t−1 = π10 + π11Yt−1 + π12Xt−1 (36)

µx ,t−1 = π20 + π21Yt−1 + π22Xt−1. (37)

Interpretation: Conditional on the history of the system up
to time t − 1, Yt and Xt are jointly normally distributed.
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The conditional model for Y I

The conditional distribution for Yt given the history and Xt is also
normal,
In Lecture note 3 (posted after the lecture for self-study) we
show that the conditional distribution for Yt is:

Y ∼ N(φ0 + φ1Yt−1 + β0Xt + β1Xt−1, σ2 | Xt ,Yt−1,Xt−1) (38)

which can be written in model form as

Yt = φ0 + φ1Yt−1 + β0Xt + β1Xt−1 + εt (39)

εt ∼ N(0, σ2 | Xt ,Yt−1,Xt−1) (40)
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The conditional model for Y II

φ0 = π10 −
σx y
σ2
x

π20 (41)

φ1 = π11 −
σx y
σ2
x

π21 (42)

β0 =
σx y
σ2
x

(43)

β1 = π12 −
σx y
σ2
x

π22 (44)

and

σ2 = σ2
y (1− φ2

xy ). (45)

φxy =
σxy

σxσy
. (46)
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The conditional model for Y III

I Some small differences in notation apart, this is the same
ADL model as in DM Ch 13.5 eq (13.58) for p = q = 1.

I The same ADL type model can be derived from a VAR with
IID disturbances, rather than strictly normal.

I ADL(p,q) model can be derived from a VAR or order p.
Consequently we must then have p = q in the ADL.

I We will study such ADL models, and their estimation over the
next weeks.
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The conditional model for Y IV
I Finally, note that the ADL model

Yt = φ0 + φ1Yt−1 + β0Xt + β1Xt−1 + εt (47)

together with the second row in the VAR:

Xt = π20 + π21Yt−1 + π22Xt−1 + εxt (48)

where the two disturbances are independent, give a
regression representation of the VAR, in terms of a
conditional model (47) and a marginal model (47).

I Correspondingly, HN shows in §14.1 how the
likelihood-function (31) of the VAR can be factorized into a

I a conditional likelihood (for (47) and
I a marginal likelihood function (for (31).
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The conditional model for Y V

as long as there are no cross-equation restrictions, meaning
exogeneity.

I Start with exogeneity in dynamic models in Lecture 6.
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