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Preface

PcGive version 14 for Windows is the latest in a long line of descendants of the original
GIVE and FIML programs, and many scholars, researchers and students have con-
tributed to its present form. We are grateful to them all for their help and encourage-
ment.

Initially, it was necessary to have separate programs for single equation and multiple
equation modelling owing to computer hardware restrictions and econometric technol-
ogy. Over the years these restrictions started to disappear. Increasingly, the techniques
in PcGive had a multiple-equation equivalent in PcFiml. This was particularly the case
with PcFiml 8, which introduced vector mis-specification tests — reducing to their sin-
gle equation equivalents when there is one equation. PcFiml was fully integrated with
PcGive in version 10, and the PcFiml name disappeared. However, we kept the book
structure: this book describes multiple equation modelling, what used to be the PcFiml
book. (We still refer to it in that way.)

Version 11 built on version 10 to take the level of integration of PcGive with Ox-
Metrics (which was called GiveWin previously) one step further: operation was now
entirely from OxMetrics. The release of PcGive Professional version 9 saw a further en-
hancement of graphical presentations and another shift in approach towards a practical
textbook of applied systems modelling (the pre-computer usage of the term ‘manual’).
With version 10, we substantially rewrote the tutorials, clarifying the role of cointe-
gration analysis in empirical modelling. The documentation comprises very extensive
tutorials conducting a complete modelling exercise, teaching econometric modelling
conjointly with learning program usage, the econometrics of multiple-equation analy-
sis and a technical summary of the statistical output.

Sections of code in earlier versions were contributed by Neil Ericsson, Adrian
Neale, Denis Sargan, Frank Srba and Juri Sylvestrowicz, and their important contri-
butions are gratefully acknowledged. The original mainframe ancestor was written in
Fortran, PC versions in a mixture of Fortran, C and Assembler, version 9 was written
in C and C++. From version 10 onwards, PcGive is almost entirely written in Ox, with
a few additions in C. The Ox versions rely on OxPack for its interface.

A special thanks goes to Gunnar Bårdsen for his detailed checking of early versions
of PcFiml 9 as well as the subsequent versions 10 and 11. We also wish to thank
Andreas Beyer, Peter Boswijk, Mike Clements, Neil Ericsson, Henrik Hansen, Bernd
Hayo, Søren Johansen, Hans-Martin Krolzig, Sophocles Mavroeidis, Grayham Mizon,
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Bent Nielsen and Marius Ooms, for kindly commenting on various versions of PcFiml
and PcGive. We wish to thank Maureen Baker and Nuffield College for their support.

The documentation for GIVE has evolved dramatically over the years. We are in-
debted to Mary Morgan and Frank Srba for their help in preparing the first (main-
frame) version of a manual. Our thanks also to Manuel Arellano, Giorgio Bodo, Peter
Boswijk, Julia Campos, Mike Clements, Neil Ericsson, Carlo Favero, Chris Gilbert,
Henrik Hansen, Søren Johansen, Marius Ooms, Adrian Neale, Ed Nelson, Bent Nielsen,
Robert Parks, Jean-François Richard, Timo Teräsvirta and Giovanni Urga for their many
helpful comments on the documentation.

MikTex, in combination with dvips and Scientific Word eased the development of
the documentation in LaTeX. The editing was almost entirely undertaken using OxEdit,
which allowed flexible incorporation of PcFiml output and LaTeX compilation, and
HyperSnap-DX which enabled the screen captures (with bmp2eps for conversion to
PostScript).

Over the years, many users and generations of students have written with helpful
suggestions for improving and extending the software, and while this version will un-
doubtedly not yet satisfy all of their wishes, we remain grateful for their comments and
hope that they will continue to write with good ideas and report any bugs!

DFH owes a considerable debt to Evelyn and Vivien during the time he has spent on
this project: their support and encouragement were essential, even though they could
benefit but indirectly from the end product. In a similar fashion, JAD is delighted to
thank Kate for her support and encouragement. We hope the benefits derived by others
compensate.

We wish you enjoyable and productive use of
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Chapter 1

Introduction to Volume II

1.1 The PcGive system

PcGive is an interactive menu-driven program for econometric modelling. Version 14
for Windows, to which this documentation refers, runs on Windows, OS X and Linux.
PcGive originated from the AUTOREG Library (see Hendry and Srba, 1980, Hendry;
Hendry, 1986, 1993, Doornik and Hendry, 1992, and Doornik and Hendry, 1994), and
is part of the OxMetrics family.

The econometric techniques of the PcGive system can be organized by the type
of data to which they are (usually) applied. The documentation is comprised of three
volumes, and the overview below gives in parenthesis whether the method is described
in Volume I, II or III. Volume IV refers to the PcNaive book.
• Models for cross-section data

– Cross-section Regression (I)
• Models for discrete data

– Binary Discrete Choice (III): Logit and Probit
– Multinomial Discrete Choice (III): Multinomial Logit
– Count data (III): Poisson and Negative Binomial

• Models for financial data
– GARCH Models (III): GARCH in mean, GARCH with Student-t, EGARCH,

Estimation with Nelson&Cao restrictions
• Models for panel data

– Static Panel Methods (III): within groups, between groups
– Dynamic Panel Methods (III): Arellano-Bond GMM estimators

• Models for time-series data
– Single-equation Dynamic Modelling (I)
– Multiple-equation Dynamic Modelling (II): VAR and cointegration, simultane-

ous equations analysis
– Regime Switching Models (III): Markov-switching
– ARFIMA Models (III): exact maximum likelihood, modified-profile likelihood

3



4 Chapter 1 Introduction to Volume II

or non-linear least squares
– Seasonal adjustment using X12Arima (III): regARIMA modelling, Automatic

model selection, Census X-11 seasonal adjustment.
• Monte Carlo

– AR(1) Experiment using PcNaive (IV)
– Static Experiment using PcNaive (IV)
– Advanced Experiment using PcNaive & Ox Professional (IV)

• Other models
– Nonlinear Modelling (I)
– Descriptive Statistics (I)

The current book, Volume II, describes multiple-equation dynamic modelling.
This part of PcGive used to be called PcFiml. Starting from version 10, PcFiml has
been merged into the main PcGive program.

PcGive uses OxMetrics for data input and graphical and text output. OxMetrics
is described in a separate book (Doornik and Hendry, 2013). Even though PcGive is
largely written in Ox (Doornik, 2013), it does not require Ox to function.

1.2 Multiple-equation dynamic modelling

The multiple-equation component of PcGive is designed for modelling multivariate
time-series data when the precise formulation of the economic system under analysis is
not known a priori. The current version is for systems that are linear in variables, which
could comprise jointly determined, weakly or strongly exogenous, predetermined and
lagged endogenous variables. A wide range of system and model estimation methods is
available; stochastic and identity equations are handled. Particular features of the pro-
gram are its ease of use, familiar interface, flexible data handling, structured approach,
extensive set of preprogrammed diagnostic tests, its focus on recursive methods, and its
powerful graphics. An extensive batch language is also supported.

The main design concepts underlying this part of PcGive centre on the need to avoid
information overload when modelling a system of dynamic equations (as the number
of parameters can become very large), to remain easy and enjoyable to use, to offer
the frontier techniques, and to implement a coherent modelling strategy. Specifically, it
seeks to achieve all of these objectives simultaneously. The size of system that can be
analyzed pushes the limits of PCs capacities, data availability, econometric technique
and comprehension of dynamic models. The documentation is especially extensive to
fully explain the econometric methods, the modelling approach and the techniques used,
as well as bridge the vast gap between the theory and practice in this area by a detailed
description of a modelling exercise in operation. Like the companion volume on single-
equation modelling (see Volume I: Hendry and Doornik, 2013), this book transcends the
old ideas of ‘textbooks’ and ‘computer manuals’ by linking the learning of econometric
methods and concepts to the outcomes achieved when they are applied by the user at
the computer. Because the program is so easy to learn and use, the main focus is on
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its econometrics and application to data analysis. Detailed tutorials in Chapters 3–8
teach econometric modelling of dynamic systems for possibly non-stationary data by
walking the user through the program in organized steps. This is supported by clear
explanations of the associated econometric methods in Chapters 9–14. The material
spans the level from introductory to frontier research, with an emphatic orientation to
practical modelling. The exact definitions of all statistics calculated are described in
Chapter 15. The appendices in Chapters A1–A2 are for reference to details about the
batch language, and data sets. The context-sensitive help system supports this approach
by offering help on both the program and the econometrics at every stage.

This chapter describes the special features of multiple-equation modelling in Pc-
Give, discusses how to use the documentation, provides background information on
data storage, interactive operation, help, results storage and filenames, sketches the
basics of how to use the program and describes its graphics capabilities, illustrated
throughout later chapters.

1.3 The special features
Many of the special features of PcGive are listed in Volume I. Here we concentrate on
the special features which are available for multiple-equation modelling:
(1) Ease of use
(2) Advanced graphics
(3) Flexible data handling in OxMetrics
(4) Efficient modelling
• The underlying Ox algorithms are fast, efficient, accurate and carefully tested;

all data are stored in double precision.
• This part of PcGive is specially designed for modelling multivariate time-series

data, and analyzes dynamic responses and long-run relations with ease; it is simple
to change sample, or forecast, periods or estimation methods: models are retained
for further analysis, and general-to-specific sequential simplifications are monitored
for reduction tests.

• The structured modelling approach is fully discussed in this book, and guides the
ordering of menus and dialogs, but application of the program is completely at the
user’s control.

• A vast range of estimators is supported, including multivariate least squares, sys-
tem cointegration techniques, and most simultaneous equations estimators (centered
around FIML), providing automatic handling of identities and checking of identi-
fication, and allowing non-linear cross-equation constraints; powerful numerical
optimization algorithms are embedded in the program with easy user control, and
most methods can be calculated recursively over the available sample.

• PcGive offers powerful preprogrammed testing facilities for a wide range of
specification hypotheses, including tests for dynamic specification, lag length, coin-
tegration, tests on cointegration vectors and parsimonious encompassing; Wald tests
of linear and non-linear restrictions are easily conducted.
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• System and model revision is straightforward since PcGive remembers as much
as possible of the previous specification for the next formulation.

• PcGive incorporates Autometrics for automatic model selection.
• A batch language allows storage for automatic estimation and evaluation of mod-

els, and can be used to prepare a PcGive session for teaching.
(5) Powerful evaluation
• System and simultaneous-equations mis-specification tests are automatically

provided, including vector residual autocorrelation, vector heteroscedasticity, sys-
tem functional form mis-specification, and vector normality.

• Individual equation diagnostic information is also provided including ARCH and
(e.g.) plots of correlograms and residual density functions.

• The recursive estimators provide easy graphing of residuals with their confi-
dence intervals, log-likelihoods, and parameter-constancy statistics (scaled by se-
lected nominal significance levels); these are calculated for systems, cointegration
analyses and models – see recursive FIML in action.

• All estimators provide graphs of fitted/actual values, residuals, and forecasts with
error bars or bands for 1-step (against outcomes in that case), h-step and dynamic
forecasts; perturbation and impulse response analyses are also supported.

(6) Extensive batch language
• PcGive formulates the batch commands needed to rerun a system and model as

an interactive session proceeds – all you have to do is save the file if desired.
• The batch language supports commands for data loading; transformation; system

formulation, estimation and testing; cointegration analyses and tests; model for-
mulation, estimation and testing; imposing restrictions. All these can be stored as
simple batch commands, to be extended, revised and/or edited with ease. Batch files
can be run in whole or in part from within an interactive session.

(7) Well-presented output
• Graphs can be saved in several file formats for later recall and further editing, or

printing and importing into many popular word processors, as well as directly by
‘cut and paste’.

• Results window information can be saved as a text document for input to most
word processors, or directly input by ‘copy and paste’.

We now consider some of these special features in greater detail.

Efficient modelling sequence
• Modelling dynamic econometric systems involves creating and naming lags, con-

trolling sample periods, assigning the appropriate status to variables (endogenous,
non-modelled etc.), so such operations are either automatic or very easy. The ba-
sic operator is a lag polynomial matrix. Long-run system solutions, cointegration
tests, the significance of blocks of lagged variables, the choice between determin-
istic or stochastic dynamics, and roots of long-run and lag-polynomial matrices are
all calculated. When the recommended general-to-specific approach is adopted, the
sequence of reductions is monitored for both systems and models, and reduction
F-tests and system information criteria are reported.
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• This extensive book seeks to bridge the gap between econometric theory and em-
pirical modelling: the tutorials in Part II walk the user through every step from in-
putting data to the final selected econometric model of the vector of variables under
analysis. The econometrics chapters in Part III explain all the necessary economet-
rics for system modelling and evaluation with reference to the program, offering
detailed explanations of all the estimators and tests. The statistical output chapter
carefully defines all the estimators and tests.

• The ordering of the menus and dialogs is determined by the underlying theory:
first establish a data-coherent, constant-parameter dynamic system; then investigate
cointegration, and reduce the system to a stationary, near orthogonal and simpli-
fied representation; next develop a model to characterize that system in a parsimo-
nious and interpretable form; and finally check for parsimonious encompassing of
the system: see Hendry, Neale, and Srba (1988), Hendry and Mizon (1993) and
Hendry (1993), Hendry (1995) for further details. Nevertheless, the application and
sequence of the program’s facilities remain completely under the user’s control.

• The estimators supported are based on the estimator generating equation approach
in Hendry (1976), and include handling of identities and automatic checking of
identification. Estimation methods include Multivariate Ordinary (OLS) and Re-
cursive Least Squares (RLS); Johansen’s reduced-rank cointegration analysis for
systems with both its recursive and constrained implementations; Single-equation
OLS (for large systems and small samples, denoted 1SLS), Two-Stage Least
Squares (2SLS), Three-Stage Least Squares (3SLS), Limited-Information Instru-
mental Variables (LIVE), Full-Information Instrumental Variables (FIVE), Limited-
Information Maximum Likelihood (LIML), Full-Information Maximum Likelihood
(FIML), Recursive FIML (RFIML), and constrained FIML (CFIML: with possibly
non-linear cross-equation constraints for models; also available recursively, and de-
noted RCFIML). Systems and models are easily revised, transformed and simplified
since as much as possible of a previous specification is retained. Up to 100 models
are remembered for easy recall and progress evaluation.

• Powerful testing facilities for a wide range of specification hypotheses of interest
to econometricians and economists undertaking substantive empirical research are
preprogrammed for automatic calculation. Available tests include dynamic spec-
ification, lag length, cointegration rank, hypothesis tests on cointegration vectors
and/or adjustment coefficients, and tests of reduction or parsimonious encompass-
ing. Wald tests of (non-)linear restrictions are easily conducted using the constraints
editor and such constraints can be imposed for estimation by cutting and pasting,
then using CFIML.

• Automatic model selection using Autometrics is available for estimation of the
system. Starting from a general unrestricted model (denoted GUM), PcGive can
implement the model reduction for you – usually outperforming even expert econo-
metricians.
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Powerful evaluation

• Much of the output is provided in graphical form which is why it is an interac-
tive (rather than a batch) program. The option to see multiple graphs allows for
efficient processing of large amounts of information. Blocks of graphs for up to 36
equations can be viewed simultaneously, incorporating descriptive results (fitted and
actual values, scaled residuals etc.), recursive statistics, cointegration output (time
series of cointegration vectors, or recursive eigenvalues), single-equation diagnostic
test information, cross-equation relationships (such as residual cross-plots), single-
parameter likelihood grids, and a wide range of forecasts.

• Evaluation tests can be either automatically calculated, calculated in a block as
a summary test option, or implemented singly or in sets merely by selecting the
relevant dialog option. A comprehensive and powerful range of mis-specification
tests is offered in order to sustain the methodological recommendations about model
evaluation. System and simultaneous-equations models mis-specification tests in-
clude vector residual autocorrelation, vector heteroscedasticity, system functional
form mis-specification and vector normality (the test proposed in Doornik and
Hansen, 1994). Individual-equation diagnostic information is also provided, in-
cluding scalar versions of all the above tests as well as ARCH, and (for example)
plots of correlograms and residual density functions. When the system is in fact a
single equation, multivariate tests have been designed to deliver the same answer
with the same degrees of freedom as the single equation tests.

• Much of the power of PcGive resides in its extensive use of recursive estimators for
systems, cointegration analyses and models. The output can be voluminous (1-step
residuals and their standard errors, constancy tests etc. at every sample size for every
equation), but recursive statistics can be graphed for easy presentation and appraisal
(up to 36 graphs simultaneously). The size of systems is really only restricted by
the available memory and length of data samples. Recursive cointegration analysis
and recursive FIML are surprisingly easy and amazingly fast – given the enormous
numbers of calculations involved.

• All estimators provide time-series graphs of residuals, fitted and actual values and
their cross-plots. 1-step forecasts and outcomes with 95% confidence intervals
shown by error bars or bands can be graphed, as can dynamic simulation (within
sample), dynamic forecasts (ex ante) or even h-step ahead forecasts for any choice
of h – all with approximate 95% confidence bars. Forecasts can be conducted under
alternative scenarios.

Considerable experience has demonstrated the practicality and value of using Pc-
Give live in classroom teaching as a complementary adjunct to theoretical derivations.
On the research side, the incisive recursive estimators and the wide range of prepro-
grammed tests make PcGive the most powerful interactive econometric modelling pro-
gram available. Part II records its application to a practical econometric modelling
problem. These roles are enhanced by the flexible and informative graphics options
provided.
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1.4 Documentation conventions
The convention for instructions that you should type is that they are shown in
Typewriter font. Capitals and lower case are only distinguished as the names of
variables in the program and the mathematical formulae you type. Once OxMetrics
has started, then from the keyboard, the Alt key accesses line menus (at the top of the
screen); from a mouse, click on the item to be selected using the left button. Common
commands have a shortcut on the toolbar, the purpose of which can be ascertained by
placing the mouse on the relevant icon. Icons that can currently operate are highlighted.
Commands on menus, toolbar buttons, and dialog items (buttons, checkboxes etc.) are
shown in Sans Serif font: click on highlighted options to implement.

Equations are numbered as (chapter.number); for example, (8.1) refers to equation
8.1, which is the first equation in Chapter 8. References to sections have the form
§chapter.section, for example, §8.1 is Section 8.1 in Chapter 8. Tables and Figures
are shown as Figure chapter.number; for example, Figure 5.2 for the second Figure in
Chapter 5. Multiple graphs are numbered from left to right and top to bottom, so (b) is
the top-right graph of four, and (c) the bottom left.

1.5 Using Volume II
Volume II comes in five main parts: Part I comprises this introductory chapter, and
instructions on starting the program. Part II has five extensive tutorials on dynamic
system modelling; these emphasize the modelling aspects yet explain program usage
en route. Part III has six chapters discussing the econometrics of PcGive from system
formulation to dynamic forecasting. Part IV offers a detailed description of the statis-
tical and econometric output. Finally, Part V contains appendices. The documentation
ends with references, and author and subject indices. As discussed above, the aim is to
provide a practical textbook of systems modelling, linking the econometrics of PcGive
to empirical practice through tutorials which implement an applied modelling exercise.
In more detail:
1. A separate book explains and documents the companion program OxMetrics which

records the output and provides the data loading and graphing facilities.
2. Volume I provides tutorials for single-equation modelling, and contains an accom-

panying econometrics text book.
3. The Prologue introduces the main features provided for multiple-equation mod-

elling, sketches how to use the program and illustrates some of its output.
4. The Tutorials in Chapters 3 to 8 are specifically designed for joint learning of the

econometric analyses and use of the program. They describe system formulation,
estimation and evaluation; cointegration procedures; reduction of the system to a
stationary representation; econometric modelling of that system; and advanced fea-
tures. By implementing a complete empirical research exercise, they allow rapid
mastery of PcGive while acquiring an understanding of how the econometric theory
operates in practice.
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5. The Econometric Overview in Chapter 9 reviews the various econometric proce-
dures for multiple-equation modelling.

6. The Econometric Theory in Chapters 10 to 13 explain in technical detail the econo-
metrics of multiple-equation modelling.

7. Chapters 14 and 15 concern numerical optimization and the detailed description
of the statistical output. Chapter 15 is to some extent self-contained, as it briefly
repeats the basic notation employed in Chapters 10 to 13.

8. The Appendices in Chapters A1 to A2 document the remaining functions. Chapter
A1 documents the various languages (such as Algebra and Batch) used in PcGive.
Most information about menus, dialogs etc., is available in the on-line help. These
chapters should be needed for reference only, but it may be helpful to read them
once.
The appropriate sequence is first to follow the instructions in the installation pro-

cedure to install PcGive Professional on your system. Next, read the remainder of this
introduction, then follow the step-by-step guidance given in the tutorials in Volume
I and II to become familiar with the operation of PcGive. The appendices should be
needed for reference only, but it may be helpful to read them once, especially A1. The
technical description of the econometrics procedures is provided in Part III.

To use the documentation, either check the index for the subject, topic, menu, or
dialog that seems relevant, or look up the part relevant to your current activity (for ex-
ample, econometrics, tutorials or manuals) in the Contents, and scan for the most likely
keyword. The references point to relevant publications that analyze the methodology
and methods embodied in PcGive.

1.6 Citation
To facilitate replication and validation of empirical findings, PcGive should be cited in
all reports and publications involving its application. The appropriate form is to cite
PcGive in the list of references.

1.7 World Wide Web
Consult www.doornik.com or www.oxmetrics.net pointers to additional informa-
tion relevant to the current and future versions of PcGive. Upgrades are made available
for downloading if required, and a demonstration version is also made available.
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Chapter 2

Tutorial Data

2.1 Introduction
The operation of multiple-equation modelling is similar to single-equation modelling,
and both share the OxMetrics edit window for results and its graphics. We assume that
users have previously followed the tutorials in Volume I. For detailed instructions on
how to load and transform data using the calculator or algebra, and create sophisticated
graphs, consult the OxMetrics book. If at any time you get stuck, press F1 for context-
sensitive help. Or access the Help menu to find out about specific topics (including
relevant econometric information).

2.2 The tutorial data set
Most of the tutorial chapters use the data set MulTut1.in7/MulTut1.bn7. The data
set comprises four stochastic variables, denoted Ya, Yb, Yc and Yd; a Constant, Seasonal
and Trend are automatically created by PcGive when required. The data are computer-
generated, to mimic a realization of a quarterly vector stochastic process representable
by a (log)linear dynamic system. The tutorials will analyze and model these four vari-
ables over their sample period of 200 observations, 1951 (1) to 2000 (4). We retain the
data points 2000(1)–2004(4) for multi-step forecasting exercises (but, because we have
simulated data, we already now the future outcomes). The series are a replication from
the DGP used in Doornik, Hendry, and Nielsen (1998), and the modelling tutorials in
this book closely follow the steps taken in that article. If you wish to use real data
instead, you could follow the tutorials alonng with the UKM1 data set, comparing the
results to those reported in Doornik, Hendry, and Nielsen (1998).

To start, load the data set in OxMetrics, and graph the four variables as in Figure
2.1. We assume the first three series are in logarithms. In terms of units, the first could
be the log of the real money stock, and the second the log of real GNP. The third could
be the growth rate of prices (i.e. inflation), and the final series an interest rate measure.
There appears to a break in the trend growth of Yb, Yc and Yd in the 1970’s. Such

13
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Figure 2.1 Time-series of the four variables

behaviour is compatible with the series being integrated (possibly of order 1, denoted
by I(1)), but does not preclude other explanations (for example, stationary around a
deterministic – but perhaps split – trend). However, there is no obvious seasonality in
the data.

Next, we will plot the data both over time and against each other, in pairs (Ya,Yb)
and (Yc,Yd). The outcome is shown in Figure 2.2 (again perhaps subject to minor
differences: we have matched the time series of Ya and Yb for both scale and range, did
the same for Yc, Yd, and added a regression line).

Clearly, the two sets are highly correlated within pairs, but behave differently be-
tween. Further, (Yc,Yd) seem to have moved closely together at the start of the sample,
but diverged in the 1970’s and again at the end of the sample.

Now, create first differences of all variables in the data set, either using the Ox-
Metrics Calculator or Algebra: DYa, DYb, DYc, and DYd. Repeat Figure 2.2, but now
for the differenced series. This leads to Figure 2.3. The differences do not seem to be
integrated, although (DYa,DYb) show noticeable serial and cross correlation. Since the
differences are autocorrelated, a lag length of 2 is the minimum needed to characterize
the outcomes.

This completes the exploratory graphical analysis of the tutorial data set. In the next
chapter we commence econometric modelling of the dynamic system.
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Figure 2.2 Time series and scatter plots for pairs of variables
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Chapter 3

Tutorial on Unrestricted System
Estimation and Evaluation

3.1 Introduction to dynamic systems
The modelling process in PcGive starts by focusing on the system, often called the
unrestricted reduced form (URF), which can be written as (using simple dynamics):

yt = π1yt−1 + Φqt + Γ1zt + vt,vt ∼ INn [0,Ω] , (3.1)

where yt, zt are respectively n × 1 and q × 1 vectors of observations at time t, for
t = 1, . . . , T , on the endogenous variables y and non-modelled variables z; qt holds
the deterministic variables such as the Constant and Trend. INn[0,Ω] denotes an n-
dimensional independent, normal density with mean zero and covariance matrix Ω

(symmetric, positive definite). In (3.1), the parameters (π1,Φ,Γ1,Ω) are assumed
to be constant and variation free, with sufficient observations to sustain estimation and
inference.

Modelling in this tutorial starts with a closed linear dynamic system, using two lags:

yt = π1yt−1 + π2yt−2 + Φqt + vt,vt ∼ INn [0,Ω] , (3.2)

which is called a vector autoregression (VAR) when all y variables have the same lag
length. An example of a two-equation VAR(2) is:

Yat = δ0 + δ1Yat−1 + δ2Yat−2 + δ3Ybt−1 + δ4Ybt−2 + v1t,

Ybt = δ5 + δ6Yat−1 + δ7Yat−2 + δ8Ybt−1 + δ9Ybt−2 + v2t.
(3.3)

A more compact way of writing the system (3.1) is:

yt = Πuwt + vt, (3.4)

where w contains z, lags of z, lags of y and the deterministic variables q.
An in-depth discussion of the econometric analysis of a dynamic system is given in

Chapter 11.

16
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3.2 Formulating a system

Load the MulTut1 tutorial data set in OxMetrics. If you haven’t done so, start the
Model process in OxMetrics, and select Multiple Equation Dynamic Modelling using

PcGive on the Model dialog:

Click on Formulate to go directly to the Data selection dialog. The key information
required by PcGive in order to formulate the system comprises:

• the menu of endogenous (Y) variables (here Ya to Yd);
• their lag lengths (here 3; a common length is needed for cointegration analysis);
• the choice of deterministic variables (e.g., Constant and Trend);
• and their status (unrestricted, which is relevant for cointegration analysis);
• any additional unmodelled (Z) variables (none here).
• Later, estimation choices will need to specify the sample period and the method of

estimation. The next three dialogs elicit this information in a direct way.

First set the lag length to three (in the top in the middle). Mark Ya, Yb, Yc, Yd in
the list of database variables (remember, you can select multiple variables with the key-
board using the Shift key, or with the mouse by using Shift+click orCtrl+click),
press the Add button. Repeat for the Trend in the list of special variables. Current-
dated variables are automatically denoted as Y (endogenous) unless they are selected
from the list of special variables; a Constant is automatically added (but can be deleted
if so required). The special variables are Constant, Trend, Seasonal, and CSeasonal;
The constant and seasonals are by default classified as U(nrestricted). The next two
sections discuss these issues. Check that the status of Trend is indeed not marked as
U(nrestricted) (so it can be restricted in a later tutorial to enter the long run only, pre-
cluding a quadratic trend in the levels if some of the variables are found to have unit
roots). The following capture shows the dialog just before pressing OK:
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Other mouse-based operations are: double clicking on a variable in the database or
a special variable will add that variable to the model specification; double clicking on a
model variable will remove it, while right-clicking can be used to change the status.

3.3 Unrestricted variables

Variables can be classified as unrestricted. Such variables will be partialled out, prior to
FIML estimation, and their coefficients will be reconstructed afterwards. Suppose, for
example, that the constant in the above example is set to unrestricted. Then Ya, Ya 1,
Yb 1, Ya 2, Yb 2 and Yc are regressed on the constant; in subsequent estimation, PcGive
will use the residuals from these regressions and omit the constant (the coefficients
δ1 . . . δ5 and δ7 . . . δ11 in (3.3) are unaffected).

Although unrestricted variables do not affect the basic estimation, there are some
important differences in subsequent output:

1. Following estimation: the R2 measures and corresponding F-test are relative to the
unrestricted variables.

2. In cointegration analysis: unrestricted variables are partialled out together with the
short-run dynamics, whereas restricted variables (other than lags of the endogenous
variables) are restricted to lie in the cointegrating space.

3. In recursive FIML and CFIML estimation: the coefficients of unrestricted variables
are fixed at the full sample values.
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4. In FIML estimation: again, the result does not depend on the fact whether a variable
is unrestricted or not, but estimation of the smaller model could improve conver-
gence properties of the non-linear estimation process.

3.4 Special variables

The list of special variables contains the deterministic variables which are frequently
used in a model. For annual data, these are the Constant and the Trend. The constant
always has the value 1. The trend is 1 for the first database observation, 2 for the second,
and so forth.

For non-annual data, PcGive automatically creates a seasonal. The Seasonal is non-
centered, whereas CSeasonal is centered (mean 0). Seasonal will always be 1 in quarter
1, independent of the first observation in the sample. When adding the seasonal to
a model which already has a constant term, PcGive will add Seasonal, Seasonal 1 and
Seasonal 2. That corresponds to Q1, Q2 and Q3. When there is no constant, Seasonal 3
is also added. An example for quarterly data is:

Trend Seasonal CSeasonal Seasonal 1 Seasonal 2 Seasonal 3
1980 (1) 1 1 0.75 0 0 0
1980 (2) 2 0 −0.25 1 0 0
1980 (3) 3 0 −0.25 0 1 0
1980 (4) 4 0 −0.25 0 0 1
1981 (1) 5 1 0.75 0 0 0
1981 (2) 6 0 −0.25 1 0 0
1981 (3) 7 0 −0.25 0 1 0
1981 (4) 8 0 −0.25 0 0 1

3.5 Estimating an unrestricted system

After pressing the OK button to accept the system as formulated, PcGive brings up the
Model Settings dialog:

Select Unrestricted system, and press OK to move to the Estimate Model dialog:
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Check that the estimation sample is set to 1951(1)–2000(4) (200 observations), to en-
sure a common sample for all that follows. Ordinary Least Squares (OLS) should be
highlighted: click on OK to produce the estimation output.

Even in such a small system as the present one, a fair volume of output appears: yet
we have in fact set the Options dialog to produce minimum output, and adding tests,
forecasts etc., will magnify the output considerably. Recursive estimation will produce
a potentially enormous output. If there are n endogenous variables with m lags, and
q non-modelled variables with r lags, then each equation has k = nm + (r + 1)q

regressors. With T observations and M − 1 retained for initialization, there will be
nk(T −M + 1) coefficients, standard errors etc. plus 1

2n(n + 1)(T −M + 1) error
variances. Here, that would produce about 10 000 basic numbers to handle – hardly
‘data reduction’, and hardly comprehensible if presented as pure numerical information.
This problem of InfoGlut is tackled in PcGive by using graphical presentations as far as
possible to guide modelling. We will draw on and report here only those items of most
relevance as they are required. Thus, we now consider a few of the summary statistics.

First, the goodness of fit is best measured by the standard deviations of the residuals,
as these are either in the same units as the associated dependent variables, or for log
models, are a proportion. Moreover, they are invariant under linear transforms of the
variables in each equation. They are presented with each equation as σ and collected at
the end of the equation output. Here we have marked the diagonal for readability:

correlation of URF residuals (standard deviations on diagonal)
Ya Yb Yc Yd

Ya 0.016680 < -0.013268 -0.54810 -0.56481
Yb -0.013268 0.0098245 < -0.13913 0.037555
Yc -0.54810 -0.13913 0.0068800 < 0.41436
Yd -0.56481 0.037555 0.41436 0.012924 <

Consequently, the residual standard deviations are about 1.7%, 1.0%, 0.7% and 1.3%
respectively. Assuming that three lags were sufficient to produce white noise errors
on the system (an issue considered shortly), then these provide the baseline innovation
standard errors.

Next, the correlations between the residuals are shown in the off-diagonal elements.
There is one large positive correlation between Yc and Yd and two large negative corre-
lations between Ya and Yc, and Ya and Yd respectively. Such features invite modelling.
Finally, the correlations between fitted values and outcomes in each equation are:
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correlation between actual and fitted
Ya Yb Yc Yd

0.99963 0.99954 0.97104 0.98702

The squares of these correlations are the nearest equivalent to R2 in a multivariate con-
text, and as least-squares on each equation is valid here, their squares do coincide with
the conventional coefficient of multiple correlation squared R2. The correlation of ac-
tual and fitted remains useful when a model is developed, but no unique R2 measure is
calculable. The extremely high values reflect the non-stationarity apparent in the data
and do not by themselves ensure a sensible model.

3.6 Graphic analysis and multivariate testing

Rather than peruse the detailed output of coefficients, standard errors and so on to
try and interpret the system, we will now view the graphical output. Click on the
Model/Test menu in OxMetrics and select the Graphic Analysis item, as shown on
the next page. Mark the first three options, namely Actual and fitted, Cross plot of

actual and fitted, and Residuals (scaled).

Press OK on the graphics dialog. With four endogenous variables, there will be 12
graphs. The graphs will appear all at once in OxMetrics as shown in Figure 3.1. (When
graphs get small, the legends are automatically removed; double click on a graph and
use the legends dialog page to reinstate the legends if desired.)
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The obvious features of the graphs in Figure 3.1 are the very close fits (owing to
the integrated and non-stationary nature of the variables and, as before, should not be
taken as evidence for the goodness of the system representation); the close tracking of
the apparent changes in trend (again, a post-hoc feature which least-squares essentially
ensures will occur irrespective of the correctness of the model); and the relatively ran-
dom (white noise) appearance of the residuals in the final column. Further, the residuals
seem to be relatively homoscedastic with few outliers visible, the main exception being
the Ya residuals, where a large outlier appears in 1979(4).
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Figure 3.1 Actual and fitted values, their cross plots, and scaled residuals

We can investigate some of these aspects further by returning to the Graphic analy-

sis, but now selecting only Residual density and histogram and Residual correlogram

(ACF); remember to deselect actual and fitted and residuals. The resulting 8 graphs are
shown Figure 3.2.
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Figure 3.2 Residual autocorrelations, densities and histograms

The white-noise nature of the residuals is loosely confirmed by the absence of any
residual serial correlations in the residual ACF, and normality seems a fair approxi-
mation to the distributional shape. The Ya residuals appear normal except for the one
outlier which can be seen on the right. Note that the non-parametrically estimated densi-
ties are plotted beside the N[0, 1] for comparison. These are single equation diagnostics,
and appropriate system mis-specification tests must be conducted for data congruency
before proceeding.

Select the Test menu, choose Test, then mark the first four entries, and
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select the Vector tests radio button to obtain (after a suitable computational delay for
the calculation of these more demanding statistics):

Vector Portmanteau(12): Chi^2(144)= 148.52 [0.3811]

Testing for Vector error autocorrelation from lags 1 to 5
Chi^2(80)= 76.899 [0.5775] and F-form F(80,645)= 0.87519 [0.7695]

Vector Normality test for Residuals
Skewness

0.29071 -0.056267 -0.075580 0.064325
Excess kurtosis

3.9478 2.9789 3.0413 3.1549
Skewness (transformed)

1.7050 -0.33584 -0.45085 0.38385
Excess kurtosis (transformed)

2.3507 0.30030 0.47290 0.82882
Vector Normality test: Chi^2(8) = 9.8973 [0.2723]

Testing for Vector heteroscedasticity using squares
Chi^2(260)= 253.49 [0.6021] and F-form F(260,1561)= 0.96272 [0.6467]

If you run the single-equation tests, you’ll see that the only rejection is normality
for the Ya equation. In practical situations, one may consider adding an unrestricted
dummy for that particular observation. However, because the system version of the test
is insignificant, we treat the system as data congruent for the time being. The degrees
of freedom of these tests tend to be very large, so considerable mis-specification could
be hidden within an insignificant test, but without some notion as to its form, little
more can be done. Should many individual tests be conducted, it is important to control
the overall size of the procedure. However, we have also ignored the integrated (I(1))
nature of the data in setting implicit critical values: since these should usually be larger,
and no hypothesis as yet suggests rejection, no practical problems result. Wooldridge
(1999) shows that the diagnostic tests remain valid.

3.7 System reduction

We now return to the system specification-test information, and consider the F-tests for
the various variables in the system, which were printed as part of the initial regression
output. The tests for the overall significance in the system of each regressor in turn (that
is, its contribution to all four equations taken together) are:

F-tests on retained regressors, F(4,183) =
Ya_1 16.5680 [0.000]** Ya_2 3.57113 [0.008]**
Ya_3 1.50794 [0.202] Yb_1 27.4530 [0.000]**
Yb_2 0.781160 [0.539] Yb_3 0.399901 [0.809]
Yc_1 14.3843 [0.000]** Yc_2 2.08716 [0.084]
Yc_3 0.819438 [0.514] Yd_1 52.3821 [0.000]**
Yd_2 3.40769 [0.010]* Yd_3 0.493406 [0.741]
Trend 7.15357 [0.000]** Constant U 8.00744 [0.000]**



3.7 System reduction 25

Seven system regressors are significant at the 1% level, and a further two at (nearly) the
5% level, with the Trend highly significant. Conversely, all third lags and Yb 2 have
high probability values (that is, are not at all significant) and seem redundant. Care is
needed when eliminating variables that are highly intercorrelated (for example, Yd 2
and Yd 3), and since a common lag length is needed for the cointegration analysis,
we first investigate deleting all lags at length 3, since none is very significant. Thus,
select Model, Formulate, and mark Ya 3, Yb 3, Yc 3 and Yd 3, and then Delete. Accept
the reduced system, keeping the estimation sample period unchanged, estimate and the
output appears. Again the details are reported at the end of this chapter, and here we
note the same summary statistics as before:

correlation of URF residuals (standard deviations on diagonal)
Ya Yb Yc Yd

Ya 0.016541 -0.018395 -0.54692 -0.56326
Yb -0.018395 0.0098044 -0.12842 0.049441
Yc -0.54692 -0.12842 0.0068527 0.42397
Yd -0.56326 0.049441 0.42397 0.013009

correlation between actual and fitted
Ya Yb Yc Yd

0.99963 0.99953 0.97065 0.98657

The residual standard deviations are essentially unaltered, confirming the unimportance
for fit of the eliminated variables.

Next select Model, Progress to check the statistical relevance of the deletions. The
Progress dialog is:

Accept to see the output:
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Progress to date
Model T p log-likelihood SC HQ AIC
SYS( 1) 200 56 OLS 2582.7528 -24.344 -24.894 -25.268
SYS( 2) 200 40 OLS 2575.7408 -24.698< -25.090< -25.357<

Tests of model reduction
SYS( 1) --> SYS( 2): F(16,559)= 0.81220 [0.6723]

The reduction by 16 parameters for eliminating lag length 3 is acceptable on the overall
F-test, and reduces the ‘costs’ as measured by the model-selection criteria which seek
to balance fit with degrees of freedom.

The summary F-statistics suggest that some lag-2 variables matter greatly, and the
Trend remains borderline significant using conventional significance levels, so we retain
it until after the more appropriate cointegration analysis in the next tutorial.

F-tests on retained regressors, F(4,187) =
Ya_1 20.0751 [0.000]** Ya_2 6.28850 [0.000]**
Yb_1 28.1894 [0.000]** Yb_2 1.19728 [0.313]
Yc_1 16.5842 [0.000]** Yc_2 3.19859 [0.014]*
Yd_1 54.9586 [0.000]** Yd_2 2.71702 [0.031]*
Trend 7.93233 [0.000]** Constant U 9.03718 [0.000]**

3.8 System reduction using Autometrics

The objective of automatic model selection is to let the computer do the reduction which
we just did by hand. These facilities are activated by clicking in the Autometrics box.

Autometrics is a computer implementation of general-to-specific modelling, see
Volume I. Because Autometrics is implemented in likelihood terms, it does not care
whether it is reducing a single equation or a multiple equation model. In the latter
case, the same F-tests as in the previous section are used, together with the vector mis-
specification tests. Now, variables are removed from all equations, or not at all. The
resulting system may not be a VAR anymore (i.e. the lag lengths of variables may not
be kept the same), but can be changed back into a VAR easily.

The starting point for Autometrics is a system, formulated in the normal way. This
initial model of the system is called the general unrestricted model or GUM. It should
be a well-specified model, able to capture the salient features of the dependent variable
and pass all diagnostic tests. Following the GUM, the main decision is the significance
level that should be used for the reduction. This determines at what significance re-
gressors are removed. It also specifies the extent to which we accept a deterioration in
information relative to the GUM.

The output of a reduction at 5% shows that presearch lag-reduction removes all four
regressors at lag 3 (16 coefficients):

---------- Autometrics: dimensions of initial GUM ----------
no. of observations 200 no. of parameters 56
no. free regressors (k1) 13 no. free components (k2) 0
no. of equations 4 no. diagnostic tests 4
Fixed regressors:
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[0] = Constant

[0.2] Presearch reduction of initial GUM

Starting closed lag reduction at 0.33365
Removing lags(#regressors): 3(4)

Starting common lag reduction at 0.33365
Removing lags(#regressors): none

Starting common lag reduction at 0.33365 (excluding lagged y’s)
Removing lags(#regressors): none

Presearch reduction in opposite order

Starting common lag reduction at 0.33365 (excluding lagged y’s)
Removing lags(#regressors): none

Starting common lag reduction at 0.33365
Removing lags(#regressors): 3(4)

Starting closed lag reduction at 0.33365
Removing lags(#regressors): none

Encompassing test against initial GUM (iGUM) removes: none

Presearch reduction: 4 removed, LRF_iGUM(16) [0.6723]
Presearch removed:
[0] = Ya_3
[1] = Yb_3
[2] = Yc_3
[3] = Yd_3

[0.3] Testing GUM 0: LRF(36) [0.0000] kept

[1.0] Start of Autometrics tree search

Searching from GUM 0 k= 9 loglik= 2575.74
Found new terminal 1 k= 8 loglik= 2573.21 SC= -24.778

Searching for contrasting terminals in terminal paths

Encompassing test against GUM 0 removes: none

p-values in GUM 1 and saved terminal candidate model(s)
GUM 1 terminal 1

Ya_1 0.00000000 0.00000000
Ya_2 0.00004368 0.00004368
Yb_1 0.00000000 0.00000000
Yc_1 0.00000000 0.00000000
Yc_2 0.01084969 0.01084969
Yd_1 0.00000000 0.00000000
Yd_2 0.00869608 0.00869608
Trend 0.00000282 0.00000282
k 8 8
parameters 36 36
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loglik 2573.2 2573.2
AIC -25.372 -25.372
HQ -25.132 -25.132
SC -24.778 -24.778

Searching from GUM 1 k= 8 loglik= 2573.21 LRF_GUM0( 1) [0.3135]
Recalling terminal 1 k= 8 loglik= 2573.21 SC= -24.778

Searching for contrasting terminals in terminal paths

[2.0] Selection of final model from terminal candidates: terminal 1

p-values in Final GUM and terminal model(s)
Final GUM terminal 1

Ya_1 0.00000000 0.00000000
Ya_2 0.00004368 0.00004368
Yb_1 0.00000000 0.00000000
Yc_1 0.00000000 0.00000000
Yc_2 0.01084969 0.01084969
Yd_1 0.00000000 0.00000000
Yd_2 0.00869608 0.00869608
Trend 0.00000282 0.00000282
k 8 8
parameters 36 36
loglik 2573.2 2573.2
AIC -25.372 -25.372
HQ -25.132 -25.132
SC -24.778 -24.778

=======

p-values of diagnostic checks for model validity
Initial GUM cut-off Final GUM cut-off Final model

AR(5) 0.76948 0.01000 0.89700 0.01000 0.89700
Normality 0.27231 0.01000 0.32947 0.01000 0.32947
Hetero 0.88518 0.01000 0.32339 0.01000 0.32339
Chow(70%) 0.92697 0.01000 0.93855 0.01000 0.93855

Summary of Autometrics search
initial search space 2^13 final search space 2^8
no. estimated models 9 no. terminal models 1
test form LR-F target size Default:0.05
outlier detection no presearch reduction lags
backtesting GUM0 tie-breaker SC
diagnostics p-value 0.01 search effort standard
time 0.21 Autometrics version 1.5e

The subsequent reduction only removes one further variable: Yb 2.

3.9 Dynamic analysis

As a prelude to cointegration analysis, we consider several features of the dynamics of
the system. Chapter 11 explains the mathematics. The starting point is the VAR with
up to two lags of all variables. Select Test/Dynamic Analysis, and mark Static-long
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run solution and Plot roots of companion matrix.

which will produce extensive output as follows:
Long-run matrix Pi(1)-I = Po

Ya Yb Yc Yd
Ya -0.10542 0.034061 -0.56666 -0.81271
Yb 0.0087339 -0.20631 0.38600 -0.24463
Yc -0.0060918 0.061448 -0.23078 0.044220
Yd 0.0073431 -0.038269 0.24051 -0.067974

Long-run covariance
Ya Yb Yc Yd

Ya 7.1894 0.85063 -0.16998 -0.74057
Yb 0.85063 0.11627 -0.015486 -0.090387
Yc -0.16998 -0.015486 0.0055835 0.016610
Yd -0.74057 -0.090387 0.016610 0.077003

Static long run
Trend Constant

Ya -0.0014309 8.5200
Yb 0.0061396 10.872
Yc 0.00039009 0.063465
Yd 0.00066191 0.31232

Standard errors of static long run
Trend Constant

Ya 0.0045475 1.0699
Yb 0.00057830 0.13606
Yc 0.00012673 0.029817
Yd 0.00047063 0.11073

Mean-lag matrix sum pi_i:
Ya Yb Yc Yd

Ya 1.2617 -0.17395 -0.30937 -0.91999
Yb 0.010025 0.85410 0.49334 -0.28166
Yc -0.036173 0.11715 0.91991 0.073673
Yd -0.075414 -0.017779 0.21902 0.76213

Eigenvalues of long-run matrix:
real imag modulus

-0.4345 0.0000 0.4345
-0.05790 -0.04791 0.07516
-0.05790 0.04791 0.07516
-0.06014 0.0000 0.06014
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I(2) matrix Gamma:
Ya Yb Yc Yd

Ya 1.3671 -0.20802 0.25729 -0.10727
Yb 0.0012916 1.0604 0.10734 -0.037031
Yc -0.030082 0.055705 1.1507 0.029453
Yd -0.082757 0.020490 -0.021496 0.83011

From the eigenvalues of P̂0 = π̂(1) − In = π̂1 + π̂2 − In, the rank of the long-
run matrix seems to be less than 4 (there are three small eigenvalues), consistent with
the apparent non-stationarity of the data. However, the rank is also greater than zero,
suggesting some long-run relations, or cointegration, between the variables. Figure 3.3
shows that the companion matrix has no roots outside the unit circle, which might signal
an explosive system, nor more roots close to unity than the dimension of the long-run
matrix, consistent with the system being I(1), rather than I(2). Nevertheless, the three
eigenvalues greater than 0.9 suggest at most 2 long-run relations: any more would cast
doubt on our tentative classification. The non-stationarity is reflected in the huge values
on the diagonal of the long-run covariance matrix, and the poorly determined static long
run. However, the long-run trend is nearly significant for Ya, supporting retaining it as
a system regressor.
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Figure 3.3 Roots of companion matrix

3.10 Recursive estimation

The next main feature to be described concerns graphical examination of parameter
constancy using recursive methods. Select Model, Estimate, and tick the box for Re-

cursive estimation (we used 36 observations to initialize here). The output in the results
window will be identical to OLS, but selecting Test reveals that Recursive Graphics is
now a feasible selection.
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Choose it to bring up the Recursive Graphics dialog (also available by clicking on
the ‘Chow-test’ icon – the red graph with the straight line):
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Figure 3.4 Recursive estimation statistics

Mark 1-step residuals, 1-step Chow tests, and break-point Chow tests; keep the signifi-
cance level at 1% given that there are close to 200 statistics per equation. There will be
14 graphs: 1-step residuals, 1-step and N↓ (or break-point) Chows for each of the four
equations, plus 1-step and N↓ Chows for the system as a whole (called ‘Chow’ in the
Figure). The output looks like Figure 3.4. The vast majority of the 1-step residuals lie
within their anticipated 95% confidence intervals (that is, 0 ± 2σ̃t). About 1% of the
1-step tests should be significant etc. Overall, constancy is not rejected, so the system
with two lags seems acceptable on the analysis thus far.

The next stage is to consider the integration and cointegration properties of the
system, which is the subject of the second tutorial. Prior to that, we look at batch files,
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and note the use of PcGive for forecasting — although in econometric terms, that would
be best undertaken after the system has been reduced to I(0).

3.11 Batch editor

While we have been formulating our system, PcGive has been quietly recording the
resulting instructions, and these can be viewed in the batch editor. Activate the Batch

Editor in OxMetrics (its icon is the OxMetrics picture with a red arrow) to see the
system record in batch code:

module("PcGive");
package("PcGive", "Multiple-equation");
usedata("MulTut1.in7");
system
{

Y = Ya, Yb, Yc, Yd;
Z = Ya_1, Ya_2, Yb_1, Yb_2, Yc_1, Yc_2, Yd_1, Yd_2, Trend;
U = Constant;

}
estimate("OLS", 1951, 1, 2000, 4, 0, 28);

This batch file can be saved before exiting the batch editor, so that it can be rerun
on restarting to resume the analysis wherever it was terminated.

As can be seen, the information in the batch file relates to the specification of
the system (which variables are involved, their classification into endogenous, non-
modelled and unrestricted variables, and the method of estimation with its associated
sample period and recursive initialization). To run a batch file, click on OK in the
OxMetrics Batch editor. A full overview of the relevant batch commands is given in
Appendix A1.

Click on Load History in the Batch Editor to see the code for theentire modelling
history. Here we make a few changes. We keep the recursive estimation (to remove
it, change the number 28 in estimate to 0), but add in some batch code to create first
differences, which we will use later. The final code is:

module("PcGive");
package("PcGive", "Multiple-equation");
usedata("MulTut1.in7");
algebra
{
DYa = diff(Ya, 1);
DYb = diff(Yb, 1);
DYc = diff(Yc, 1);
DYd = diff(Yd, 1);

}
system
{
Y = Ya, Yb, Yc, Yd;
Z = Ya_1, Ya_2, Yb_1, Yb_2, Yc_1, Yc_2, Yd_1, Yd_2, Trend;
U = Constant;

}
estimate("OLS", 1951, 1, 2000, 4, 0, 28);
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There is no need to save this file, as it is supplied with PcGive as MulTut1.fl in
the batch folder.

3.12 Forecasting
PcGive supports three distinct types of forecast analysis. First, within the available
data sample, sequences of 1-step-ahead out-of-estimation-sample forecasts can be gen-
erated. Select Model, Estimate, deselect recursive estimation, keep estimation set to
1951(1) – 1995(4), but now less 20 forecasts, then accept. The following summary
statistics are reported (Test/Further Output can be used to print more extensive out-
put):

1-step (ex post) forecast analysis 1996 (1) to 2000 (4)
Parameter constancy forecast tests:
using Omega Chi^2(80)= 94.199 [0.1326] F(80,170)= 1.1775 [0.1891]
using V[e] Chi^2(80)= 86.798 [0.2826] F(80,170)= 1.0850 [0.3265]
using V[E] Chi^2(80)= 87.503 [0.2650] F(80,170)= 1.0938 [0.3113]

1-step Forecasts 
Ya 

1995 2000

8.8

8.9

1-step Forecasts 
Ya 

1-step Forecasts 
Yb 

1995 2000

12.0

12.1

12.2
1-step Forecasts 
Yb 

1-step Forecasts 
Yc 

1995 2000

0.100

0.125

1-step Forecasts 
Yc 

1-step Forecasts 
Yd 

1995 2000

0.35

0.40

1-step Forecasts 
Yd 

Chow 

1996 1997 1998 1999 2000 2001

2.5

5.0

7.5

10.0
Chow 

Figure 3.5 1-step forecast statistics

Again, graphics provide a convenient medium, so select Test, Graphic Analysis, and
mark Forecasts and outcomes, as well as Forecast Chow tests (the latter is under
the Further graphs section), creating five graphs. The output is in Figure 3.5. The
forecasts lie within their 95% confidence intervals (shown by the vertical error bars of
±2SE, based on the 1-step ahead forecast error variances; the factor two can be changed
when the graph is displayed in OxMetrics using the Line Attributes graph edit page).
The system constancy test is not significant at the 5% level at any horizon (this is an
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unscaled χ2 test, with the 5% significance line as shown).
For purely ex ante dynamic forecasts, select Forecast from the Test menu. The two

types of forecasts available here are:
1. Dynamic forecasts

Dynamic forecasts use forecasted values for the lagged dependent variables that fall
in the forecast period, but require future values of other regressors. Future values
are readily available for deterministic variables. In this case, the model is closed, so
forecasts can be made as far ahead as required.

2. h-step forecasts
Up to h forecasts, the graphs will be identical to the dynamic forecasts. Thereafter,
h-step forecasts will be graphed: at T + h the dynamic forecast for T + h starting
from T , at T + h + 1 the dynamic forecast for that period starting at T + 1, at
T + h+ 2 the dynamic forecast starting at T + 2, etc.
Forecasts are drawn with or without 95% error bars or bands, but by default only

the innovation uncertainty (error variance) is allowed for in the computed forecast error
variances. Optionally, parameter uncertainty can be taken into account when computing
the forecast error variances.

In the dialog, set 44 periods, keep error variance only as the option for standard
errors, choose error fans under Graph Options(showing darker colours as the probability
rises),1 as shown on the next page.

1The Bank of England popularized this form of forecast error reporting: see e.g., Britton,
Fisher, and Whitley (1998). Because they used red for errors around inflation forecasts, and
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Accept to produce Figure 3.6. Note that you can switch between showing error
bars, fans and bands in the Options section of the Forecast dialog. Once a graph is on
screen, you can also switch between error fans, bands and bars as follows: double click
on the graph, select the appropriate area and vector (Forecasts x (time) here), and make
a choice under Error bars.
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Figure 3.6 Dynamic forecasts

We have highlighted the ex ante period. The uncertainty about the future increases
rapidly, and little confidence can be held in the end-of-sample predictions. This is a
natural consequence of the implicit unit roots in the system, and matches the large
increases seen above between the conditional 1-step residual variances and the long-run
variances. The data were actually available for the first 36 ‘out of sample’ values, and as
shown in Figure 3.6, reveal the large potential departures between multi-step forecasts
and outcomes that are compatible with a considerable degree of forecast uncertainty.

The final forecast mode shown in Figure 3.7 is a sequence of h-step-ahead out-of-
estimation-sample forecasts for any choice of h. Select Test, Forecast. The selection
now follows the same path as the previous choice except that h-step must be marked in
the Forecast dialog, and the desired value of h entered (set h = 12 here, given that the
frequency is monthly). Thus, keep 44 periods, mark the error bars and 1-step, but set
the number of steps to 12. The output will coincide with that from dynamic forecasts for
the first 12 steps, then continue at 12 steps for the remainder up to 12 periods beyond. In
effect, therefore, dynamic forecasts correspond to setting h equal to the forecast period.
The uncertainty remains constant from 12 steps onwards in Fig. 3.7, and the forecasts

green for GNP forecasts, these charts became known as ‘rivers of blood and bile’: see Coyle
(2001) for an amusing discussion.



36 Chapter 3 Tutorial on Unrestricted System Estimation and Evaluation

12-step Forecasts Ya 

1995 2000 2005

8.50

8.75

9.00

9.25 12-step Forecasts Ya 12-step Forecasts Yb 

1995 2000 2005

12.0

12.1

12.2

12.3
12-step Forecasts Yb 

12-step Forecasts Yc 

1995 2000 2005

0.10

0.12

0.14

12-step Forecasts Yc 12-step Forecasts Yd 

1995 2000 2005

0.35

0.40

0.45

0.50 12-step Forecasts Yd 

Figure 3.7 12-step forecasts

start to behave more like the actual data. This happens because the 13th forecast is
actually the 12-step forecast starting at T + 2, etc.

The outcomes are rather poor, even though the system in fact coincides with the
reduced form of the data generation process (whose form is a secret we shall not reveal
at this stage). The error bands are based on an asymptotic approximation which neglects
parameter uncertainty, and this could underestimate forecast error variances in small
samples. One potential advantage of a more restricted model of the system is that
parameter variability may be considerably reduced.

3.13 Equilibrium-correction representation

This is a simple yet useful transform of a dynamic system which can facilitate the inter-
pretation of systems by mapping from yt, yt−1, yt−2 to ∆yt, ∆yt−1, and yt−1 where
only the first lag remains in levels. Linear systems are invariant under linear transforms
in that the likelihood is unaltered, and if Π̂ is the original estimate of a coefficient ma-
trix Π, and we map to AΠ, then the estimate of the transformed matrix ÂΠ is equal to
AΠ̂. Unit roots are still estimated if any are present, but graphs and many specification
test statistics are easier to interpret. Since the residuals are unaltered, diagnostic tests
are not changed, nor are such calculations as dynamic analysis (provided the link be-
tween ∆yt and yt is taken into account), dynamic forecasting and dynamic simulation.
However, graphical analysis (such as actual and fitted, static forecasts etc.) will change
to match the use of a dependent variable in differences. Note that this transformation
was called error-correction form in the previous edition of this book.
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If you have not yet created the differences of Ya, Yb, Yc, and Yd, do this now us-
ing the default names DYa, DYb, DYc, DYd. Then formulate the previous model in
differences: for each variable, enter the differences as endogenous variables, using one
lagged difference, as well as the one-period lagged levels. Don’t forget to add the Trend,
as shown above.

It is important to bear in mind that PcGive will not recognize the relation between
the lagged level and the differenced level in the differenced system. As a consequence
some results will not match between the two representations. In particular, the dynamic
analysis will be different. All misspecification tests will be identical, with the exception
of the heteroscedasticity tests, which uses the squared endogenous variables as regres-
sors.
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Figure 3.8 Fitted and actual values for differences
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Choose OLS with 0 forecasts, still starting in 1951 (1), then accept. We only note
the summary information on F-tests and the correlation between actual and fitted as
most other statistics are unaltered.

F-tests on retained regressors, F(4,187) =
DYa_1 6.28850 [0.000]** DYb_1 1.19728 [0.313]
DYc_1 3.19859 [0.014]* DYd_1 2.71702 [0.031]*
Ya_1 34.6163 [0.000]** Yb_1 7.76914 [0.000]**
Yc_1 13.8266 [0.000]** Yd_1 54.1003 [0.000]**
Trend 7.93233 [0.000]** Constant U 9.03718 [0.000]**

correlation between actual and fitted
DYa DYb DYc DYd

0.81175 0.52949 0.40986 0.30598

The actual and fitted graphs are perhaps the most changed as Figure 3.8 shows. The
less than spectacular fits are clear, especially the much lower correlations implicit in the
cross plots, even though the scaled residuals graphs are identical to those shown above.

There are many aspects that can now be explored without further guidance from us:
try the test summary for additional single-equation diagnostics; try forecasting without
error confidence intervals shown, noting how misleading such results are, and compare
them with the output from dynamic simulation.

This concludes the first tutorial on formulating, estimating, testing, and analyzing a
dynamic system. If you wish, you can save the Results window, but there is no need to
save the database: remember that we only changed it by creating differences; we shall
recreate these in Chapter 6. The batch file is already provided, but otherwise it is easy
to save the algebra file, or better still, add the required algebra commands to the start of
a batch file.



Chapter 4

Tutorial on Cointegration Analysis

4.1 Introduction to cointegration analysis
As discussed in §3.13, the system (3.2) can be written in equilibrium-correction form
as:

∆yt = (π1 + π2 − In) yt−1 − π2∆yt−1 + Φqt + vt,

or, writing P0 = π1 + π2 − I, and δ1 = −π:

∆yt = P0yt−1 + δ1∆yt−1 + Φqt + vt. (4.1)

Equation (4.1) shows that the matrix P0 determines how the level of the process y

enters the system: for example, when P0 = 0, the dynamic evolution does not depend
on the levels of any of the variables. This indicates the importance of the rank of P0

in the analysis. P0 =
∑
πi − In is the matrix of long-run responses. The statistical

hypothesis of cointegration is:

H(p): rank (P0) ≤ p.

Under this hypothesis, P0 can be written as the product of two matrices:

P0 = αβ′,

where α and β have dimension n × p, and vary freely. As suggested by Johansen
(1988), Johansen (1995b), such a restriction can be analyzed by maximum likelihood
methods.

So, although vt ∼ INn[0,Ω], and hence is stationary, the n variables in yt need
not all be stationary. The rank p of P0 determines how many linear combinations of
variables are I(0). If p = n, all variables in yt are I(0), whereas p = 0 implies that ∆yt
is I(0). For 0 < p < n there are p cointegrating relations β′yt which are I(0). At this
stage, we are not discussing I(2)-ness, other than assuming it is not present.

The approach in PcGive to determining cointegration rank, and the associated coin-
tegrating vectors, is based on Johansen (1988), extended for various tests as described

39
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below. Chapter 12 explains the mathematics and statistics. Other useful references
which provide more extensive treatments include Johansen (1995b) and Hendry (1995).
For more expository overviews, we recommend Doornik, Hendry, and Nielsen (1998)
and Hendry and Juselius (2001). Since it is very important how deterministic variables
are treated, we first turn to that issue.

4.2 Intercepts and linear deterministic trends I
Deterministic terms, such as the intercept, linear trend, and indicator variables, play
a crucial role in both data behaviour and limiting distributions of estimators and tests
in integrated processes: see, for example, Johansen (1994). Depending on their pres-
ence or absence, the system may manifest drift, linear trends in cointegration vectors,
or even quadratic trends (although the last seem unlikely in economics). Appropriate
formulation of the model is important to ensure that cointegrating-rank tests are not
too dependent on ‘nuisance parameters’ related to the deterministic terms. Here we
consider the intercept and trend.

When determining rank, three models merit consideration. These can be described
by the dependence of the expected values of y and β′y on functions of time t:

Hypothesis y β′y

Hl(p) linear linear
Hc(p) constant constant
Hz(p) zero zero

In these models, the process y and the cointegrating relations exhibit the same deter-
ministic pattern. At a later stage, when the rank has been determined, it will be possible
to consider further models of the trending behaviour. Note that, under Hz(p), it is nec-
essary that E[y0] = E[∆y0] = 0 to ensure that the non-stationary components have
zero expectation. Likewise, for the other models, the conditions on the initial values
must be such that they preserve the postulated behaviour.

4.3 Unrestricted and restricted variables
The status of the non-modelled variables determines how they are treated in the cointe-
gration analysis. For the constant and trend:

Hypothesis Constant Trend
Hl(p) unrestricted restricted
Hc(p) restricted not present
Hz(p) not present not present

Here we adopt Hl(p): the Constant is unrestricted and the Trend is restricted. This
allows for non-zero drift in any unit-root processes found by the cointegration analysis.
Unless there are good reasons to the contrary, it is usually unwise to force the constant
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to lie in the cointegration space: however, when modelling variables with no possibility
of inherent drift, such as interest rates, it can be useful to restrict the constant.

The Trend is restricted to lie in the cointegrating space. In terms of (4.1):

∆yt = αβ′0yt−1 + δ1∆yt−1 + φ0 + φ1t+ vt, φ1 = αβ′1,

which can be written as:

∆yt = α (β′0 : β′1)

(
yt−1

t

)
+ δ1∆yt−1 + φ0 + vt.

Generally, a quadratic deterministic trend in levels of economic variables is not a sensi-
ble long-run outcome, so the Trend should usually be forced to lie in the cointegration
space, thereby restricting the system to at most a linear deterministic trend in levels,
and perhaps cointegration relations.

4.4 Estimating the vector autoregression
To do cointegration analysis in PcGive, simply formulate the VAR in levels, and esti-
mate as an unrestricted reduced form. The VAR for this chapter consists of four equa-
tions: Ya, Yb, Yc, Yd from the dataset MulTut1.IN7, and two lags. In addition there
is an unrestricted Constant, and a restricted Trend. The sample period is 1951(1) to
2000(4). This is the system estimated in §3.7. If you are continuing from the previous
chapter, formulate and estimate the unrestricted system as described above. To check:
you should find a log-likelihood of 2575.74078.

Cointegration analysis in PcGive involves two step:
1. Determine the cointegrating rank p. The test is a likelihood-ratio test, but it does

not have the standard χ2 distribution.
2. Impose p, and test for further restrictions on the cointegrating space, leaving the

rank unchanged. Once the rank is assumed, most tests have standard distributions
again. That is the topic of the next Chapter.

4.5 Cointegration analysis

Select Test/Dynamic analysis and check I(1) cointegration analysis. The output is:

I(1) cointegration analysis, 1951 (1) to 2000 (4)
eigenvalue loglik for rank

2456.105 0
0.59790 2547.212 1
0.19503 2568.907 2
0.045374 2573.551 3
0.021664 2575.741 4

H0:rank<= Trace test pvalue
0 239.27 [0.000] **
1 57.058 [0.001] **
2 13.667 [0.688]
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3 4.3804 [0.689]

Asymptotic p-values based on: Restricted trend, unrestricted constant
Unrestricted variables:
[0] = Constant
Restricted variables:
[0] = Trend
Number of lags used in the analysis: 2

beta (scaled on diagonal; cointegrating vectors in columns))
Ya 1.0000 -0.12022 -0.59067 1.1218
Yb -0.034236 1.0000 4.7611 -7.1907
Yc 5.2236 -2.8748 1.0000 -11.471
Yd 8.4541 0.64638 -3.4438 1.0000
Trend -0.0059925 -0.0056181 -0.028187 0.049566

alpha
Ya -0.10068 0.030138 -0.0068447 -0.0045982
Yb -0.016845 -0.17602 -0.0026109 0.0025638
Yc 0.00057796 0.070334 0.0026466 0.0029856
Yd 0.0025727 -0.081061 0.011275 0.0015021

long-run matrix, rank 4
Ya Yb Yc Yd Trend

Ya -0.10542 0.034061 -0.56666 -0.81271 0.00039902
Yb 0.0087339 -0.20631 0.38600 -0.24463 0.0012905
Yc -0.0060918 0.061448 -0.23078 0.044220 -0.00032523
Yd 0.0073431 -0.038269 0.24051 -0.067974 0.00019663

The output consists of the cointegrating vectors β̂, the feedback coefficients (also
called loading matrix) α̂, the long-run matrix P̂0 = α̂β̂′, and eigenvalues and test
statistics.

There are two very small eigenvalues and two judged significant at the 1% level
on the p-values (see Doornik, 1998 for the distribution approximations). This outcome
determines the rank of P̂0 as 2 (that is, we reject H0: p = 0 and H0: p ≤ 1).

The columns of β̂ are the cointegrating vectors. Note that for any non-singular
matrix Q:

α̂QQ−1β̂′ = α̂β̂′, (4.2)

so the long-run matrix is unaffected by a rotation of the cointegrating space. The output
therefore (arbitrarily) standardizes the output so that β̂ has ones on the diagonal.

At this stage the long-run matrix is still the same as that obtained from dynamic
analysis in the previous chapter.
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4.6 Intercepts and linear deterministic trends II

Two additional models arise when we consider the additional options for entering the
Constant and Trend:

Hypothesis y β′y trend constant
Hql(p) quadratic linear unrestricted unrestricted
Hl(p) linear linear restricted unrestricted
Hlc(p) linear constant not present unrestricted
Hc(p) constant constant not present restricted
Hz(p) zero zero not present not present

As discussed in Doornik, Hendry, and Nielsen (1998), likelihood-ratio test statistics
for the two additional models have also been derived by Johansen (1995b). The asymp-
totic distribution under Hql(p) depends on nuisance parameters, and this complicates
the rank determination considerably (op. cit., Theorem 6.2). To develop a consistent
test procedure, the idea is to only test Hql(p) if Hl(p) has been rejected (op. cit., Ch.
12). The relevant hypotheses are nested as:

Hql(0) ⊂ · · · ⊂ Hql(p) ⊂ · · · ⊂ Hql(n)

∪ ∪ q
Hl (0) ⊂ · · · ⊂ Hl(p) ⊂ · · · ⊂ Hl(n).

(4.3)

By testing the hypotheses

Hl(0),Hql(0),Hl(1),Hql(1), . . . ,Hl(n− 1),Hql(n− 1),

sequentially against the unrestricted alternative and stopping whenever the hypothesis
is accepted, a consistent procedure is obtained.

A corresponding complication arises with Hlc(r). The test procedure is then based
on:

Hlc(0) ⊂ · · · ⊂ Hlc(p) ⊂ · · · ⊂ Hlc(n)

∪ ∪ q
Hc(0) ⊂ · · · ⊂ Hc(r) ⊂ · · · ⊂ Hc(n).

(4.4)

When we allow for a quadratic trend in the current model we find for the trace test: p = 0 p ≤ 1 p ≤ 2 p ≤ 3

Hql(p) 229∗∗ 53.9∗∗ 10.8 4.1∗

Hl(p) 239∗∗ 57.1∗∗ 13.7 4.4

 .
We encounter 239∗∗, 229∗∗, 57.1∗∗, 53.9∗∗, 13.7, so that the first hypothesis to be
accepted is Hl(2). Therefore the quadratic trend is rejected, and the conclusion is as
before. We ignore the final test statistic for Hql(p), which is just significant at the 5%
level.
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4.7 Recursive eigenvalues

Recursive estimation can also be a valuable tool in assessing constancy in cointegrated
models. To activate recursive cointegrating, we need to move from the unrestricted
reduced form to the cointegrated VAR, so at the Model Settings stage select the latter:

The next dialog asks for the cointegrated VAR settings. Set the rank to four, and keep
No additional restrictions:

This results in exactly the same model as before, because no rank restrictions have been
imposed yet. In the next dialog, start estimation at 1951(1) as before, and select recur-
sive estimation with 28 observations to initialize. The output omits the test statistics for
the rank: it is assumed that the rank of the cointegration space is fixed.

Test/Recursive Graphics shows the recursive eigenvalue – Figure 4.1a has them all
in one graph. The eigenvalues are relatively constant, the first two at non-zero values,
the third much smaller but visibly above zero, and the last at close to zero throughout.
However, these are conditional on having partialled out the full-sample dynamics and
unrestricted variables, so are more ‘constant’ than would have been found at the time
on a smaller sample.

To obtain eigenvalues for each sample size with re-estimation of the full analysis,
tick the option under recursive estimation in the cointegrated VAR settings.

Estimation now takes somewhat longer: for each t = M, . . . , T the complete anal-
ysis is redone. The results in Fig. 4.1b show larger changes, equivalent to what an
investigator at the time would have found.
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Figure 4.1 Recursive eigenvalues

4.8 Cointegration graphics
Select Test and Graphic Analysis, which has an additional section for cointegration
graphics.

Mark the first two entries for Cointegration relations and Actual and fitted. Then
click OK to see Figure 4.2.

The first four graphs of Figure 4.2 show the linear combinations β̂′yt, the next four
plot the sum of the non-normalized coefficients (with the opposite sign as in regression,
namely −

∑
j 6=i β̂jyjt) against the normalized variable (that is, long-run fitted and ac-

tual). The first two cointegration vectors look fairly stationary, with fitted and actual
tracking each other reasonably closely. The last two look less non-stationary, with not
much relation between fitted and actuals.

The β̂′xt do not correct for short-run dynamics, so would look more stationary still
if the Use (Y 1:Z) with lagged DY and U removed option was marked in the dialog,
see Figure 4.3.
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Figure 4.2 Time series of cointegration vectors
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Figure 4.3 Time series of cointegration vectors, corrected for short-run dynamics



Chapter 5

Tutorial on Cointegrated VARs

5.1 Introduction

The results from the previous chapter suggested a cointegration space with rank 2. One
possibility is just to accept this with the corresponding cointegrating vectors, but these
are unlikely to coincide with the structural relations. Another, which we follow, is to
uniquely determine the cointegration vectors based on economic theory, but supported
by statistical testing. This requires knowledge about the economic analysis being un-
dertaken, which is difficult to accomplish for artificial data.

Doornik, Hendry, and Nielsen (1998) designed the DGP from which the data are a
replication to mimic their final model for UK money demand. Accordingly, Ya corre-
sponds to the logarithm of real money demand (m− p), Yb equals the logs of total final
expenditure (i), Yc is inflation (∆p), and Yd measures the opportunity costs of holding
money (Rn).

5.2 Imposing the rank of the cointegration space

The first step is to compute P̂0 when only a rank restriction is imposed: here we wish
to set p = 2. If you start afresh, formulate the model as a VAR(2) in the four Ya,. . . ,Yd
variables, with unrestricted Constant and restricted Trend (i.e., the Trend is not unre-
stricted, which is the default). Follow §4.7 by selecting Cointegrated VAR at the Model

Settings stage, then setting the rank to 2, but imposing no further restrictions:

47
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Estimate over the same 200 observations (1951-1 to 2000-4), without recursive es-
timation. The output does not report the coefficients of the short-run dynamics (∆yt−1

here), nor the coefficients of the unrestricted variables (the Constant in this model).
SYS( 1) Cointegrated VAR (using MulTut1.in7)

The estimation sample is: 1951(1) - 2000(4)

Cointegrated VAR(2) in:
[0] = Ya
[1] = Yb
[2] = Yc
[3] = Yd

Unrestricted variables:
[0] = Constant
Restricted variables:
[0] = Trend

Number of lags used in the analysis: 2

beta
Ya 1.0000 -0.12022
Yb -0.034236 1.0000
Yc 5.2236 -2.8748
Yd 8.4541 0.64638
Trend -0.0059925 -0.0056181

alpha
Ya -0.10068 0.030138
Yb -0.016845 -0.17602
Yc 0.00057796 0.070334
Yd 0.0025727 -0.081061

Standard errors of alpha
Ya 0.0081392 0.054271
Yb 0.0048097 0.032070
Yc 0.0033833 0.022559
Yd 0.0064879 0.043260

Restricted long-run matrix, rank 2
Ya Yb Yc Yd Trend

Ya -0.10430 0.033585 -0.61256 -0.83169 0.00043401
Yb 0.0043157 -0.17544 0.41802 -0.25619 0.0010898
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Yc -0.0078776 0.070315 -0.19918 0.050349 -0.00039861
Yd 0.012318 -0.081149 0.24647 -0.030647 0.00043999

Standard errors of long-run matrix
Ya 0.010431 0.054272 0.16171 0.077236 0.00030878
Yb 0.0061642 0.032071 0.095556 0.045641 0.00018246
Yc 0.0043361 0.022560 0.067218 0.032105 0.00012835
Yd 0.0083151 0.043261 0.12890 0.061566 0.00024613

Reduced form beta
Ya -1.0000 0.00000
Yb 0.00000 -1.0000
Yc -5.1464 2.2561
Yd -8.5113 -1.6696
Trend 0.0062104 0.0063647
Standard errors of reduced form beta
Ya 0.00000 0.00000
Yb 0.00000 0.00000
Yc 0.99592 0.38888
Yd 0.25410 0.099219
Trend 0.00037897 0.00014798

Moving average impact matrix
-0.33216 0.85487 -4.9634 -6.2864
-0.14183 0.64169 0.089129 -1.3688
-0.023478 0.14515 0.32544 -0.041532
0.053222 -0.18820 0.38637 0.76370

log-likelihood 2568.90703 -T/2log|Omega| 3704.05786
no. of observations 200 no. of parameters 34
rank of long-run matrix 2 no. long-run restrictions 0
beta is not identified
No restrictions imposed

When p = 2 is imposed, P̂0 is different from its counterpart calculated without
any rank restrictions which was reported in §4.5. The difference appears to be small,
consistent with the insignificance of the test for the rank restriction (remember that this
test did not have a simple χ2 distribution). Note that the estimated α̂ and β̂ are simply
the first two columns from the matrices in §4.5, with the long-run matrix computed as:

(
α̂1 α̂2

)( β̂′1
β̂′2

)
.

Some care is required when interpreting the standard errors of α̂ at this stage: the
calculations essentially assume that the cointegrating vectors (the β̂) are known, so that
all uncertainty is attributed to the loadings. No such problem exists with the standard
errors of the long-run matrix.

The reduced-form cointegration vectors correspond to the triangular representation
(see Phillips, 1991). We will discuss the moving-average impact matrix in §5.6 below.

The summary table at the bottom of the output contains the log-likelihood, which
matches the value for p = 2 found at the testing stage. The number of parameters is
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computed as follows:

short-run coefficients, ∆yt−1 4× 4 = 16

unrestricted Constant 1× 4 = 4

feed-back coefficients, α̂ 4× 2 = 8

coefficients in cointegrating vectors, β̂ 5× 2 = 10

adjustment for double counting 2× 2 = −4

total 34

The adjustment is based on (4.2): in this case, we can insert an arbitrary 2 × 2 matrix
Q, and we must subtract the number of elements in Q to avoid double counting. The
reported standard errors use the residual variance matrix Ω̂−1 which is based on the
residual sum of squares matrix:

Ω̂ =
V̂′V̂

T − c
.

As elsewhere in PcGive, T is the sample size (200 here), and c is the adjustment for
degrees of freedom: the number of estimated parameters per equation, rounded down
to the nearest integer. In the current model c = d34/4e = 8.

5.3 Intercepts and linear deterministic trends III
We argued in §4.2 that a Trend should be entered restrictedly if there is any evidence
of trending behaviour. The corresponding cointegration hypothesis is Hl(p) which has
the desirable property of (asymptotic) similarity, so the critical values of tests do not
depend on the deterministic effects. It was shown in §4.6 how to handle the not-so-
well-behaved tests. Now that we have fixed the rank of the cointegration space, we can
test if the Trend is significant. Therefore re-estimate the cointegrated VAR without the
Trend and rank two. Use Progress to test the restriction:

Progress to date
Model T p log-likelihood SC HQ AIC
SYS( 1) 200 34 COINT 2568.9070 -24.788< -25.122< -25.349<
SYS( 2) 200 32 COINT 2556.2587 -24.715 -25.029 -25.243

Tests of model reduction
SYS( 1) --> SYS( 2): Chi^2(2) = 25.297 [0.0000]**

The likelihood-ratio test has a standard χ2(2) distribution (we are keeping the rank of
the long-run matrix fixed). So dropping the Trend is strongly rejected.

5.4 Cointegration restrictions
PcGive offers a uniform approach to testing all forms of restrictions on both cointe-
gration vectors and feedback coefficients. It is based on the transparency of explicitly
setting the restrictions to be imposed on elements of α and β. A restrictions editor
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is provided, which shows the numbering of all the elements, and within which restric-
tions are defined by statements of the form &4=0 to set the element corresponding to
parameter 5 to zero (numbering commences with &0). Several examples will now be
provided, and related to alternative approaches (such as Johansen and Juselius, 1990,
and Johansen, 1991, discussed in the addendum to this chapter).

Coefficient restrictions can have three effects:

1. rotate the cointegrating space;
2. contribute to identification of the cointegrating space;
3. restrict the cointegrating space without contributing to identification.

As an illustration, consider a cointegrated VAR with n = 3, p = 1 and a restricted
Trend:

P0 =

 α1

α2

α3

( β1 β2 β3 β4

)
.

First consider imposing β1 = 1:

1. β1 = 1 is a rotation of the cointegrating space, leaving P0 unchanged:

P0 =

 α1β1

α2β1

α3β1

( 1 β2/β1 β3/β1 β4/β1

)
.

2. β1 = 1 also makes the cointegrating space identified: the only feasible QQ−1 we
can insert between αβ′ is Q = 1.

3. β1 = 1 does not impose any restrictions on the cointegrating space so the likelihood
of the model is unchanged.

Next, consider imposing β1 = 0:

1. β1 = 0 is a restriction of the cointegrating space, changing P0, and therefore the
likelihood. So we can test if it is a valid restriction.

2. β1 = 0 cannot be achieved by a rotation, but itself is unaffected by any rotation. As
a consequence, rotation is still allowed, and the cointegration space is not identified.

When p > 1 the counting involved to decide the effect of coefficient ‘restrictions’
is very difficult. For example, before PcGive could do this, our manual efforts were
regularly wrong. Fortunately, PcGive implements the algorithm of Doornik (1995b),
and we can let the computer do the hard work.

To illustrate how the general approach in PcGive operates, we consider the normal-
ization of the cointegrating vector on the diagonal. Keep the VAR formulation with
the restricted Trend, select Model/Model settings, Cointegrated VAR, and then on the
Cointegrated VAR settings, set the General restrictions radio button:
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Pressing OK in produces the General Restrictions Editor:

To normalize β̂ on the diagonal enter the restrictions as shown above. The output
confirms that this rotation has no effect on the log-likelihood:

log-likelihood 2568.90703 -T/2log|Omega| 3704.05786
no. of observations 200 no. of parameters 34
rank of long-run matrix 2 no. long-run restrictions 0
beta is not identified
No restrictions imposed

General cointegration restrictions:
&8 = 1;
&14= 1;
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When the cointegration rank is p, the elements of α are notionally numbered from
0 to np− 1 in the form (for n = 4, p = 2):

&0 &1

&2 &3

&4 &5

&6 &7

The elements of β are then numbered in rows from np to np + p(n + qr) − 1 for qr
non-modelled variables in the cointegration vector. For n = 4, p = 2 and qr = 1:

&8 &9 &10 &11 &12

&13 &14 ...

Note that the numbering of the elements alters as the rank of P0 changes.

5.5 Determining unique cointegration relations
To uniquely determine the two cointegration vectors, given their possible interpretations
as excess demands for money and goods respectively, we remove the Trend from the
first, and Ya (interpreted as m− p) from the second:
&8 = 1; &12 = 0;
&13= 0; &14 = 1;

This can be achieved through a rotation of the space, and no restrictions have been
imposed. However, the cointegrating space is now just identified, and any further pa-
rameter restriction can be tested.

Restrict the income (i, corresponding to Yb) coefficient to −1 in the first vector
(converting it to an inverse-velocity relation):
&8 = 1; &9 = -1; &12 = 0;
&13= 0; &14 = 1;

log-likelihood 2568.83873 -T/2log|Omega| 3703.98956
no. of observations 200 no. of parameters 33
rank of long-run matrix 2 no. long-run restrictions 1
beta is identified

LR test of restrictions: Chi^2(1) = 0.13660 [0.7117]

Now suppose that in the first vector inflation and the interest rate have the same
coefficient:
&8 = 1; &9 = -1; &10 = &11; &12 = 0;
&13= 0; &14 = 1;

This is again not rejected:
log-likelihood 2568.4813 -T/2log|Omega| 3703.63212
no. of observations 200 no. of parameters 32
rank of long-run matrix 2 no. long-run restrictions 2
beta is identified

LR test of restrictions: Chi^2(2) = 0.85147 [0.6533]

Finally, we set the feedbacks to zero for the second vector on the first equation, and
the first on the last three equations (related to long-run weak exogeneity):
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&8 = 1; &9 =-1; &10 = &11; &12 = 0;
&13= 0; &14= 1;
&1 = 0;
&2 = 0; &4 = 0; &6 = 0;

With the test of the restrictions being χ2(6) = 11.638 [p = 0.07] this is only just
accepted. The final results are:

α̂ 1 2

m− p −0.109
(0.007)

0
(−)

i
0

(−)

−0.156
(0.024)

∆p
0

(−)

0.034
(0.015)

Rn
0

(−)

−0.068
(0.028)


, (5.1)


β̂′ m− p i ∆p Rn t

1
1

(−)

−1
(−)

7.06
(−)

7.06
(0.08)

0
(−)

2
0

(−)

1
(−)

−2.49
(0.47)

1.70
(0.12)

−0.0063
(0.00018)

 .

5.6 Moving-average impact matrix
The moving-average impact matrix shows the alternative representation of a cointe-
grated process. Consider the VAR representation of an I(1) process yt:

yt = µ+

m∑
i=1

πiyt−i + εt.

Since the process is I(1), the lag polynomial contains a unit root, which can be extracted
to leave a lag polynomial with all its eigenvalues inside the unit circle. Consequently,
the remainder lag polynomial matrix can be inverted, and the differenced process can
be expressed in a moving-average form as:

∆yt = C (L) (µ+ εt) .

and solving for levels:

yt = y0 + C(1)µt+ C(1)

t∑
i=1

εi + C∗ (L) εt.

Then C(1) is the moving-average impact matrix. It is computed in PcGive from:

C (1) = β⊥ (α′⊥Υβ⊥)
−1
α′⊥
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where
r (α′⊥Υβ⊥) = n− p (5.2)

(see Chapter 12, Banerjee, Dolado, Galbraith, and Hendry, 1993, and Johansen, 1995b).

For the current specification we find:
Moving-average impact matrix

0.00000 1.2934 -4.7669 -5.3435
0.00000 0.61466 0.58769 -1.1190
0.00000 0.10757 0.44859 -0.023701
0.00000 -0.20370 0.30985 0.62207

Although it cannot be seen immediately, the MA representation Ĉ(1) has rank 2 as
required.

5.7 Cointegration graphics

If one is willing to wait a short time, then the recursive restricted cointegration coef-
ficients can be graphed. The options also allow a transform of the likelihood, and the
test of the overidentifying restrictions to be graphed. In this case we keep the short-run
fixed (remember: this is set in the Cointegrated VAR Settings dialog).
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Figure 5.1 Time series of restricted cointegration coefficients

Figure 5.1 shows the graphs of the three remaining unrestricted β̂i,j,t, using 60
initial values (otherwise, the variation at the start swamps that later), together with the
sequence of χ2 tests of the overidentifying cointegration restrictions; their 5% critical
values are shown (alternative p-values can be set).
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It is important to note that the graph labelled ‘loglik/T’ does not depict the likelihood
as it would be found at the time. Instead it excludes the likelihood constant and shows

l̂t/T = − 1
2 log

∣∣∣∣∣ 1
T

t∑
i=1

V̂′iV̂i

∣∣∣∣∣ ,
which corresponds to a full-sample log-likelihood if V̂i is zero for i = t + 1, . . . , T .
The actual likelihood up to t is proportional to:

ˆ̀
t/t = − 1

2 log

∣∣∣∣∣ 1t
t∑
i=1

V̂′iV̂i

∣∣∣∣∣ = − 1
2 log

∣∣∣Ω̂i

∣∣∣ .
This concludes the tutorial on cointegration. The next stage is to map the data in the

system to I(0), and that is the topic of Chapter 6.
A batch file corresponding to this chapter is provided in a file called MulTut2.fl.

There are various ways to create such a file, for example by activating the batch editor
in OxMetrics, and saving the specification:
// Batch code for the final specification of Tutorial on Cointegration:
module("PcGive");
package("PcGive", "Multiple-equation");
loaddata("MulTut1.in7");
system
{

Y = Ya, Yb, Yc, Yd;
Z = Ya_1, Ya_2, Yb_1, Yb_2, Yc_1, Yc_2, Yd_1, Yd_2, Trend;
U = Constant;

}
rank(2);
option("shortrun", 0);
constraints
{

&8=1; &9=-1; &10=&11; &12=0;
&13=0; &14=1;
&1=0; &2=0; &4=0;
&6=0;

}
//estimate("COINT", 1951, 1, 2000, 4, 0, 28);// for recursive estimation
estimate("COINT", 1951, 1, 2000, 4);

The original batch code implements recursive restricted cointegration analysis, re-
moved here, by setting the ‘28’ in estimate to 0. Finally, in MulTut2.fl we changed
the usedata command (which just selects an already loaded database) to loaddata

(which will attempt to load the database into OxMetrics).

5.8 Addendum: A and H matrices
Up to this point, we have completely ignored the other two choices for restricted coin-
tegration analysis. This section turns to the final two methods, which will not involve
iterative estimation.
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The only linear restriction we consider is whether the cointegration vector
(0, 1,−1, 0, 0) lies in the cointegration space. The H matrix discussed in Chapter
12 then has the form (0, 1,−1, 0, 0)′ and is set as follows. Select Model, Formulate,
Model Settings, and at Cointegrated VAR settings choose Known cointegrated

vectors. Input a rank of 2, and press OK. In the subsequent matrix editor alter the
dimensions of H to 5×1, typing in the elements of H as (0, 1,−1, 0, 0)′ in the first
column:

The output is similar to the unrestricted analysis, except for the standard errors of
the coefficients. In this case the hypothesis is decisively rejected. Since p = 2 is
preserved, these tests have conventional asymptotic χ2-distributions.

Note that theβ eigenvectors are not normalized here, but as the second is not unique,
any linear combination is acceptable.



Chapter 6

Tutorial on Reduction to I(0)

6.1 Introduction

The next important step in model construction is to map the data to I(0) series, by differ-
encing and cointegrating combinations. We have determined two unique cointegrating
vectors in Chapter 4 and can construct the data analogues either by the algebra, or the
calculator. We choose the former.

If you start afresh, load the tutorial data set MulTut1.in7.
First, we use the algebra editor to create the cointegrating vectors corresponding to

(5.1). In OxMetrics, type Alt+a and enter the algebra code as follows (or save typing
and load the algebra file called MulTut3.alg)

CIa = Ya - Yb + 7.1 * Yc + 7.1 * Yd;
CIb = Yb - 2.5 * Yc + 1.7 * Yd - 0.0063 * trend();

DYa = diff(Ya, 1);
DYb = diff(Yb, 1);
DYc = diff(Yc, 1);
DYd = diff(Yd, 1);

We shall also need the differences of all the Y variables in this chapter. We created them
using the calculator as explained in §2.2, but they are included in the Algebra code for
convenience.

We can now formulate an I(0) system that excludes all I(1) variables, and effectuate
the reduction equivalent to the rank 2 restriction on P0. The time-series graphs of the
restricted cointegrating vectors are shown in Figure 6.1.

Now select Model, Multiple Equation Dynamic Modelling, Formulate. Press the
Clear button to clear the existing system, if any. Select one lag, mark DYa, DYb, DYc,
DYd, CIa, CIb, press <<. Note that one lag of a difference includes the second lag of the
level, matching the reduction to 2 lags obtained in Chapter 3. In this chapter we keep
the Constant as unrestricted. Next, mark CIa, CIb and delete them. The final result
should look like:

58
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Figure 6.1 Restricted cointegrating relations

Accept, select the Unrestricted system model type, and estimate by ordinary least
squares using recursive estimation (), since henceforth all tests are in I(0) form, and
so have conventional critical values. To exactly match our output, check that the first
data point in the estimation sample is 1951(1), ending at 2000(4). The impact of the
two reductions (shorter lag and cointegration) has been to diminish the total number
of parameters from 66 (4 × 14 + 10) to 38 (4 × 7 + 10). It is incorrect to conduct a
direct likelihood-ratio test against the initial system, since that would be a mixture of
I(1) distributions (corresponding to estimated unit roots) and conventional (deleting the
second-lag differences). However, the equation standard errors are in fact very close to
those obtained in Chapter 3, consistent with the validity of the rank restriction.
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SYS( 1) Estimating the system by OLS (using MulTut1.in7)
The estimation sample is: 1951(1) - 2000(4)

URF equation for: DYa
Coefficient Std.Error t-value t-prob

DYa_1 -0.361724 0.08172 -4.43 0.000
DYb_1 0.207510 0.1184 1.75 0.081
DYc_1 -0.266326 0.1993 -1.34 0.183
DYd_1 0.0970494 0.1080 0.898 0.370
CIa_1 -0.102817 0.01030 -9.98 0.000
CIb_1 -0.0635232 0.04687 -1.36 0.177
Constant U 0.741448 0.5250 1.41 0.159

sigma = 0.0166518 RSS = 0.05351523076

URF equation for: DYb
Coefficient Std.Error t-value t-prob

DYa_1 0.000845350 0.04808 0.0176 0.986
DYb_1 -0.0837649 0.06963 -1.20 0.230
DYc_1 -0.121905 0.1172 -1.04 0.300
DYd_1 0.0289575 0.06356 0.456 0.649
CIa_1 0.00305339 0.006059 0.504 0.615
CIb_1 -0.161631 0.02757 -5.86 0.000
Constant U 1.82190 0.3088 5.90 0.000

sigma = 0.00979602 RSS = 0.01852067807

URF equation for: DYc
Coefficient Std.Error t-value t-prob

DYa_1 0.0290789 0.03363 0.865 0.388
DYb_1 -0.0621194 0.04871 -1.28 0.204
DYc_1 -0.153002 0.08202 -1.87 0.064
DYd_1 -0.0301411 0.04446 -0.678 0.499
CIa_1 -0.00811361 0.004239 -1.91 0.057
CIb_1 0.0635006 0.01929 3.29 0.001
Constant U -0.709454 0.2160 -3.28 0.001

sigma = 0.00685321 RSS = 0.009064543557

URF equation for: DYd
Coefficient Std.Error t-value t-prob

DYa_1 0.0760642 0.06480 1.17 0.242
DYb_1 -0.00410509 0.09385 -0.0437 0.965
DYc_1 0.0368430 0.1580 0.233 0.816
DYd_1 0.179957 0.08567 2.10 0.037
CIa_1 0.00996420 0.008167 1.22 0.224
CIb_1 -0.0616365 0.03716 -1.66 0.099
Constant U 0.691057 0.4163 1.66 0.098

sigma = 0.0132038 RSS = 0.03364745099

log-likelihood 2568.14654 -T/2log|Omega| 3703.29737
|Omega| 8.25626995e-017 log|Y’Y/T| -35.0006237
R^2(LR) 0.868973 R^2(LM) 0.298236
no. of observations 200 no. of parameters 28
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F-test on regressors except unrestricted: F(24,664) = 21.8757 [0.0000] **
F-tests on retained regressors, F(4,190) =

DYa_1 6.21141 [0.000]** DYb_1 1.61535 [0.172]
DYc_1 3.46363 [0.009]** DYd_1 2.87861 [0.024]*
CIa_1 48.5812 [0.000]** CIb_1 12.6274 [0.000]**

Constant U 12.7712 [0.000]**

correlation of URF residuals (standard deviations on diagonal)
DYa DYb DYc DYd

DYa 0.016652 -0.017332 -0.55424 -0.57625
DYb -0.017332 0.0097960 -0.12154 0.039991
DYc -0.55424 -0.12154 0.0068532 0.43181
DYd -0.57625 0.039991 0.43181 0.013204
correlation between actual and fitted

DYa DYb DYc DYd
0.80554 0.51986 0.39334 0.22703

The coefficients are now becoming interpretable in part. Consider each equation in
turn:
1. DYa: DYb 1, DYc 1 and DYd 1 seem irrelevant as does CIb 1, matching the earlier

cointegration tests on α.
2. DYb: all stochastic variables seem irrelevant, except for the cointegrating vector

CIb 1, consistent with our previous findings about α.
3. DYc: the only significant stochastic variables is CIb 1, with CIa 1 and DYc 1 on the

borderline of significance.
4. DYd: except for the autoregressive coefficient, apparently nothing is significant!

The F-tests confirm that DYb 1 is not significant in the system as a whole. The
correlations of actual and fitted are much lower in I(0) space.

Select Test, Graphic analysis, and mark the first three entries in the Graphic analysis

dialog, and click OK. Figure 6.2 shows the resulting time series of fitted and actual
values, their cross plots, and the scaled residuals for the four endogenous variables.
The different goodness of fit of the four equations time-series is not apparent, since fine
detail cannot be discerned (it is clearer on a colour screen), but the cross-plots show
the markedly different correlation scatters. There is no evidence that the outcomes are
markedly affected by any influential observations, nor do the residuals manifest outliers
or obvious patterns.

It is sensible to diagnostically test our reduced system, so we briefly reconsider con-
stancy and data congruence. Select Test, Graphic analysis, and mark Residual density

and histogram and Residual autocorrelations in the Graphic analysis dialog, leading
to Figure 6.3. There is no evidence of within-equation residual serial correlation, and
the densities and distributions are close to normality except for the single large outliers
found earlier.
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Figure 6.2 Fitted and actual values and scaled residuals
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Figure 6.3 Individual-equation graphical diagnostics
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A more powerful diagnostic is given by selecting Test, Test summary which yields:
Single-equation diagnostics using reduced-form residuals:
DYa : Portmanteau(12): Chi^2(11) = 6.8306 [0.8126]
DYa : AR 1-5 test: F(5,188) = 0.53076 [0.7528]
DYa : ARCH 1-4 test: F(4,192) = 0.53901 [0.7072]
DYa : Normality test: Chi^2(2) = 19.994 [0.0000]**
DYa : Hetero test: F(12,187) = 1.1070 [0.3567]
DYa : Hetero-X test: F(27,172) = 0.90151 [0.6092]
DYb : Portmanteau(12): Chi^2(11) = 4.1626 [0.9649]
DYb : AR 1-5 test: F(5,188) = 0.30714 [0.9082]
DYb : ARCH 1-4 test: F(4,192) = 2.0092 [0.0948]
DYb : Normality test: Chi^2(2) = 0.043564 [0.9785]
DYb : Hetero test: F(12,187) = 0.46953 [0.9305]
DYb : Hetero-X test: F(27,172) = 0.75590 [0.8021]
DYc : Portmanteau(12): Chi^2(11) = 4.7748 [0.9416]
DYc : AR 1-5 test: F(5,188) = 0.45314 [0.8107]
DYc : ARCH 1-4 test: F(4,192) = 0.73152 [0.5715]
DYc : Normality test: Chi^2(2) = 0.35152 [0.8388]
DYc : Hetero test: F(12,187) = 1.4150 [0.1620]
DYc : Hetero-X test: F(27,172) = 0.95800 [0.5295]
DYd : Portmanteau(12): Chi^2(11) = 6.4972 [0.8382]
DYd : AR 1-5 test: F(5,188) = 0.90527 [0.4788]
DYd : ARCH 1-4 test: F(4,192) = 1.3122 [0.2669]
DYd : Normality test: Chi^2(2) = 3.3216 [0.1900]
DYd : Hetero test: F(12,187) = 1.3267 [0.2062]
DYd : Hetero-X test: F(27,172) = 1.2405 [0.2050]
Vector Portmanteau(12): Chi^2(176)= 166.50 [0.6845]
Vector AR 1-5 test: F(80,673) = 0.67164 [0.9865]
Vector Normality test: Chi^2(8) = 10.483 [0.2328]
Vector Hetero test: F(120,1396)= 1.0364 [0.3802]
Vector Hetero-X test: F(270,1559)= 1.0159 [0.4241]
Vector RESET23 test: F(32,672) = 1.1115 [0.3098]

The first block shows single equation statistics, and the second the system tests. None of
the tests is significant at the 1% level, except the normality statistic for DYa, which may
need reconsideration when a model of the system has been constructed and evaluated.

Finally, select Test, Recursive graphics. Mark the entries in the dialog for 1-step
residuals and break-point Chow tests with a 1% significance level, and accept to see
Figure 6.4. The 1-step errors lie within their approximate 95% confidence bands with
constant standard errors (the first four plots), and no break-point Chow test is anywhere
significant (the 1% line is the top of each of the last five boxes). The last plot is the
overall system constancy test. Thus, constancy cannot be rejected, suggesting that the
system is in fact managing to ‘explain’ the changes of growth as an endogenous feature.

6.2 A parsimonious VAR
The only major remaining reduction to a parsimonious VAR that can be implemented at
the level of the system is to eliminate DYb 1. This is because variables must be dropped
from the system altogether since all equations have the same formulation by construc-
tion; later, when we construct a model of the system, the equations can differ in their
specifications. Nevertheless, the resulting system provides a stiff competitor for any
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Figure 6.4 Recursive constancy statistics

model thereof, since there are no redundant variables to camouflage poor restrictions in
other directions.

Select Model, Formulate System, mark DYb 1 and delete it, then re-estimate by
OLS (deselecting recursive estimation).

SYS( 2) Estimating the system by OLS (using MulTut1.in7)
The estimation sample is: 1951 (1) to 2000 (4)

URF equation for: DYa
Coefficient Std.Error t-value t-prob

DYa_1 -0.377648 0.08165 -4.63 0.000
DYc_1 -0.318658 0.1981 -1.61 0.109
DYd_1 0.147751 0.1046 1.41 0.160
CIa_1 -0.108686 0.009792 -11.1 0.000
CIb_1 -0.0572335 0.04698 -1.22 0.225
Constant U 0.673981 0.5263 1.28 0.202

sigma = 0.0167405 RSS = 0.05436753506

URF equation for: DYb
Coefficient Std.Error t-value t-prob

DYa_1 0.00727345 0.04783 0.152 0.879
DYc_1 -0.100781 0.1161 -0.868 0.386
DYd_1 0.00849077 0.06131 0.138 0.890
CIa_1 0.00542276 0.005737 0.945 0.346
CIb_1 -0.164170 0.02752 -5.96 0.000
Constant U 1.84913 0.3083 6.00 0.000

sigma = 0.00980731 RSS = 0.01865955855
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URF equation for: DYc
Coefficient Std.Error t-value t-prob

DYa_1 0.0338460 0.03348 1.01 0.313
DYc_1 -0.137336 0.08123 -1.69 0.092
DYd_1 -0.0453191 0.04291 -1.06 0.292
CIa_1 -0.00635650 0.004015 -1.58 0.115
CIb_1 0.0616178 0.01926 3.20 0.002
Constant U -0.689257 0.2158 -3.19 0.002

sigma = 0.00686427 RSS = 0.009140922104

URF equation for: DYd
Coefficient Std.Error t-value t-prob

DYa_1 0.0763792 0.06423 1.19 0.236
DYc_1 0.0378782 0.1558 0.243 0.808
DYd_1 0.178954 0.08233 2.17 0.031
CIa_1 0.0100803 0.007703 1.31 0.192
CIb_1 -0.0617609 0.03696 -1.67 0.096
Constant U 0.692392 0.4141 1.67 0.096

sigma = 0.0131697 RSS = 0.03364778454

log-likelihood 2564.80235 -T/2log|Omega| 3699.95317
|Omega| 8.53704438e-017 log|Y’Y/T| -35.0006237
R^2(LR) 0.864517 R^2(LM) 0.291746
no. of observations 200 no. of parameters 24

F-test on regressors except unrestricted: F(20,634) = 26.2345 [0.0000] **
F-tests on retained regressors, F(4,191) =

DYa_1 6.70718 [0.000]** DYc_1 3.54518 [0.008]**
DYd_1 3.95504 [0.004]** CIa_1 57.5154 [0.000]**
CIb_1 12.7415 [0.000]** Constant U 12.8788 [0.000]**

correlation of URF residuals (standard deviations on diagonal)
DYa DYb DYc DYd

DYa 0.016741 -0.027933 -0.55902 -0.57210
DYb -0.027933 0.0098073 -0.11269 0.040113
DYc -0.55902 -0.11269 0.0068643 0.43029
DYd -0.57210 0.040113 0.43029 0.013170
correlation between actual and fitted

DYa DYb DYc DYd
0.80207 0.51457 0.38418 0.22701

Every variable now matters to the system, if not to every equation in it, but the fit has
changed little.

6.3 A restricted system

It is possible to remain in the context of VAR modelling, yet impose specific restrictions
on each equation. To do so, however, requires formulating a model of the system, and
initially PcGive takes that model to be the system itself (augmented with any necessary
identities, as discussed in the next chapter).
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The total number of variables involved in a system must be less than the estimation
sample size, but otherwise the size of the system is only limited by available memory.

Now, select Model, Formulate, accept and in the Model Settings select Simultane-

ous equations model:

The next stage brings up the Model Formulation dialog for simultaneous equations:

NOTE: If no model existed before, the default specification is the system, with any
identities still unspecified. Otherwise PcGive will try to reuse the previous model
specification, even if it belonged to another system (this might lead to the default
displaying an unidentified model: only variables that are in the system can appear
in the model).

The leftmost column starts with a choice of equation: which endogenous variable is
under analysis; below that is the current model of that endogenous variable; and the
next right column shows the system currently under analysis. We start by deleting
all lagged endogenous variables with a t-value less than one: from the DYb equation
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remove DYa 1, DYc 1, DYd 1, and from DYd equation remove DYc 1. Now accept
(click OK), and the model estimation dialog appears.

If necessary, mark Full Information Maximum Likelihood (FIML), clear the recursive
estimation box, and accept.

MOD( 3) Estimating the model by FIML (using MulTut1.in7)
The estimation sample is: 1951(1) - 2000(4)

Equation for: DYa
Coefficient Std.Error t-value t-prob

DYa_1 -0.375080 0.08102 -4.63 0.000
DYc_1 -0.292092 0.1621 -1.80 0.073
DYd_1 0.141835 0.1018 1.39 0.165
CIa_1 -0.108811 0.009730 -11.2 0.000
CIb_1 -0.0540969 0.04493 -1.20 0.230
Constant U 0.638781 0.5033 1.27 0.206

sigma = 0.0166983

Equation for: DYb
Coefficient Std.Error t-value t-prob

CIa_1 0.00320873 0.003715 0.864 0.389
CIb_1 -0.152488 0.02378 -6.41 0.000
Constant U 1.71856 0.2663 6.45 0.000

sigma = 0.00980469

Equation for: DYc
Coefficient Std.Error t-value t-prob

DYa_1 0.0337335 0.03309 1.02 0.309
DYc_1 -0.155048 0.07237 -2.14 0.033
DYd_1 -0.0426863 0.04193 -1.02 0.310
CIa_1 -0.00610962 0.003982 -1.53 0.127
CIb_1 0.0595486 0.01873 3.18 0.002
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Constant U -0.666086 0.2098 -3.17 0.002

sigma = 0.00684751

Equation for: DYd
Coefficient Std.Error t-value t-prob

DYa_1 0.0729349 0.06307 1.16 0.249
DYd_1 0.187209 0.07585 2.47 0.014
CIa_1 0.0102815 0.007596 1.35 0.177
CIb_1 -0.0662305 0.03200 -2.07 0.040
Constant U 0.742545 0.3584 2.07 0.040

sigma = 0.0131379

log-likelihood 2564.30187 -T/2log|Omega| 3699.4527
no. of observations 200 no. of parameters 20

LR test of over-identifying restrictions: Chi^2(4) = 1.0009 [0.9097]
BFGS using analytical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence

correlation of structural residuals (standard deviations on diagonal)
DYa DYb DYc DYd

DYa 0.016698 -0.027289 -0.55907 -0.57216
DYb -0.027289 0.0098047 -0.11348 0.038958
DYc -0.55907 -0.11348 0.0068475 0.43044
DYd -0.57216 0.038958 0.43044 0.013138

A full description of FIML output is also reserved for the next chapter: here we
merely note that the test for over-identifying restrictions, corresponding to the deletion
of the four variables, is insignificant.

As a next step, delete the cointegrating vectors to impose the long-run weak exo-
geneity found in the previous chapter: delete CIa 1 from all equations except the first,
and delete CIb 1 from the first equation.

MOD( 4) Estimating the model by FIML (using MulTut1.in7)
The estimation sample is: 1951 (1) to 2000 (4)

Equation for: DYa
Coefficient Std.Error t-value t-prob

DYa_1 -0.358078 0.06932 -5.17 0.000
DYc_1 -0.183105 0.1462 -1.25 0.212
DYd_1 0.107668 0.09863 1.09 0.276
CIa_1 -0.112656 0.006656 -16.9 0.000
Constant U 0.0321975 0.002508 12.8 0.000

sigma = 0.0167206

Equation for: DYb
Coefficient Std.Error t-value t-prob

CIb_1 -0.138162 0.01667 -8.29 0.000
Constant U 1.55878 0.1875 8.31 0.000



6.3 A restricted system 69

sigma = 0.00979834

Equation for: DYc
Coefficient Std.Error t-value t-prob

DYa_1 0.0584115 0.02254 2.59 0.010
DYc_1 -0.194370 0.07131 -2.73 0.007
DYd_1 -0.0379947 0.04163 -0.913 0.363
CIb_1 0.0343037 0.01430 2.40 0.017
Constant U -0.384436 0.1607 -2.39 0.018

sigma = 0.00688309

Equation for: DYd
Coefficient Std.Error t-value t-prob

DYa_1 -0.00202958 0.04112 -0.0494 0.961
DYd_1 0.207178 0.07522 2.75 0.006
CIb_1 -0.0608980 0.02480 -2.46 0.015
Constant U 0.685985 0.2787 2.46 0.015

sigma = 0.0131769

log-likelihood 2559.69288 -T/2log|Omega| 3694.84371
no. of observations 200 no. of parameters 16

LR test of over-identifying restrictions: Chi^2(8) = 10.219 [0.2500]
BFGS using analytical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence

correlation of structural residuals (standard deviations on diagonal)
DYa DYb DYc DYd

DYa 0.016721 -0.022263 -0.56019 -0.56813
DYb -0.022263 0.0097983 -0.12150 0.043773
DYc -0.56019 -0.12150 0.0068831 0.41668
DYd -0.56813 0.043773 0.41668 0.013177

For dynamic forecasting, select Test, Forecast and set 16 periods (two years), mark-
ing all four variables (we are using error bars, a choice made under Options), to see
Figure 6.5.

This reveals the shortcomings of the current approach:
1. The forecasts look more like 1-step forecasts because the cointegrating vectors are

fixed at their actual values, instead of being forecasted themselves.
2. We can only make 16 forecasts, because the cointegrating vectors are not known

beyond that.
3. We can only forecast differences, while we may be interested in forecasting the

levels of the variables.
The first two are manifestations of the same issue: if we can tell PcGive how the

cointegrating vectors are constructed, then we can create proper dynamic forecasts, with
error bands that reflect the uncertainty more appropriately. This can be achieved using
identities, which we introduce in the next chapter.

It is possible to redo this estimation recursively (this executes remarkably
quickly), which gives further useful information in the recursive graphics. Then
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Figure 6.5 Dynamic forecasts in I(0) space

select Test/recursive Graphics:

Select the settings shown, to produce Figure 6.6. The first row shows the now famil-
iar recursive residuals with ±2σ̂t; the second shows the scaled log-likelihood function
as T increases (as for recursive cointegrated VARs, see §5.7), the sequence of scaled
tests of the hypothesis that the model parsimoniously encompasses the system (i.e.,
the recursively-computed likelihood-ratio test of the overidentifying restrictions), and
the sequence of break-point Chow tests scaled by their 1% significance (one-off) level.
There is no evidence against the specification at this stage (check that the test summary
remains acceptable). Note that, the unrestricted constant is partialled out from the full
sample before computation of the recursive estimation.
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Figure 6.6 Recursive model statistics

6.4 Progress

Select Progress from the Model menu (Alt+m,p) to conduct a formal test of the
last two reductions of both the system and its model. The screen capture above assumes
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that you started PcGive afresh in this chapter. If not, your progress dialog will also
list previous models: in that case just select the most recent four matching the capture.
(An alternative approach would be to write the batch code of these models using the
Progress dialog and then rerun that).

Eligible I(0) systems are marked; the nested cases, where variables have been
deleted is represented by the model thereof, on which the individual-equation restric-
tions have been imposed.
In our case, MOD(5) is a recursive re-estimation of MOD(4), so we unselected it. Then
accept to obtain:

Progress to date
Model T p log-likelihood SC HQ AIC
SYS( 1) 200 28 OLS 2568.1465 -24.940 -25.215 -25.401
SYS( 2) 200 24 OLS 2564.8023 -25.012 -25.248 -25.408
MOD( 3) 200 20 FIML 2564.3019 -25.113 -25.310 -25.443<
MOD( 4) 200 16 FIML 2559.6929 -25.173< -25.330< -25.437

Tests of model reduction
SYS( 1) --> SYS( 2): F(4,190) = 1.6154 [0.1720]
SYS( 1) --> MOD( 3): Chi^2(8) = 7.6893 [0.4644]
SYS( 1) --> MOD( 4): Chi^2(12)= 16.907 [0.1531]

SYS( 2) --> MOD( 3): Chi^2(4) = 1.0009 [0.9097]
SYS( 2) --> MOD( 4): Chi^2(8) = 10.219 [0.2500]

MOD( 3) --> MOD( 4): Chi^2(4) = 9.2180 [0.0559]

Thus, both reductions are accepted, so the individual insignificance of the F-tests on
DYa 1 and DYd 1 did not camouflage their joint significance as revealed by the last
statistic.

Finally, we create a batch file corresponding to this chapter. The Load history button
in Batch editor can be used to write the Batch code for all previously estimated models.
Here we have added the Algebra code, and removed the redundant repetition of the
system for the models. The final result is in MulTut3.fl:

module("PcGive");
package("PcGive");
loaddata("MulTut1.in7");
algebra
{

CIa = Ya - Yb + 7.1 * Yc + 7.1 * Yd;
CIb = Yb - 2.5 * Yc + 1.7 * Yd - 0.0063 * trend();

DYa = diff(Ya, 1);
DYb = diff(Yb, 1);
DYc = diff(Yc, 1);
DYd = diff(Yd, 1);

}
system
{

Y = DYa, DYb, DYc, DYd;
Z = DYa_1, DYb_1, DYc_1, DYd_1, CIa_1, CIb_1;
U = Constant;
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}
estimate("OLS", 1951, 1, 2000, 4);
system
{

Y = DYa, DYb, DYc, DYd;
Z = DYa_1, DYc_1, DYd_1, CIa_1, CIb_1;
U = Constant;

}
estimate("OLS", 1951, 1, 2000, 4);
model
{

DYa = DYa_1, DYc_1, DYd_1, CIa_1, CIb_1;
DYb = CIa_1, CIb_1;
DYc = DYa_1, DYc_1, DYd_1, CIa_1, CIb_1;
DYd = DYa_1, DYd_1, CIa_1, CIb_1;

}
estimate("FIML", 1951, 1, 2000, 4);
model
{

DYa = DYa_1, DYc_1, DYd_1, CIa_1;
DYb = CIb_1;
DYc = DYa_1, DYc_1, DYd_1, CIb_1;
DYd = DYa_1, DYd_1, CIb_1;

}
estimate("FIML", 1951, 1, 2000, 4);
progress;

Before exiting, try deleting every regressor from DYd to see the identification fail-
ure; that course is not viable here because PcGive requires at least one regressor in each
equation. The next chapter will consider conditioning to produce an open system, and a
simultaneous equations model thereof. This concludes the tutorial on mapping to I(0).



Chapter 7

Tutorial on Simultaneous Equations
Models

7.1 Introduction to dynamic models
Dynamic model formulation specifies a model of the system in terms of structural equa-
tions. If you select Simultaneous equations model (SEM) at the model settings, a di-
alog will be offered in which you can formulate the individual equations in the Model

Formulation dialog box. When you press OK, you will be taken automatically to the
Estimate Model dialog, see §6.3. We now briefly describe the econometrics of these
stages.

To obtain a simultaneous dynamic model, premultiply the system (3.4) given in §3.1
by a non-singular, non-diagonal matrix B, which yields:

Byt = BΠuwt + Bvu,t.

We shall write this formulation as:

Byt + Cwt = ut, ut ∼ INn [0,Σ]

with t = 1, . . . , T ; or using A = (B : C) in which B is (n× n) and C is (n× k):

Axt = ut.

The restricted reduced form (RRF) corresponding to this model is obtained as the solu-
tion:

yt = Πrwt + vr,t, with Πr = −B−1C.

The estimated variance of ut is:

Σ̃ =
ÂX′XÂ′

T − c
.

74
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There is a degrees-of-freedom correction c, which equals the average number of pa-
rameters per equation (rounded towards 0); this would be k for the system (also see
§5.2).

Identification of the model, achieved through imposing within-equation restrictions
on A, is required for estimation. The order condition for identification is only a nec-
essary condition imposed on each equation. PcGive checks this as each equation is
formulated. The rank condition is necessary and sufficient, and is checked prior to
model estimation by setting each non-zero coefficient to unity plus a uniform random
number.

Some equations of the model could be identities, which are exact linear combi-
nations of variables equal to zero. Identities in PcGive are created by marking identity
endogenous variables as such during system formulation. These are ignored during sys-
tem estimation and analysis. Identities come in at the model formulation level, where
the identity is specified just like other equations. However, there is no need to spec-
ify the coefficients of the identity equation, as PcGive automatically derives these by
estimating the equation.

An example of a model with (3.3) as the unrestricted reduced form is:

Yat = β0 + β1Yat−1 + β2Ybt
Ybt = β3 + β4Ybt−1.

In terms of (3.3), the lag two coefficients (δ2, δ4, δ7, δ9) are all restricted to zero, as is
δ6, and δ3 = β2 × β4.

A model in PcGive is formulated by:

1. which variables enter every equation, including identities;
2. coefficients of identity equations need not be specified, as PcGive automatically

derives these by estimating the equation (provided R2 ≥ .99);
3. constraints, if the model is to be estimated by constrained FIML (CFIML).

7.2 The cointegrated VAR in I(0) space

Although we assume you have read both Chapters 5 and 6, we will pick up our thread
from the end of Chapter 5. The reason for this is that we can ask PcGive to formulate
the initial mapping from a cointegrated VAR to a parsimonious VAR (PVAR) in I(0)
space. This simplifies the work which was undertaken in Chapter 6.

If you’ve just started modelling using OxMetrics, make sure the model category
is set to Models for time-series data and the category to Multiple-equation dynamic

modelling. Also make sure the MulTut1.in7 data file is loaded into OxMetrics, and
then run the batch file from Chapter 5, which is called MulTut2.fl. This batch file
reruns the final cointegrated VAR from that chapter. Referring back, we imposed rank
two on the long-run matrix, with six additional restrictions:
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beta
Ya 1.0000 0.00000
Yb -1.0000 1.0000
Yc 7.0601 -2.4871
Yd 7.0601 1.7041
Trend 0.00000 -0.0062609

alpha
Ya -0.10851 0.00000
Yb 0.00000 -0.15559
Yc 0.00000 0.033729
Yd 0.00000 -0.067749

log-likelihood 2563.08826 -T/2log|Omega| 3698.23909
no. of observations 200 no. of parameters 28
rank of long-run matrix 2 no. long-run restrictions 6
beta is identified

LR test of restrictions: Chi^2(6) = 11.638 [0.0706]

Following successful estimation of the CVAR, go to Test/Further Output and select
Batch code to map CVAR to I(0) model. This prints:
// Batch code to map CVAR to model with identities in I(0) space
algebra
{

DYa = diff(Ya, 1);
DYb = diff(Yb, 1);
DYc = diff(Yc, 1);
DYd = diff(Yd, 1);
CIa = Ya -Yb +7.06007 * Yc +7.06007 * Yd;
CIb = Yb -2.48711 * Yc +1.70407 * Yd -0.00626095 * trend();

}
system
{

Y = DYa, DYb, DYc, DYd;
I = CIa, CIb;
Z = DYa_1, DYb_1, DYc_1, DYd_1,

CIa_1, CIb_1, Constant;
U = ;

}
model
{

DYa = DYa_1, DYb_1, DYc_1, DYd_1, CIa_1, CIb_1, Constant;
DYb = DYa_1, DYb_1, DYc_1, DYd_1, CIa_1, CIb_1, Constant;
DYc = DYa_1, DYb_1, DYc_1, DYd_1, CIa_1, CIb_1, Constant;
DYd = DYa_1, DYb_1, DYc_1, DYd_1, CIa_1, CIb_1, Constant;
CIa = DYa, DYb, DYc, DYd, CIa_1;
CIb = DYb, DYc, DYd, Constant, CIb_1;

}
estimate("FIML", 1951, 1, 2000, 4, 0, 0);

The identities correspond to the cointegrating relations:

CIat = Yat − Ybt + β13Yct + β13Ydt,
CIbt = Ybt + β23Yct + β24Ydt + β25t.

However, because the stochastic equations are formulated in terms of the first differ-
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ences, we must do the same with the cointegrating vectors. Pre-multiplying by the
first-difference operator ∆ gives:

CIat = CIat−1 + ∆Yat −∆Ybt + ∆β13Yct + ∆β13Ydt,
CIbt = CIbt−1 + ∆Ybt + ∆β23Yct + ∆β24Ydt + β25,

which is the form used in the batch code above. The differenced trend is a constant,
which is why we do not include the Constant unrestrictedly in the model. The inclu-
sion of identities is a convenient way to approach modelling with cointegrated variables
since it avoids having to eliminate two of the differences in terms of levels and dif-
ferences of cointegrating vectors. Then, for example, dynamic analysis or dynamic
forecasts can be conducted.

Modify the batch code in the OxMetrics results window to reflect the simplification
steps of Chapter 6:
1. delete DYb 1 from all equations;
2. delete CIb 1 from the DYa equation and CIa 1 from the others;
3. delete all regressors except CIb 1 and the constant from the DYb equation;
4. delete DYc 1 from the DYd equation.

The model section of the code should look like this:
model
{

DYa = DYa_1, DYc_1, DYd_1, CIa_1, Constant;
DYb = CIb_1, Constant;
DYc = DYa_1, DYc_1, DYd_1, CIb_1, Constant;
DYd = DYa_1, DYd_1, CIb_1, Constant;
CIa = DYa, DYb, DYc, DYd, CIa_1;
CIb = DYb, DYc, DYd, Constant, CIb_1;

}

To get identical results as before, we need to set exactly the same coefficients in the
cointegrating vectors as before:

CIa = Ya -Yb +7.1 * Yc +7.1 * Yd;
CIb = Yb -2.5 * Yc +1.7 * Yd -0.0063 * trend();

After making these changes, you can select the whole section of batch code, from
the algebra statement to estimate, and run it by pressing Ctrl+B. Alternatively,
you can run the supplied batch file MulTut3id.fl. This estimates the final model of
Chapter 6, with the addition of the two identities for which the specification is listed
just before the model output:
Identity for CIa
DYa 1.0000
DYb -1.0000
DYc 7.1000
DYd 7.1000
CIa_1 1.0000
R^2 = 1 over 1951 (1) to 2000 (4)

Identity for CIb
DYb 1.0000
DYc -2.5000
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DYd 1.7000
CIb_1 1.0000
Constant -0.0063000
R^2 = 1 over 1951 (1) to 2000 (4)

Provided you adjusted the coefficients in the cointegrating vectors, the log-
likelihood is identical to that in §6.3:
log-likelihood 2559.69289 -T/2log|Omega| 3694.84371
no. of observations 200 no. of parameters 16
LR test of over-identifying restrictions: Chi^2(12)= 16.907 [0.1531]

correlation of structural residuals (standard deviations on diagonal)
DYa DYb DYc DYd

DYa 0.016721 -0.022260 -0.56019 -0.56813
DYb -0.022260 0.0097983 -0.12150 0.043771
DYc -0.56019 -0.12150 0.0068831 0.41668
DYd -0.56813 0.043771 0.41668 0.013177

Note that the test for over-identifying restrictions has changed because we have a
slightly different URF. If you wish, you can estimate this URF and use Progress to
calculate the statistic in a different way (to do this you will need to estimate the URF,
then move it below the model in Progress, and double click on the URF to select it for
the progress report).

Further simplification leads us to delete both DYc 1 and DYd 1 from DYa, then
DYd 1 from DYc, and finally DYa 1 from the DYd equation. The final parsimonious
VAR is:
MOD( 4) Estimating the model by FIML (using MulTut1.in7)

The estimation sample is: 1951 (1) to 2000 (4)

Equation for: DYa
Coefficient Std.Error t-value t-prob

DYa_1 -0.349132 0.06260 -5.58 0.000
CIa_1 -0.111349 0.006508 -17.1 0.000
Constant 0.0318185 0.002485 12.8 0.000

sigma = 0.0167625

Equation for: DYb
Coefficient Std.Error t-value t-prob

CIb_1 -0.137948 0.01663 -8.29 0.000
Constant 1.55636 0.1870 8.32 0.000

sigma = 0.00977343

Equation for: DYc
Coefficient Std.Error t-value t-prob

DYa_1 0.0583258 0.02097 2.78 0.006
DYc_1 -0.242065 0.05997 -4.04 0.000
CIb_1 0.0321119 0.01349 2.38 0.018
Constant -0.359823 0.1516 -2.37 0.019

sigma = 0.00688795

Equation for: DYd
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Coefficient Std.Error t-value t-prob
DYd_1 0.238268 0.06052 3.94 0.000
CIb_1 -0.0564784 0.02083 -2.71 0.007
Constant 0.636257 0.2342 2.72 0.007

sigma = 0.0131465

log-likelihood 2558.45031 -T/2log|Omega| 3693.60114
no. of observations 200 no. of parameters 12

LR test of over-identifying restrictions: Chi^2(16)= 19.392 [0.2488]
BFGS using analytical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence

correlation of structural residuals (standard deviations on diagonal)
DYa DYb DYc DYd

DYa 0.016762 -0.020084 -0.56272 -0.56841
DYb -0.020084 0.0097734 -0.12272 0.043877
DYc -0.56272 -0.12272 0.0068880 0.41753
DYd -0.56841 0.043877 0.41753 0.013147

Model evaluation is as before. The vector tests from the test summary report no
problems:
Vector SEM-AR 1-5 test: F(80,688) = 0.77569 [0.9229]
Vector Normality test: Chi^2(8) = 5.2487 [0.7307]
Vector ZHetero test: F(48,710) = 1.1270 [0.2619]
Vector ZHetero-X test: F(108,673)= 1.0275 [0.4125]

whereas there is still significant non-normality owing to the outlier in the DYa equation.

7.3 Dynamic analysis and dynamic forecasting
Since the complete structure of the system is now known, aspects such as dynamic
analysis and dynamic forecasts can be implemented. Select Test, Dynamic Analysis

then Static long-run solution and Roots of companion matrix to produce (we replaced
the numbers smaller than 10−17 by zeros):

Long-run matrix Pi(1)-I = Po
DYa DYb DYc DYd CIa

DYa -1.3491 0.00000 0.00000 0.00000 -0.11135
DYb 0.00000 -1.0000 0.00000 0.00000 0.00000
DYc 0.058332 0.00000 -1.2421 0.00000 0.00000
DYd 0.00000 0.00000 0.00000 -0.76171 0.00000
CIa 0.065018 0.00000 -1.7186 1.6919 -0.11135
CIb -0.14583 0.00000 0.60513 0.40509 0.00000

CIb
DYa 0.00000
DYb -0.13794
DYc 0.032113
DYd -0.056499
CIa -0.035198
CIb -0.31428

Long-run covariance
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DYa DYb DYc DYd CIa
DYa 0.0089164 0.0012038 -0.00015306 -0.00093322 -0.098836
DYb 0.0012038 0.00024059 2.3704e-006 -0.00013804 -0.013589
DYc -0.00015306 2.3704e-006 9.4255e-006 1.2467e-005 0.0016244
DYd -0.00093322 -0.00013804 1.2467e-005 9.9531e-005 0.010382
CIa -0.098836 -0.013589 0.0016244 0.010382 1.1088
CIb -0.0078608 -0.0013885 3.8397e-005 0.00087321 0.087804

CIb
DYa -0.0078608
DYb -0.0013885
DYc 3.8397e-005
DYd 0.00087321
CIa 0.087804
CIb 0.012507

Static long run
Constant

DYa -0.0097057
DYb 0.0051424
DYc 0.00057086
DYd 0.0015204
CIa 0.40335
CIb 11.245

Standard errors of static long run
Constant

DYa 0.0066773
DYb 0.0010968
DYc 0.00021715
DYd 0.00070547
CIa 0.074460
CIb 0.0079082

Mean-lag matrix sum pi_i:
DYa DYb DYc DYd CIa

DYa -0.34914 0.00000 0.00000 0.00000 -0.11135
DYb 0.00000 0.00000 0.00000 0.00000 0.00000
DYc 0.058332 0.00000 -0.24205 0.00000 0.00000
DYd 0.00000 0.00000 0.00000 0.23829 0.00000
CIa 0.065018 0.00000 -1.7186 1.6919 0.88865
CIb -0.14583 0.00000 0.60513 0.40509 0.00000

CIb
DYa 0.00000
DYb -0.13794
DYc 0.032113
DYd -0.056499
CIa -0.035198
CIb 0.68572

Eigenvalues of long-run matrix:
real imag modulus

-1.307 0.09377 1.310
-1.307 -0.09377 1.310
-1.000 0.0000 1.000
-0.7145 0.0000 0.7145
-0.3293 0.0000 0.3293
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-0.1205 0.0000 0.1205

Eigenvalues of companion matrix:
real imag modulus

0.8795 0.0000 0.8795
0.6707 0.0000 0.6707
-0.3071 -0.09377 0.3211
-0.3071 0.09377 0.3211
0.2855 0.0000 0.2855
0.0000 0.0000 0.0000

Since the system is stationary, the long-run outcomes are interpretable (some are re-
dundant given the simplicity of the dynamics in this system). Note that the roots of
π̂(1)− In are one minus the roots of the companion matrix, and that the long-run Con-
stant is highly significant in every equation except DYa. The Constant coefficients for
the differenced variables are, of course, their long-run trends, and when multiplied by
400, deliver the annual growth rates as a percentage.

The long-run covariances are not easy to interpret when the identities are retained,
since the 6×6 matrix only has rank 4. Here, the ‘non-singular’ long-run system is given
by, for example, DYa, DYb, CIa, CIb, which is a valid (full rank) representation.

For dynamic forecasting, select Test, Forecast, Dynamic forecasts and set 16 peri-
ods (two years), marking all six variables, to see Figure 7.1.
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Figure 7.1 Dynamic forecasts in I(0) space

This greatly improves on Figure 6.5, because the cointegrating vectors are now
endogenous to the simultaneous equations model. The error bars for DYc and DYd
reach their unconditional values almost at once whereas those for DYa and DYb continue
to increase for about eight periods, as do the error bars for the cointegrating vectors.
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Figure 7.2 Dynamic forecasts in I(0) and I(1) space

The variables therefore rapidly converge to their unconditional means and variances,
where the former are non-zero except for DYc and DYd, and have ‘realistic’ values.
The contrast with the dynamic forecast graphs of Figure 3.5 is marked, and the current
model is a much better representation of the information content of the system.

Note that the error bars will not converge to zero even when there are columns of
zeros in the long-run covariance matrix. The reason is that the error bars are based
(as h → ∞) on the unconditional error covariance matrix (of the form

∑
i A

iΩAi′)
whereas the long-run covariance is (In −A)

−1
Ω (In −A′)

−1. See Chapter 11 for a
more precise description.

Dynamic forecasting also allows forecasting derived functions of the original vari-
ables, by specifying Algebra code. For example, we can forecast the levels of Ya by
integrating the difference (as an alternative to creating an identity for Ya):

Ya = cum(DYa) + 8.88265;

where we integrate from the actual level at 2000(4). Actually, since Ya is in logs, we
can also undo the logarithm:

Ya = cum(DYa) + 8.88265; EYa = exp(Ya);

so enter the code in the dialog as follows:
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Also mark only the DYa equation to create just three graphs.
The result is in Figure 7.2, which involved some manipulation: we added the actual

values to the bottom two graphs. This required changing the default areas to get visually
meaningful graphs. In the middle graph, we also changed the style of the Y axis to
logs (data is in logs). Consequently the bottom two graphs are essentially the same,
although the standard errors will differ in general.1

7.4 Modelling the parsimonious VAR

Why model a PVAR? Hendry and Doornik (1994) argue that the main reason is to si-
multaneously reduce the sample dependence of the estimated system and increase its
invariance to change. The former arises because of the high dimensionality of a VAR,
so that combinations of lagged variables accidentally coincide with data ‘blips’, induc-
ing dependence on transient empirical phenomena: later re-estimation over a longer
sample period should reveal this difficulty by driving the extended estimates towards
insignificance despite more information. The second factor requires parameterizing in
terms of the autonomous relations and eliminating the accidental features.

As before, when we identified the cointegration space, we needed to know about
the economic content of the subject matter. Remember that Ya, Yb, Yc, Yd correspond
respectively to the logarithms of real money (m − p) and total final expenditure (i),
inflation (∆p), and an interest rate differential which measures the opportunity costs
of holding money (Rn). In §5.5, we already examined the long-run weak exogeneity
of (yt,∆pt, Rn,t) for the parameters of the first cointegrating relation (under the asser-
tion that this is the correct order of hypothesis testing). This supports the interpretation

1The middle graph uses a ‘naive’ transformation of the error bands: if ŷt, t = T +1, . . . , T +

H denotes the forecasts, and f−1(·) the reverse data transformation, then the graph shows
f−1(ŷt) with bands at f−1(ŷt − 2êt) and f−1(ŷt + 2êt). This, however, does not take into
account the covariance which may be induced by the (reverse) transformation. When the re-
verse transformation is explicitly specified in the Derived function box, the standard errors of
the forecast error are computing numerically, which takes the Jacobian of the transformation into
account.
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of the first equation as a contingent model of money demand, in which agents decide
their money holdings once current inflation, income and opportunity costs are known,
although ∆pt and Rn,t could represent ‘random walk’ predictors of next period’s val-
ues. Then the remaining three equations model those variables, consistent with narrow
money not greatly influencing their behaviour. The second cointegration vector rep-
resents the excess demand for goods and services on this interpretation, which is one
factor affecting inflation and output growth, and possibly interest-rate setting behaviour
by the central bank (for a more extensive analysis, see Hendry, 2001).

To interpret the model more usefully, we first reparametrize the cointegration vec-
tors to have zero means, so the intercepts that remain become growth rates. Here the
sample means of CIa and CIb are 0.4 and 11.25 respectively, so subtract these:

CIam = CIa - 0.4; CIbm = CIb - 11.25;

and reformulate the system in terms of these zero-mean cointegration vectors. The only
change in the estimates should be in the intercept values. Because there should be no
‘autonomous’ growth in either inflation or interest rates, their constants should be set
to zero; whereas the intercepts in the first two equations should deliver the same long-
run growth (since we have imposed a unit elasticity of real money with respect to real
expenditure via the first cointegration relation). Implementing the first two delivers a
test of over-identifying restrictions of χ2(18) = 26.3 [p = 0.09]. The estimates now
are (easily obtained in LATEX form by using Test, Further Output, Write model results):

DYa = − 0.326
(0.0618)

DYat−1 − 0.11
(0.00647)

CIamt−1 − 0.011
(0.00105)

DYb = − 0.137
(0.0166)

CIbmt−1 + 0.00466
(0.000687)

DYc = 0.0337
(0.0187)

DYat−1 − 0.266
(0.0599)

DYct−1 + 0.0202
(0.0128)

CIbmt−1

DYd = 0.24
(0.0598)

DYdt−1 − 0.0558
(0.0205)

CIbmt−1

The remaining restriction requires CFIML, but is clearly invalid, since the first intercept
is negative, but real expenditure has grown, at about 2.2% p.a. (400× 0.0055). This is
due to an ‘unlucky draw of the data’, since the restriction is in fact true in the DGP (see
§7.6).

The final features of the data that merit modelling are the large negative residual
correlations between money with the inflation and interest-rate equations, consistent
with the contingent model of money demand noted above. OLS estimation of such a
specification yields:

DYa = − 0.28
(0.0616)

DYat−1 − 0.891
(0.133)

DYct − 0.518
(0.072)

DYdt

− 0.0108
(0.00109)

− 0.108
(0.00637)

CIamt−1
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Both contemporaneous variables are highly significant. However, when the correspond-
ing equation is estimated with DYct and DYdt endogenized, we obtain:

DYa = − 0.363
(0.0746)

DYat−1 − 0.11
(0.00677)

CIamt−1 − 0.0112
(0.00106)

+ 0.73
(0.658)

DYct + 0.391
(0.428)

DYdt

Neither variable is significant, and their signs are uninterpretable, confirming that data
variation can be important. Indeed, a glance back at Figure 3.1 reveals the problem: real
money holdings fell in the sample analyzed, whereas real expenditure rose, and indeed
both inflation and interest rates had quite strong chance trends.

We complete this set of tutorials with a look at maximization control, and a com-
parison of our modelled equations with the actual DGP. The final tutorial in Chapter 8
looks at some advanced features. If you wish, you could leave that for later reading —
we trust you now have sufficient experience to start modelling with actual data.

7.5 Maximization control

When deselect Automatic maximization in the Estimation dialog, you are presented
with the Maximization Control dialog (for the model prior to formulating the mean-zero
cointegration vectors, i.e. the model of MulTut4.fl):
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Note that we resized the dialog somewhat to display all free parameters. The avail-
able options are:

1. Coefficient values can be set to any particular desired value by double clicking on
the coefficient in the list box.

2. Reset the initial values to those at dialog entry.
3. Estimate, to optimize the objective function starting from the listed coefficient val-

ues.
4. Press Options to control the maximization process:
• Change the maximum number of iterations (that is, steps in which the function

value reduces); if this number is reached, the optimization process will abort,
despite not yet finding the minimum.
• Specify how often (if at all) iteration output is printed; and
• Set the convergence criterion.

5. Conduct a Grid search over the model parameters.

The starting values for FIML are provided by 3SLS estimation, which usually is
a good initial point. To continue, press the Estimate button to maximize the log-
likelihood, which happens nearly instantaneously. Next, we will draw some parameter
grids.

There are two methods available to generate a parameter grid:

1. Maximize over remaining parameters.
This involves a complete log-likelihood maximization over the other parameters.
For example, in a two parameter case, where the grid is over α:

̂̀(αi, β̂)/T = max
β

`(αi, β)/T, αi = α1, . . . , αn,

where αi are the selected grid points.
2. Keep all remaining parameters fixed.

The fixed grid only involves likelihood evaluations, keeping the second parameter
fixed at its current value, while computing the first over the grid coordinates:

`(αi, β | β = β∗)/T, αi = α1, . . . , αn,

Therefore, the former method can be much slower, especially for a 3D (bivari-
ate) grid. For example, a 20 by 20 grid would require 400 likelihood maximizations
(i.e., 400 FIML estimates).

For an illustrative graph, we first compute a one-dimensional fixed grid of all pa-
rameters. To start, press Estimate to maximize, then press the Grid button:
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and then press Next Grid eleven times, until the title says ‘Grid 12’, for which the listed
parameter is the Constant. Then press OK (don’t press Cancel if you go too far: that
will abort the whole procedure, not creating any graphs). The result should look like
Figure 7.3
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Figure 7.3 Likelihood function projections for one parameter

For some examples of two-dimensional grids it is useful to move somewhat away
from the maximum: double click on the first parameter, and change its value to −0.5.
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Figure 7.4 Likelihood function grid for two parameters

All the gradients will change as a consequence — it is clear that this is not the maxi-
mum. Also set the third parameter (the first Constant) to zero.

For the three-dimensional grid plots, which are a function of two parameters, we
look at the first two coefficients. Activate the grid, and click on 3D grid:
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For the first parameter, that of DYa 1, set the number of steps to 30, and the step
size to 0.1. Select CIa 1 for the second parameter, setting the number of steps for to 20
with step size 0.01. Click on Next Grid, and reset to the same grid as before, but now
select Maximize over remaining parameters. The first grid is in Figure 7.4a, with the
second, using full re-estimation for every grid point, in Figure 7.4b.

Figure 7.4c and d correspond to 7.4a and b respectively, but they are both rotated
in the same way to expose the curvature along CIa more clearly. This illustrates the
difference between the two grids: in the max grid case, we can read the actual likelihood
maximum of the graph (roughly at−0.1 for the CIa 1 coefficient). This cannot be done
for fixed grid graph: there the maximum appears to be at a value near −0.02, with a
clearly lower log-likelihood value: at the fixed graph, the coefficient of the Constant is
kept at zero, while the max graph re-estimates it every time.

7.6 How well did we do?
The tutorial data are generated artificially, from the data generation process (DGP) in
Doornik, Hendry, and Nielsen (1998), so we can check on the closeness of the selected
model to the DGP.

In fact the system was:

∆xt =


−0.102 0

0 −0.149

0 0.036

0 −0.04

( 1 −1 6.41 7.16 0 −0.209

0 1 −2.13 1.48 −0.0063 −11.186

)

×

 xt−1

t

1

+


0.0063

0.0063

0

0

+


−0.3 0 0 −0.06

0 0 0 0

0.068 0 −0.26 0

0 0 0 0.17

∆xt−1 + νt,

when:

νt ∼ IN4 [0,Σ] , where Σ∗ =


1.6%

−0 .08 1%

−0 .51 0 .03 0.69%

−0 .49 0 .09 0 .31 1.3%

 ,

using the lower triangle of Σ∗ to show the cross correlations of the errors, and:(
x′−1

x′0

)
=

(
10.9445 11.1169 0.000779 0.048967

10.9369 11.1306 0.013567 0.050

)
.

Note that, despite the way the DGP is written, the constant is actually not restricted to
the cointegration space, thus satisfying Hl(2).

So we actually did very well, coming close to recovering the actual DGP! The only
restriction we imposed which was not in the DGP is β13 = β23 in the cointegrating
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vector. Another problem was caused by the negative growth rate of real money in this
draw, as discussed in §7.4. Of course, we were fortunate that our initial general model
had the DGP nested within it — in practice, one cannot expect to be so lucky.



Chapter 8

Tutorial on Advanced VAR Modelling

8.1 Introduction

In Chapter 3 we formulated and estimated a system which was a vector autoregression.
The modelling sequence progressed as:

VAR in I(1) space
↓

Cointegrated VAR in I(1) space
↓

Cointegrated VAR in I(0) space
↓

Parsimonious CVAR
↓

Structural model

This chapter discusses some of the features of PcGive that were not addressed in the
previous tutorials. It is assumed that you have some familiarity with the material in the
preceding tutorials: required mouse actions or keystrokes are often not given here.

The basis for this chapter is Lütkepohl (1991) (in the remainder referred to as Lütke-
pohl). Using a data set listed there, we shall replicate many of the calculations and
graphs. The purpose is to discuss remaining features of PcGive, show its flexibility,
and explain any differences in results. The emphasis will be on technique, rather than
interpretation.

8.2 Loading the Lütkepohl data

The data are listed in Table E.1 of Appendix E in Lütkepohl, and are provided with
PcGive in the file MulTutVAR.in7. Start OxMetrics and load this file (if the default
installation was used, the file will be in \Program files\OxMetrics7\data).

91
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The data are quarterly, and have sample period 1960(1)–1979(4) (with one year
used for forecasting):

I investment,
Y income,
C consumption.

These are seasonally adjusted data for West Germany, the units are billions of DM. The
levels are graphed in Figure 8.1.

The calculator was used to create logarithms of the variables: i = log(I), y = log(Y),
c = log(C), as well as first differences: Di = ∆i, Dy = ∆y, Dc = ∆c:

i = log(I);
y = log(Y);
c = log(C);
Di = diff(i, 1);
Dy = diff(y, 1);
Dc = diff(c, 1);

I 
C 

Y 
 

1960 1965 1970 1975 1980

250

500

750

1000

1250

1500

1750

2000

2250 I 
C 

Y 
 

Figure 8.1 Levels of investment, income and consumption

8.3 Estimating a VAR
Activate Model, Formulate System and set up a two-lag VAR with unrestricted con-
stant. Reduce the estimation sample by one year (that is, estimate up to 1978 (4);
estimation yields:

SYS( 1) Estimating the system by OLS (using MulTutVAR.in7)
The estimation sample is: 1960(4) - 1978(4)
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URF equation for: Di
Coefficient Std.Error t-value t-prob

Di_1 -0.319631 0.1255 -2.55 0.013
Di_2 -0.160551 0.1249 -1.29 0.203
Dy_1 0.145989 0.5457 0.268 0.790
Dy_2 0.114605 0.5346 0.214 0.831
Dc_1 0.961219 0.6643 1.45 0.153
Dc_2 0.934394 0.6651 1.40 0.165
Constant U -0.0167220 0.01723 -0.971 0.335

sigma = 0.0461479 RSS = 0.1405555086

URF equation for: Dy
Coefficient Std.Error t-value t-prob

Di_1 0.0439311 0.03186 1.38 0.173
Di_2 0.0500308 0.03172 1.58 0.120
Dy_1 -0.152732 0.1386 -1.10 0.274
Dy_2 0.0191658 0.1358 0.141 0.888
Dc_1 0.288502 0.1687 1.71 0.092
Dc_2 -0.0102049 0.1689 -0.0604 0.952
Constant U 0.0157672 0.004375 3.60 0.001

sigma = 0.0117191 RSS = 0.009064290022

URF equation for: Dc
Coefficient Std.Error t-value t-prob

Di_1 -0.00242267 0.02568 -0.0944 0.925
Di_2 0.0338804 0.02556 1.33 0.190
Dy_1 0.224813 0.1117 2.01 0.048
Dy_2 0.354912 0.1094 3.24 0.002
Dc_1 -0.263968 0.1360 -1.94 0.056
Dc_2 -0.0222301 0.1361 -0.163 0.871
Constant U 0.0129259 0.003526 3.67 0.000

sigma = 0.00944476 RSS = 0.00588743192

log-likelihood 606.306968 -T/2log|Omega| 917.054506
|Omega| 1.22587519e-011 log|Y’Y/T| -24.4249756
R^2(LR) 0.503318 R^2(LM) 0.198829
no. of observations 73 no. of parameters 21

F-test on regressors except unrestricted: F(18,181) = 2.83062 [0.0002] **
F-tests on retained regressors, F(3,64) =

Di_1 3.10599 [0.033]* Di_2 1.83313 [0.150]
Dy_1 3.66382 [0.017]* Dy_2 4.89344 [0.004]**
Dc_1 6.39472 [0.001]** Dc_2 0.750599 [0.526]

Constant U 6.83391 [0.000]**

correlation of URF residuals (standard deviations on diagonal)
Di Dy Dc

Di 0.046148 0.13242 0.28275
Dy 0.13242 0.011719 0.55526
Dc 0.28275 0.55526 0.0094448
correlation between actual and fitted

Di Dy Dc
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0.35855 0.33793 0.50128

Here we have T = 73, k = 7, so that the t-probabilities come from a Student-t distribu-
tion with 66 degrees of freedom. Most statistics (such as the standard errors, standard
deviations of URF residuals and correlation of URF residuals) are based on Ω̃. To
compute σ without degrees-of-freedom correction for the first equation, for example:

σ̂ =

√
T − k
T

σ̃ = 0.9508 ∗ 0.04615 = 0.0439.

8.4 Dynamic analysis

Select Test, Dynamic analysis, select static long-run solution and roots of companion

matrix. The output includes:

Long-run matrix Pi(1)-I = Po
Di Dy Dc

Di -1.4802 0.26059 1.8956
Dy 0.093962 -1.1336 0.27830
Dc 0.031458 0.57973 -1.2862

Long-run covariance
Di Dy Dc

Di 0.0019289 0.00049528 0.00047269
Dy 0.00049528 0.00024515 0.00020511
Dc 0.00047269 0.00020511 0.00020007

Mean-lag matrix sum pi_i:
Di Dy Dc

Di -0.64073 0.37520 2.8300
Dy 0.14399 -0.11440 0.26809
Dc 0.065338 0.93464 -0.30843

Eigenvalues of long-run matrix:
real imag modulus

-1.639 0.2614 1.659
-1.639 -0.2614 1.659
-0.6228 0.0000 0.6228

Eigenvalues of companion matrix
lambda_i real imag modulus z_i real imag modulus

0.5705 0.0000 0.5705 | 1.75 0.00 1.75
-0.3906 0.3891 0.5513 | -1.29 -1.28 1.81
-0.3906 -0.3891 0.5513 | -1.29 1.28 1.81
-0.07725 0.4856 0.4917 | -0.320 -2.01 2.03
-0.07725 -0.4856 0.4917 | -0.320 2.01 2.03
-0.3712 0.0000 0.3712 | -2.69 0.00 2.69
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The companion matrix for the VAR(2) model yt = π1yt−1 + π2yt−2 + vt is:

(
π̂1 π̂2

I3 0

)
=



−0.320 0.044 −0.0024 −0.161 0.0500 0.034

0.146 −0.153 0.225 0.115 0.0192 0.355

0.961 0.289 −0.264 0.934 −0.0102 −0.022

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


All the roots, λi, of the companion matrix are inside the unit circle (modulus1 is less
than 1). Or in terms of zi = 1/λi, all roots are outside the unit circle. The numbers for
zi have been added to the output.

8.5 Forecasting
Static forecasting is possible only if we retain observations for that purpose, so is not
feasible given our present selection (if you selected the data sample as described above).
However, it is easy to re-estimate the system reserving some observations for static
forecasting. Dynamic forecasting requires data over the forecast period on any non-
modelled, stochastic variables. When the system is closed, it is feasible computationally
to dynamically forecast well beyond the available data period, but the practical value of
such an exercise is doubtful for long horizons.

Re-estimate the VAR on the sample to 1979(4), withholding the four new observa-
tions for forecasting, by requiring 4 forecasts. Then use Test/Further Output/Static

(1-step) forecasts to print the full output. The extra information in the results window
is:

1-step (ex post) forecast analysis 1979(1) - 1979(4)
Parameter constancy forecast tests:
using Omega Chi^2(12)= 16.366 [0.1750] F(12,66) = 1.3638 [0.2059]
using V[e] Chi^2(12)= 15.113 [0.2353] F(12,66) = 1.2594 [0.2638]
using V[E] Chi^2(12)= 15.155 [0.2331] F(12,66) = 1.2629 [0.2616]

1-step forecasts for Di (SE with parameter uncertainty)
Horizon Forecast SE Actual Error t-value
1979-2 -0.0108109 0.04805 -0.0114944 -0.000683436 -0.014
1979-3 0.0165471 0.04779 0.0924158 0.0758687 1.587
1979-4 0.0206854 0.04783 0.0298530 0.00916755 0.192
1980-1 -0.00873230 0.04957 0.0425596 0.0512919 1.035
mean(Error) = 0.033911 RMSE = 0.046020
SD(Error) = 0.031111 MAPE = 298.00

1-step forecasts for Dy (SE with parameter uncertainty)
Horizon Forecast SE Actual Error t-value
1979-2 0.0199108 0.01220 0.0309422 0.0110314 0.904

1Modulus is defined as: |a + ib| =
√

(a2 + b2). If x.z = (a + ib) (c + id) = 1 then
c = a/ |x|2 and d = −b/ |x|2.
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1979-3 0.0198156 0.01214 0.0242599 0.00444439 0.366
1979-4 0.0260749 0.01215 0.0101569 -0.0159180 -1.311
1980-1 0.0187781 0.01259 0.0182852 -0.000492824 -0.039

mean(Error) = -0.00023377 RMSE = 0.0099382
SD(Error) = 0.0099354 MAPE = 25.763

1-step forecasts for Dc (SE with parameter uncertainty)
Horizon Forecast SE Actual Error t-value
1979-2 0.0216287 0.009835 0.0257249 0.00409616 0.416
1979-3 0.0160543 0.009781 0.0353467 0.0192924 1.972
1979-4 0.0188460 0.009789 -0.00512034 -0.0239663 -2.448
1980-1 0.0274440 0.01014 0.0233395 -0.00410454 -0.405

mean(Error) = -0.0011706 RMSE = 0.015654
SD(Error) = 0.015610 MAPE = 50.009

Forecast tests using V[e]:
1979-1 Chi^2(3) = 0.84043 [0.8398]
1979-2 Chi^2(3) = 5.7548 [0.1242]
1979-3 Chi^2(3) = 6.8511 [0.0768]
1979-4 Chi^2(3) = 1.6668 [0.6443]

The Graphic analysis dialog can be used to plot the outcomes: mark Forecasts and

outcomes as well as Forecast chow tests. Figure 8.2 shows the graph.
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Figure 8.2 1-step forecasts with error and parameter-variance based error bars
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We can compare these results to the output from dynamic forecasting. Access its
dialog, select four 1-step forecasts, and Write results instead of graphing in the Options

section to obtain the second set of 1-step forecast standard errors. Next, select four
dynamic forecasts in the Forecast dialog and Write:

1-step forecasts for Di (SE based on error variance only)
Horizon Forecast SE Actual Error t-value
1979-1 -0.0108109 0.04615 -0.0114944 -0.000683436 -0.015
1979-2 0.0165471 0.04615 0.0924158 0.0758687 1.644
1979-3 0.0206854 0.04615 0.0298530 0.00916755 0.199
1979-4 -0.00873230 0.04615 0.0425596 0.0512919 1.111

1-step forecasts for Dy (SE based on error variance only)
Horizon Forecast SE Actual Error t-value
1979-1 0.0199108 0.01172 0.0309422 0.0110314 0.941
1979-2 0.0198156 0.01172 0.0242599 0.00444439 0.379
1979-3 0.0260749 0.01172 0.0101569 -0.0159180 -1.358
1979-4 0.0187781 0.01172 0.0182852 -0.000492824 -0.042

1-step forecasts for Dc (SE based on error variance only)
Horizon Forecast SE Actual Error t-value
1979-1 0.0216287 0.009445 0.0257249 0.00409616 0.434
1979-2 0.0160543 0.009445 0.0353467 0.0192924 2.043
1979-3 0.0188460 0.009445 -0.00512034 -0.0239663 -2.538
1979-4 0.0274440 0.009445 0.0233395 -0.00410454 -0.435

Dynamic (ex ante) forecasts for Di (SE based on error variance only)
Horizon Forecast SE Actual Error t-value
1979-1 -0.0108109 0.04615 -0.0114944 -0.000683436 -0.015
1979-2 0.0107809 0.04866 0.0924158 0.0816349 1.678
1979-3 0.0211157 0.04903 0.0298530 0.00873726 0.178
1979-4 0.0123583 0.04942 0.0425596 0.0302013 0.611

Dynamic (ex ante) forecasts for Dy (SE based on error variance only)
Horizon Forecast SE Actual Error t-value
1979-1 0.0199108 0.01172 0.0309422 0.0110314 0.941
1979-2 0.0203487 0.01220 0.0242599 0.00391127 0.321
1979-3 0.0169806 0.01231 0.0101569 -0.00682373 -0.554
1979-4 0.0206009 0.01243 0.0182852 -0.00231571 -0.186

Dynamic (ex ante) forecasts for Dc (SE based on error variance only)
Horizon Forecast SE Actual Error t-value
1979-1 0.0216287 0.009445 0.0257249 0.00409616 0.434
1979-2 0.0146539 0.009755 0.0353467 0.0206928 2.121
1979-3 0.0198257 0.01079 -0.00512034 -0.0249461 -2.313
1979-4 0.0187203 0.01083 0.0233395 0.00461917 0.426

The first set of 1-step forecast standard errors (labelled ‘SE with parameter uncer-
tainty’) takes parameter uncertainty into account, the second set (created with the Fore-

cast dialog) does not. Hence in the latter, the standard errors remain constant (at σ̃), and
are smaller than the full forecast standard errors. Figure 8.3 gives four dynamic fore-
casts with these constant error bars, together with some pre-forecast data. Compared to
Figure 8.2, the bars are noticeably smaller only for Dc.
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Figure 8.3 1-step forecasts with error-variance based bars
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Figure 8.4 Dynamic forecasts of levels and differences

It is often interesting to have forecasts of both the levels and the differences. This
can be achieved using identities. Add i, y, c with one lag to the system, and mark
the current-dated levels as I(dentities). Activate Simultaneous equations model in the,
Model Settings, and define the three identities as:

i = i 1,Di,
y = y 1,Dy,
c = c 1,Dc.

Also delete any lagged levels from the stochastic equations, so these remain in differ-
ences. Re-estimate by FIML keeping four forecasts. The results should be as before.
Figure 8.4 shows four dynamic forecasts, with error bars, both for the differences and
the levels (the identities have to be marked in the dialog). Note the rapid increase in the
height of the error bars for the levels.
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This approach can be compared to that underlying Figure 7.2, where Algebra code
was used to obtain levels forecasts. The advantage of the current approach is that fore-
cast standard errors can be computed analytically, rather than numerically. Here we
could add code to undo the logarithms: I=exp(i); Y=exp(y); C=exp(c);.

8.6 Dynamic simulation and impulse response analysis

Dynamic simulation in PcGive is similar to dynamic forecasting, but starting at a point
inside the estimation sample. Select Simulation and Impulses:

Marking Actual and simulated values and all equations gives Figure 8.5.

Notice the complete lack of explanatory power for simulated differences after the first
couple of data points, apart from the mean. That the levels appear to track well is
therefore essentially an artefact due to the residuals summing to zero (see Pagan, 1989).
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Figure 8.5 Dynamic simulation for levels and differences

8.6.1 Impulse response analysis

Impulse response analysis amounts to dynamic simulation from an initial value of
zero, where a shock at t = 1 in a variable is traced through. This amounts to graphing
powers of the companion matrix. As with dynamic simulation, for linear systems, most
information is given in the dynamic analysis, but graphs might be easier to interpret
than numbers.
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Figure 8.6 Impulse responses
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Figure 8.7 Accumulated responses to an impulse in Dc

Select Test/Simulation and Impulse Responses, set the number of steps to eight
collapse the Dynamic Simulation group, expand Impulse Responses, and mark Impulse

Responses and Use standard errors. Finally, deselect Also graph impulses to identities

as shown above. The result is Figure 8.6. Selecting unit initial values only affects the
scaling of the graphs. Accumulated responses are also available. Mark Accumulated

responses and unmark Di and Dy in the list box. The resulting Figure 8.7 gives the
accumulated responses to a standard error impulse in Dc. Orthogonalized responses
are available, but these alter the conditioning assumptions, and care is required to avoid
violating weak exogeneity conditions (see e.g., Ericsson, Hendry, and Mizon, 1996).
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8.7 Sequential reduction and information criteria
Re-estimate the initial VAR in differences with four lags and U(nrestricted) Constant
and without identities, with sample 1961(2) – 1978(4) for estimation. Select Lag struc-

ture analysis from Test/Dynamic analysis to see:

Tests on the significance of each variable
Variable F-test Value [ Prob]
Di F(12,148)= 1.7075 [0.0704]
Dy F(12,148)= 1.4961 [0.1315]
Dc F(12,148)= 1.4616 [0.1449]
Constant F(3,56) = 2.5526 [0.0646]

Tests on the significance of each lag
Lag 4 F(9,136) = 1.3212 [0.2314]
Lag 3 F(9,136) = 0.55863 [0.8288]
Lag 2 F(9,136) = 2.0976 [0.0337]*
Lag 1 F(9,136) = 2.7265 [0.0059]**

Tests on the significance of all lags up to 4
Variable F-test Value [ Prob] AIC SC
Full model -15.7593 -14.5165
Lag 4 - 4 F(9,136) = 1.3212 [0.2314] -15.8095 -14.8534
Lag 3 - 4 F(18,158)= 0.88530 [0.5970] -15.9960 -15.3268
Lag 2 - 4 F(27,164)= 1.4410 [0.0863] -15.8988 -15.5164
Lag 1 - 4 F(36,166)= 1.7475 [0.0101]* -15.8249 -15.7293

The middle block of F -tests considers each lag on its own. The last block considers
models with decreasing lag length. The line labelled full model gives the information
criteria with all lags in the model. The next line drops lag 4, the next drops lags 3 and
4, etc. In each case, the F -test is the test on the significance of those lags. So lags 3–4
are neither jointly nor individually significant. The second lag is significant, but only
marginally when tested together with lags three and four.

Similar results can be obtained by omitting one lag at a time, and then re-estimating,
while keeping the sample unchanged. From the output for each VAR we find (T = 71

in each case):

lags log-likelihood −T/2 log |Omega| log |Omega| |Omega|
4 598.45649 900.690396 −25.3715604 9.57792214−12

3 591.23731 893.471222 −25.1682034 1.17378385−11

2 588.85911 891.093022 −25.1012119 1.25511114−11

1 576.40866 878.642571 −24.7504949 1.78236489−11

0 564.78424 867.018150 −24.4230465 2.47289502−11

Remember that these are based on Ω̂ = 1
T V̂′V̂, whereas most other statistics use

Ω̃ = 1
T−k V̂′V̂ (Σ̂/u in Lütkepohl). Conversion for an n-dimensional VAR is:

log
∣∣∣Ω̃∣∣∣ = log

∣∣∣Ω̂∣∣∣+ n log

(
T

T − k

)
.
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Model/Progress lists the log-likelihoods, Schwarz, Hannan–Quinn and Akaike in-
formation criteria, and F-tests for the model reduction.

Progress to date
Model T p log-likelihood SC HQ AIC
SYS( 1) 71 39 OLS 598.45649 -14.516 -15.265 -15.759
SYS( 2) 71 30 OLS 591.23731 -14.853 -15.429 -15.810
SYS( 3) 71 21 OLS 588.85911 -15.327 -15.730 -15.996<
SYS( 4) 71 12 OLS 576.40866 -15.516 -15.747 -15.899
SYS( 5) 71 3 OLS 564.78424 -15.729< -15.787< -15.825

Tests of model reduction (please ensure models are nested for test validity)
SYS( 1) --> SYS( 2): F(9,136) = 1.3212 [0.2314]
SYS( 1) --> SYS( 3): F(18,158)= 0.88530 [0.5970]
SYS( 1) --> SYS( 4): F(27,164)= 1.4410 [0.0863]
SYS( 1) --> SYS( 5): F(36,166)= 1.7475 [0.0101]*

SYS( 2) --> SYS( 3): F(9,143) = 0.44573 [0.9079]
SYS( 2) --> SYS( 4): F(18,167)= 1.4797 [0.1028]
SYS( 2) --> SYS( 5): F(27,172)= 1.8618 [0.0094]**

SYS( 3) --> SYS( 4): F(9,151) = 2.6014 [0.0081]**
SYS( 3) --> SYS( 5): F(18,175)= 2.6470 [0.0006]**

SYS( 4) --> SYS( 5): F(9,158) = 2.5338 [0.0097]**

The F-form of the likelihood ratio test (see §11.8) is expected to have better small-
sample behaviour than the uncorrected χ2 form (these can be easily computed by hand,
then use OxMetrics’s Data, Tail probability to check significance). Sequential reduc-
tion based on the F-tests would accept system 1 → 2 → 3, but reject further reduction
to system 4. A direct reduction from system 1 → 4 only has a p-value of 8.6%; the
large number of restrictions somewhat hides the significance of the second lags. Thus,
we began with an appropriate reduction when using 2 lags.

PcGive includes all parameters (including coefficient of the constant) in the compu-
tation of the information criteria. The outcomes are easily verified, using the equa-
tions in (15.19) and the T and k as listed. Here both SC and HQ have a mini-
mum for system 5, which only has a constant term: that seems an excessive simpli-
fication, and would certainly fail on diagnostic testing (try and see: Vector AR 1-2
F(18, 175) = 2.4318[0.0016]∗∗ for example).

8.8 Diagnostic checking
Re-estimate the VAR using two lags (use Recall to find it on the System formulation),
and the estimation sample 1960(4)–1978(4).

Residual autocorrelations, see Figure 8.8, are obtained through the graphic analysis,
here shown up to lag 12 (residual-based vector tests featured in the tutorial sections 3.2
and 6.1). Activate Test, Test, and mark Residual autocorrelations and portmanteau

statistic selecting 12 lags, and Normality test, and select Vector tests only.
Vector Portmanteau(12): Chi^2(90) = 81.934 [0.7157]
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Figure 8.8 Residual autocorrelations

Vector Normality test for Residuals
Skewness

0.28111 -0.25831 -0.79946
Excess kurtosis

4.8159 3.3070 4.2370
Skewness (transformed)

1.0479 -0.96504 -2.7431
Excess kurtosis (transformed)

3.3502 0.93428 0.18474
Vector Normality test: Chi^2(6) = 21.685 [0.0014]**

These tests are discussed in §11.9.2.1 and §11.9.2.3 respectively. The reported skewness
and excess kurtosis are both for the individual residuals, and the transformed residuals.
The latter are approximately standard normally distributed; here one of each is signifi-
cant. Overall, normality is clearly rejected. More detail on the vector normality test is
provided in Doornik and Hansen (1994). It is preferred to the test in Lütkepohl for two
reasons. First, the test reported by PcGive employs a small-sample correction. Second,
Lütkepohl’s test uses Choleski decomposition, resulting in a test which is not invariant
to reordering the dependent variables, for example:

Di, Dy, Dc : χ2(6) = 7.84 [0.2501]

Dc, Dy, Di : χ2(6) = 25.6 [0.0003] ∗ ∗

The reported portmanteau statistic is already corrected for degrees of freedom. A more
appropriate test for vector error autocorrelation is the LM test offered through the Test

dialog. Select three lags:



8.8 Diagnostic checking 105

Testing for Vector error autocorrelation from lags 1 to 3
Chi^2(27)= 32.807 [0.2035] and F-form F(27,161)= 1.1448 [0.2962]

We shall try to replicate this manually. First save the residuals of the VAR: Test,
Store in database. Select Residuals and accept the default names VDi, VDy, VDc
(remember to return to OxMetrics to accept names). Access the database and replace
the initial three missing values of these residuals by 0. We wish to label the lagged
dependent variables as unrestricted. However, PcGive does not allow this. To bypass
this restriction, create lags in the Calculator, removing the underscore from the name
(the code is in MulTutVAR.alg):

Di1 = lag(Di, 1);
Di2 = lag(Di, 2);
Dy1 = lag(Dy, 1);
Dy2 = lag(Dy, 2);
Dc1 = lag(Dc, 1);
Dc2 = lag(Dc, 2);

Access Formulate, remove the lagged dependent variables and add the newly created
variables. Change the classification from endogenous to unrestricted. Also classify
the Constant as unrestricted. Add three lags of the residuals, removing the current
variables. Estimate this system, again over 1960 (4) to 1978 (4):

log-likelihood 624.998959 -T/2log|Omega| 935.746498
|Omega| 7.34581503e-012 log|Y’Y/T| -25.124781
R^2(LR) 0.40077 R^2(LM) 0.149802
no. of observations 73 no. of parameters 48

F-test on regressors except unrestricted: F(27,161) = 1.14479 [0.2962]
F-tests on retained regressors, F(3,55) =

VDi_1 0.119026 [0.949] VDi_2 3.20095 [0.030]*
VDi_3 1.72735 [0.172] VDy_1 3.04572 [0.036]*
VDy_2 1.32545 [0.275] VDy_3 4.54787 [0.006]**
VDc_1 3.17154 [0.031]* VDc_2 0.131043 [0.941]
VDc_3 2.03838 [0.119] Constant U 2.22153 [0.096]
Di1 U 0.146988 [0.931] Dy1 U 5.03299 [0.004]**
Dc1 U 5.26900 [0.003]** Di2 U 3.27341 [0.028]*
Dy2 U 3.36121 [0.025]* Dc2 U 4.25374 [0.009]**

Now remove the lagged residuals, re-estimate, and ask for a progress, keeping only
the two most recent systems marked:

Progress to date
Model T p log-likelihood SC HQ AIC
SYS(11) 73 48 OLS 624.99896 -14.302 -15.208 -15.808
SYS(12) 73 21 OLS 606.30697 -15.377 -15.773 -16.036

Tests of model reduction
SYS(11) --> SYS(12): F(27,161)= 1.1448 [0.2962]

The original F-form has been replicated twice, and is computed as in (11.111)–
(11.113), here:

1− (1− R2(LR))1/2.92

R2(LR)1/2.92
∗ 59.5 ∗ 2.92− 12.5

3 ∗ 9
.



106 Chapter 8 Tutorial on Advanced VAR Modelling

The LM test follows from (11.132):

73 ∗ 3 ∗ R2(LM).

8.9 Parameter constancy
Chow tests for constancy are readily computed and graphed following recursive esti-
mation. For a system, both single equation and system tests are computed, whereas
for a model only the system tests are available. Estimate the original VAR(2) over
1960(4)–1978(4) by RLS using 40 observations for initialization. Don’t use any unre-
stricted variables (which would have their coefficients fixed at the full sample values).
Then estimate the same system by recursive OLS. In Recursive graphics, deselect all
variables (click on one, and then Ctrl+click on the same). The system Chow tests and
log-likelihood/T (see §5.7) are graphed in Figure 8.9.
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Figure 8.9 Log-likelihood/T and system Chow tests

The values in these graphs can be written to the results editor. To make the amount
of data more manageable, estimate up to 1974(2) with 51 observations for initialization.
This gives four recursive estimates. Again: make sure that there are no unrestricted
variables. Activate the Recursive graphics dialog, mark log-likehood/T and the three
Chow tests (again deselecting all variables) and select the Write results instead of

graphing button:

-- residuals t+1,..,T are zero --
loglik/T (t) loglik actual loglik

1973-3 12.5913 ( 52) 692.523 650.374
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1973-4 12.5720 ( 53) 691.462 663.373
1974-1 12.5676 ( 54) 691.218 677.164
1974-2 12.5359 ( 55) 689.474 689.474

System: 1-step Chow tests
1973-3 F( 3, 42) = 0.83707 [0.4812]
1973-4 F( 3, 43) = 0.56380 [0.6418]
1974-1 F( 3, 44) = 0.13087 [0.9412]
1974-2 F( 3, 45) = 0.98173 [0.4098]

System: Breakpoint (N-down) Chow tests
1973-3 F( 12,111) = 0.61214 [0.8281]
1973-4 F( 9,104) = 0.54269 [0.8402]
1974-1 F( 6, 88) = 0.53974 [0.7766]
1974-2 F( 3, 45) = 0.98173 [0.4098]

System: Forecast (N-up) Chow tests
1973-3 F( 3, 42) = 0.83707 [0.4812]
1973-4 F( 6, 84) = 0.69318 [0.6557]
1974-1 F( 9,102) = 0.50407 [0.8686]
1974-2 F( 12,111) = 0.61214 [0.8281]

These results can be replicated using dummy variables. Use the calculator to create
four impulse dummy variables (in the calculator, click the Dummy button, then enter
period of the impulse, accept and name as shown below, copied from our results file,
and usable in the algebra, or use MulTutVARdum.alg):

i1973p3 = dummy(1973,3, 1973,3);
i1973p4 = dummy(1973,4, 1973,4);
i1974p1 = dummy(1974,1, 1974,1);
i1974p2 = dummy(1974,2, 1974,2);

Add the four dummies to the VAR, no lags, and clear their status. Estimate by OLS up
to 1974(2). This effectively removes the last four observations. The 1-step Chow test
amounts to adding one observation at a time, and testing its significance.

Towards the end of the output, you will see for the i1973p3 dummy:

F-tests on retained regressors, F(3,42) =
i1973p3 0.837065 [0.481]

Deleting that dummy, re-estimating gives the same result in the progress:

SYS( 4) --> SYS( 5): F(3,42) = 0.83707 [0.4812]

Next delete the remaining dummies one dummy at a time, starting with i1973p4:
system

8 : constant;
7 : constant, i1974p2;
6 : constant, i1974p1, i1974p2;
5 : constant, i1973p4 , i1974p1, i1974p2;
4 : constant, i1973p3, i1973p4 , i1974p1, i1974p2.

The progress report, after some reordering of the F-tests is:
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Progress to date
Model T p log-likelihood SC HQ AIC
SYS( 4) 55 33 OLS 459.99499 -14.323 -15.061 -15.527
SYS( 5) 55 30 OLS 458.39804 -14.483 -15.155 -15.578
SYS( 6) 55 27 OLS 457.33706 -14.663 -15.268 -15.649
SYS( 7) 55 24 OLS 457.09277 -14.873 -15.410 -15.749
SYS( 8) 55 21 OLS 455.34939 -15.028 -15.498 -15.795

Tests of model reduction
SYS( 4) --> SYS( 8): F(12,111)= 0.61214 [0.8281]
SYS( 5) --> SYS( 8): F(9,104) = 0.54269 [0.8402]
SYS( 6) --> SYS( 8): F(6,88) = 0.53974 [0.7766]
SYS( 7) --> SYS( 8): F(3,45) = 0.98173 [0.4098]

The forecast Chow tests correspond to testing the significance of i1973p3 in the system
with all the dummies, then of both i1973p3 and i1973p4, then of the first three dummies
etc. In other words, the first statistic tests stability for one period, the next for two
periods, then for three periods, etc. (the forecast horizon increases). The break-point
Chow tests have a shrinking forecast horizon: four from 1973(2), three from 1973(3),
etc.

Estimation up to 1973(2) is equivalent to estimation up to 1974(2) with four dum-
mies. However, we cannot do a likelihood ratio test for constancy by comparing re-
ported log-likelihood values for the different periods, as these are based on different
T s. For example (note that ̂̀excludes the likelihood constant Kc):

1960(4)− 1973(2) : ̂̀1 = 637.86208 T1 = 51,

1960(4)− 1973(3) : ̂̀1 = 650.37394 T1 = 52,

would give a negative likelihood-ratio test. To ‘rebase’ ̂̀1 to T2, compute:(
−2

T1

̂̀
1 + n log

(
T1

T2

))
T2

−2
.

Using T2 = 55 and yields the loglik values as given in the penultimate column oof
the recursive output. To match the log-likelihood from progress still requires taking
account of the likelihood constant Kc = −Tn/2(1 + log 2π).

The parameter constancy tests that are reported when observations are withheld for
forecasting test the same hypothesis as the forecast system Chow test, but are based on
the Wald principle. Estimation with 1973(3) and 1973(3)–1973(4) as forecasts respec-
tively yields:

1-step (ex post) forecast analysis 1973(3) - 1973(3)
Parameter constancy forecast tests:
using Omega Chi^2(3) = 2.9742 [0.3956] F(3,44) = 0.9914 [0.4057]
using V[e] Chi^2(3) = 2.6308 [0.4521] F(3,44) = 0.87693 [0.4603]
using V[E] Chi^2(3) = 2.6308 [0.4521] F(3,44) = 0.87693 [0.4603]

1-step (ex post) forecast analysis 1973(3) - 1973(4)
Parameter constancy forecast tests:
using Omega Chi^2(6) = 4.8958 [0.5573] F(6,44) = 0.81596 [0.5634]
using V[e] Chi^2(6) = 4.3874 [0.6244] F(6,44) = 0.73123 [0.6270]
using V[E] Chi^2(6) = 4.3903 [0.6240] F(6,44) = 0.73172 [0.6266]
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Estimation with i1973p3 up to 1973(3), and both i1973p3 and i1973p4 estimated up to
1973(4), allows us to test the significance of the dummies through the general restric-
tions test option:

Test for excluding:
[0] = i1973p3@Di
[1] = i1973p3@Dy
[2] = i1973p3@Dc
Subset Chi^2(3) = 2.63078 [0.4521]

Test for excluding:
[0] = i1973p3@Di
[1] = i1973p4@Di
[2] = i1973p3@Dy
[3] = i1973p4@Dy
[4] = i1973p3@Dc
[5] = i1973p4@Dc
Subset Chi^2(6) = 4.39033 [0.6240]

Finally, note that the small sample correction to obtain the F-test in PcGive is different
from that in Lütkepohl. The test statistic ξ1 of (11.46) is identical to λ̂h of equation
(4.6.13) in Lütkepohl. PcGive computes (ξ1 already has a degrees of freedom correc-
tion)

η1 =
ξ1
nH

in contrast to
λ̄h = λ̂h

T

nH (T + k)
.

The F-tests from recursive estimation and progress use Rao’s approximation, see
(11.111)–(11.113).

8.10 Non-linear parameter constraints
Reduced-rank VAR models can be estimated through CFIML, which is FIML with non-
linear parameter constraints. Consider the two-lag VAR yt = π1yt−1 + π2yt−2 + vt
imposing rank-one restrictions on π1 and π2:

π1 = bc′ =

 b1c1 b1c2 b1c3
b2c1 b2c2 b2c3
b3c1 b3c2 b3c3

 , π2 = bd′ =

 b1d1 b1d2 b1d3

b2d1 b2d2 b2d3

b3d1 b3d2 b3d3

 .

Note that this is different from the cointegration analysis, which is reduced rank esti-
mation of the long-run matrix (Chapter 4). Numbering the coefficients as

(π1 π2) =

 &0 &1 &2 &3 &4 &5

&6 &7 &8 &9 &10 &11

&12 &13 &14 &15 &16 &17


this corresponds to the following restrictions (in MulTutVAR.res):
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&0=&6*&1/&7; &2=&8*&1/&7; &12=&6*&13/&7; &14=&8*&13/&7;
&3=&9*&1/&7; &5=&11*&1/&7; &15=&9*&13/&7; &17=&11*&13/&7;
&4=&10*&1/&7; &16=&10*&13/&7;

For the computations we follow Lütkepohl, and first remove the means from the
variables (the complete code can also be found in MulTutVAR.fl). Setup a system
which regresses Di, Dy, Dc on a Constant (clear status) over 1960(2)–1978(4):

SYS(13) Estimating the system by OLS (using MulTutVAR.in7)
The estimation sample is: 1960(2) - 1978(4)

URF equation for: Di
Coefficient Std.Error t-value t-prob

Constant 0.0181083 0.005404 3.35 0.001

URF equation for: Dy
Coefficient Std.Error t-value t-prob

Constant 0.0207113 0.001395 14.8 0.000

URF equation for: Dc
Coefficient Std.Error t-value t-prob

Constant 0.0198710 0.001201 16.5 0.000

Then save the residuals as VDi, VDy, VDc – you may choose overwrite if these already
exist in the database. Setup the two-lag VAR in VDi etc., but without a constant. First
add up to lag 1, and then add the second lag. This way, when it comes to the model,
the first lags will appear before the second lags in each equation. This is required for
the restrictions code below. When estimating as a simultaneous equations model over
1960(4)–1978(4), the model will have log-likelihood 606.219308.

Next, enter Constrained simultaneous equation model in the Model Settings.
Check that the regressors are ordered as VDi 1, VDy 1, VDc 1, VDi 2, VDy 2, VDc 2.
The next stage leads to the General restrictions editor: enter the above restrictions (or
load them from the file MulTutVAR.res, supplied with PcGive). Estimate the model
(strong convergence is quickly reached).

The restrictions involve division by &7, and a grid reveals the singularity when
parameter 3 (&7) is zero, see Figure 8.10. The grid computations could fail if the
third parameter gets too close to zero. Starting from version 9, PcGive uses analytical
differentiation throughout, and the maximization procedure works better: the area of
numerical singularity around &7 has been reduced considerably. To experiment, you
could try setting &7 to a small negative or positive number and see what happens. When
too close to zero, the algorithm results in very large parameters, with failure to improve
in the line search.
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Figure 8.10 Grid of reduced rank VAR

The output is:

MOD( 2) Estimating the model by CFIML (using MulTutVAR.in7)
The estimation sample is: 1960(4) - 1978(4)

Equation for: VDi
Coefficient Std.Error t-value t-prob

VDi_1 -0.0106552 ---
VDy_1 0.168361 0.3089 0.545 0.588
VDc_1 -0.245365 ---
VDi_2 0.00541090 ---
VDy_2 0.187979 ---
VDc_2 -0.0206638 ---

sigma = 0.0475615

Equation for: VDy
Coefficient Std.Error t-value t-prob

VDi_1 0.00527015 0.007330 0.719 0.475
VDy_1 -0.0832730 0.07933 -1.05 0.298
VDc_1 0.121360 0.1140 1.06 0.291
VDi_2 -0.00267628 0.006041 -0.443 0.659
VDy_2 -0.0929759 0.08763 -1.06 0.292
VDc_2 0.0102205 0.03086 0.331 0.742

sigma = 0.0119145

Equation for: VDc
Coefficient Std.Error t-value t-prob

VDi_1 -0.0166783 ---
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VDy_1 0.263532 0.08790 3.00 0.004
VDc_1 -0.384065 ---
VDi_2 0.00846958 ---
VDy_2 0.294239 ---
VDc_2 -0.0323446 ---

sigma = 0.00933562

log-likelihood 597.040617 -T/2log|Omega| 907.788156
no. of observations 73 no. of parameters 8

LR test of over-identifying restrictions: Chi^2(10)= 18.357 [0.0492]*
BFGS using analytical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence

Constraints:
&0=&6*&1/&7;&2=&8*&1/&7;
&12=&6*&13/&7;&14=&8*&13/&7;
&3=&9*&1/&7;&5=&11*&1/&7;
&15=&9*&13/&7;&17=&11*&13/&7;
&4=&10*&1/&7;&16=&10*&13/&7;

correlation of structural residuals (standard deviations on diagonal)
VDi VDy VDc

VDi 0.047561 0.10106 0.26111
VDy 0.10106 0.011915 0.58193
VDc 0.26111 0.58193 0.0093356

This model can be further explored. For example, eigenvalues of the companion matrix
reveal that it is rank 2:

Eigenvalues of companion matrix:
real imag modulus

-0.2390 -0.2506 0.3463
-0.2390 0.2506 0.3463

-8.521e-017-3.402e-009 3.402e-009
-8.521e-017 3.402e-009 3.402e-009
-4.896e-018 0.0000 4.896e-018
-2.557e-018 0.0000 2.557e-018

Another option is recursive estimation. Many possibilities remain, but we leave you
now to explore on your own.
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Chapter 9

An Introduction to the Dynamic
Econometric Systems

9.1 Summary of Part III

Linear system modelling is structured from the general to the specific. The general
model is a dynamic statistical system. This is the maintained model, defined by the
variables of interest, their distributions, whether they are modelled or non-modelled,
and their lag polynomials. Thus, for example, four variables may be modelled as lin-
early dependent on another two, intercept and linear deterministic trend, with a max-
imum of three lags. System formulation, the status of the variables therein, dynamic
specification, estimation, and evaluation are all discussed. Because of their central role,
integration and cointegration are analyzed in a separate chapter. Once a congruent sys-
tem is available, a postulated econometric model can be evaluated against it, or a model
of the system developed.

An econometric model is usually a simultaneous equations structure, which is
treated as a model of the system. It is intended to isolate autonomous, parsimonious
relationships based on economic theory. The system must adequately characterize the
data evidence, and the model must account for the results obtained by the system.
Model formulation and identification, estimation (using an estimator generating equa-
tion), encompassing, and model evaluation are considered. Numerical optimization is
considered separately.

All these issues are addressed at various levels in Part III. Chapter 9 provides an in-
troduction, with a more rigorous review in Chapter 11 (system modelling), Chapter 12
(cointegration analysis), and Chapter 13 (simultaneous equations modelling). Chapter
10 presents a brief summary of the matrix algebra required to understand the deriva-
tions in Chapters 11–13. Chapter 14 discusses numerical optimization and numerical
accuracy. Although separate subjects, these are fundamental to a computer program
such as PcGive. Finally, Chapter 15, which is in Part IV, lists all the output (both nu-
merical and graphical) generated by PcGive. That chapter also repeats the econometric
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notation, and is to a large extent self-contained (if preceded by this chapter).

9.2 Introduction

Simultaneous equations models have been criticized from a number of viewpoints (see
Sims, 1980, and Hendry, Neale, and Srba, 1988, among others). Such criticisms arise in
part because dynamic system modelling usually commences from (an assumed known)
structural form of the process generating the data, from which the reduced form is de-
rived (see, Judge, Griffiths, Hill, Lütkepohl, and Lee, 1985, Chapter 14, for example).
Such an approach raises numerous difficulties: in particular, by not first testing the va-
lidity of the reduced form, which constitutes the baseline for the test of over-identifying
restrictions, the credibility of the structural parameter estimates is unclear. A more me-
thodical and ordered approach to linear dynamic system modelling circumvents most
of the extant criticisms (see Hendry and Mizon, 1993, and Hendry and Doornik, 1994).

The dynamic system is the maintained statistical model. Its initial specification is
crucial to the success of the entire analysis since a simultaneous equations structure is
a model of that system (see, for example, Spanos, 1986). Given linearity, the system is
defined by the variables of interest, their distributions, their classification into modelled
and non-modelled variables (although the latter may be absent, as in a vector autore-
gressive representation or VAR), and the lag polynomials applicable to every variable.
Section 9.3 describes the theoretical formulation; §9.4 discusses the statistical system
and the status of its variables; §9.5 considers the specification of the system dynamics
to ensure that the residuals are innovation processes; then §9.6 considers system evalua-
tion. At that stage, a congruent system is available against which any postulated econo-
metric model can be evaluated. The step of mapping to a stationary, or non-integrated
(I(0)) representation would follow §9.5 and is discussed in §9.7.

An econometric model imposes a structure on a statistical system to isolate au-
tonomous relationships with parsimonious interpretations based on economic theory.
Necessary conditions for a valid model are that the system adequately characterizes
the data evidence (congruency), that its parameters are uniquely identified, and that the
model accounts for the results obtained by the system (parsimonious encompassing).
System congruency conditions are the focus of §9.3–§9.7; the latter are the subject of
§9.8–§9.9. Thus, §9.8 considers model formulation and identification; §9.9 considers
model evaluation by testing its parsimonious encompassing of the system.

This sequence of stages aims to structure the empirical modelling of small linear
dynamic systems, and represents the steps needed to ensure valid parsimonious repre-
sentations of the data generation process (DGP) within a general-to-specific modelling
methodology: see Mizon (1977), Hendry (1987) and Pagan (1987). Moreover, the same
stages are inherent in the working of PcGive. The statistical system must be formulated
first (the selection of variables, their classification into modelled and non-modelled, the
choice of lag polynomials, and any deterministic components such as constants and
seasonals etc.). Then the system must be estimated, and evaluated for congruency (ho-
moscedastic innovation errors; valid weak exogeneity of any conditioning variables for
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the parameters of interest; I(0) regressors, and constant parameters). Only then can a
model of the system be formulated, checked for identification, estimated, and its par-
simonious encompassing of the system investigated. The process of specification is
in fact straightforward and quick, and is designed to avoid endless and directionless
revisions of postulated models in the light of adverse diagnostic test findings.

9.3 Economic theoretical formulation
Starting from a general economic theoretical framework of intertemporal optimizing
behaviour by rational agents, empirical research in economics is often faced with the
issue of jointly modelling a number of potentially interdependent variables (denoted
yt) as a function of a second set not to be modelled (denoted zt). The subject-matter
theory specifies systems of relationships of the form:

B (L) ξt = E [Γ (L) ζt | It] (9.1)

where (ξt, ζt) are (n× 1) and (q× 1) vectors of the theoretical variables of interest for
which (yt, zt) will be taken as the observable correspondences, E[·|It] is the conditional
expectations operator, and It denotes the information set available to agents at the start
of decision time-period t. Also, L denotes the lag operator such that Lhxt = xt−h.
The lag polynomial matrices B (·) and Γ (·) may involve leads (L−1 etc.), in which
case the latent constructs become expectations of future variables. If only finite lags are
involved, then B (L) and Γ (L) can be written as:

B (L) =

h∑
j=0

BjL
j and Γ (L) =

h∑
j=0

ΓjL
j

where h is the maximum lag length (some of the elements of {Bj ,Γj}may be zero). It
is often assumed that there are sufficient restrictions to identify the {Bj ,Γj}, some of
which may be zero with others normalized, and that these parameters are constant.

While the economic theory may appear to offer a complete specification of the
elements of the system determining ξt, its practical implementation confronts a number
of serious difficulties as follows:
1. Decision time and observation time-periods need not coincide, such that one de-

cision period may equal N observation periods (N could be greater than or less
than unity). Thus B(L) and Γ(L) may not correspond to the relevant empirical lag
polynomials characterizing the agents’ responses.

2. The theory may be incomplete (for example, involve ceteris paribus conditions) and
variables other than (ξt, ζt) may in fact be directly involved in the decision process.
Thus, the theory system must be reinterpreted as marginalized with respect to such
variables so that apparent cross restrictions on B (·) , Γ (·) may be invalid, and even
identification (in the sense of uniqueness) could fail.

3. The contents of It could be empirically mis-specified since the economists’ percep-
tion of the information set selected by agents need not coincide one-to-one with that
actually used: it could be over- or under-inclusive in important aspects.
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4. How It enters the joint density (and thereby determines E[·|It]) may not be as
postulated, and hence the formulation may fail to characterize the actual behaviour
of the agents.

5. The assumption that ξt can be explained as a function of ζt without modelling the
latter may be inappropriate, and doubtless would be seen as such in a larger model.
Even if the assumption is correct, it is insufficient to ensure that zt need not be
modelled empirically: an example is multi-step forecasting when past values of ξt
influence ζt.

6. The correspondence of (ξt, ζt) to (yt, zt) may be tenuous and may itself be dy-
namic (for example, permanent income; choice of a ‘money’ magnitude etc.).

7. Evolution, innovation, learning, regime shifts, and other forms of non-stationarity
are not yet easily incorporated into intertemporal theoretical analyses but are crucial
elements to model in any empirical study.
Thus, while any given economic theory potentially offers a useful initial framework,

theory is not so much definitive as guiding. Hence, theory should not constitute a
strait-jacket to empirical research in the sense that theory models should not simply be
imposed on data. If an empirical counterpart to a theory is imposed on data, it will
exclude many phenomena: it is valid to test such restrictions under the assumption that
the theory is correct. However, for any inferences concerning B (·) and Γ (·) (and hence
the underlying theory) to be sustainable, accurate estimates of the inferential uncertainty
are required. This necessitates establishing both the innovation variance for yt given
the available information, and a set of constants or invariants θ characterizing the data
density, on which B (·) and Γ (·) therefore depend. In the present state of knowledge,
modelling is inevitable if such objectives are to be achieved (see Hendry, Neale, and
Srba, 1988).

First, consider the case where (yt, zt) are accurate measures of (ξt, ζt) respectively
and zt ∈ It so that a conditional analysis is valid, and future expectations do not affect
outcomes (this is a convenient simplification here, but is not necessary and may not
coincide with agent behaviour in some markets). Thus, the counterpart of (9.1) in terms
of observable variables becomes:

E [yt | zt,X0,x1, . . . ,xt−1] = p0zt +

h∑
i=1

pixt−i (9.2)

where x′t = (y′t : z′t), and X0 denotes the set of initial conditions, with h being the
longest lag. Only current and lagged values of observable variables enter this formula-
tion, so that if it is a solved-out version of the theory system (for example, eliminating
future values) its parametersφwill be functions of the parameters in the marginal model
for zt. Thus the constancy of φ will depend on the constancy of that marginal model;
this point applies even more forcefully to closed (or VAR) representations. Of course,
the marginal model for zt may itself be studied for constancy, but any conclusions about
its behaviour depend on precisely the same considerations as those currently being dis-
cussed. Equally, the constancy of the {pi} could be ascertained directly, and if failure
results (that is, the {pi} are non-constant), a revised specification is clearly needed. The
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recursive procedures incorporated in PcGive offer a powerful tool for this task.
In the present setting, the observable system in (9.2) comprises the most unrestricted

model to be entertained. If the {pi} are empirically constant, then:

vt = yt − E [yt | zt,xt−1, . . . ,xt−h] (9.3)

is an innovation process against the available information, with variance E[vtv
′
t] = Ωt.

Direct tests for {vt} being homoscedastic and white noise are feasible, and the value
of continued modelling requires both that such tests are applied and that satisfactory
outcomes result. If so, the system is data-congruent and it seems worth developing a
parsimonious model: Spanos (1986) refers to (9.3) as the statistical model, and a par-
simonious, interpretable representation thereof as the econometric model. The main
advantage of first formulating the statistical model is that later tests (e.g., tests of over-
identifying restrictions) can be conducted against a valid background, so awkward cir-
cles of the kind arising in simple-to-general searches are avoided (see Hendry, 1979).

When writing a computer program like PcGive, the dichotomy of a system versus a
model thereof (or of a statistical versus an econometric model) is essential, since every
so-called structural model entails a reduced form which is a restriction of the system.
If the former is deemed valid, the latter must be also, so tests of it are valid. As noted
above, prior to specifying structural models, the program requires the specification of
the data set X1

T = (x1 . . .xT ), the maximum lag h, and the status of modelled or
non-modelled for the elements of xt. Together, these define the system. Estimators of
the parameters of interest φ correspond to minimizing |Ω| with respect to φ subject to
various restrictions (that is, parsimonious interpretations of the {pi}).

In this framework, a test of over-identifying restrictions is equivalent to a test
of whether the restricted reduced form (RRF) parsimoniously encompasses the unre-
stricted reduced form (URF) (see Hendry and Mizon, 1993). If this hypothesis is not
rejected, the model constitutes a valid reduction of the system and as such is more in-
terpretable, more robust and (being lower-dimensional) allows more powerful tests for
mis-specification. The next issue is whether the theoretical model is consistent with
the empirical model: this is testable in principle, but the practical difficulties are great
for forward-looking or non-linear models and incomplete specifications of It. Some
considerations for expectations models versus feedback representations are discussed
in Hendry (1988) and Favero and Hendry (1992).

Next, consider the case where zt /∈ It. Either a lag formulation could be used
or, when a set z∗t is available (Zt−k

∗

t−h in general), the system should be extended to
incorporate these additional variables as instruments. Such variables could enter (9.1)
directly, in which case the initial system needs reformulating, or enter only through
affecting the marginal process for zt. It is a testable restriction that they matter only via
the marginal model for zt, but to do so requires modelling {zt}.

Particular economic theory implementations cannot be discussed in the abstract, but
readers doubtless have examplars in mind when consulting this book. Standard cases
include highly aggregate macro-models; models of sectors (such as the monetary or
labour sector); or small systems that commence by endogenizing all variables to allow
tests of conditioning assumptions (such as when modelling consumers’ expenditure).
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9.4 The statistical system
The statistical system is the Haavelmo distribution defined by specifying the variables of
interest, their status (modelled or not), their degree of integration, data transformations,
the retained history of the process, and the sample period. As above, {xt} denotes
the complete vector of observable variables of interest suggested by previous research,
economic theory and the objectives of the analysis, available over a sample period of
size T . The statistical generating mechanism is denoted by DX

(
X1
T |X0,θ

)
, where

X0 is the set of initial conditions and θ ∈ Θ ⊆ RN is the parameter vector in an N -
dimensional parameter space Θ. Writing Xt−1 = (X0x1 . . .xt−1) =

(
X0 : X1

t−1

)
,

DX (·) is sequentially factorized as:

DX

(
X1
T | X0,θ

)
=

T∏
t=1

Dx (xt | Xt−1,θ) , (9.4)

where θ allows for any necessary transient parameters.
Since x′t = (y′t : z′t), then X1′

T =
(
Y1′
T : Z1′

T

)
where yt is the n × 1 vector of

endogenous variables and zt is the q×1 vector of variables which will not be modelled.1

To treat zt as a valid conditioning vector requires that zt be weakly exogenous for the
parameters of interest φ (see Engle, Hendry, and Richard, 1983). If so, inference in
the conditional distribution of yt, given zt and the history of the process, involves
no loss of information relative to analyzing the joint distribution of xt. Map from
θ 7→ λ = f (θ) ∈ Λ where f (·) is 1–1, then from (9.4):

T∏
t=1

Dx (xt|Xt−1,θ) =

T∏
t=1

Dy|z (yt|zt,Xt−1,λ1) Dz (zt, |Xt−1,λ2) . (9.5)

Thus, ifφ is a function ofλ1 alone, andλ1 andλ2 are variation free, so that (λ1 : λ2) ∈
Λ1 × Λ2, then zt is weakly exogenous for φ. When the same parameters enter both
λ1 and λ2, as with cross-equation restrictions linking the conditional and marginal
models, then weak exogeneity is liable to be violated, leading to a loss of information
from analyzing only the conditional distribution. Such information loss could entail
just inefficiency, but could also entail a loss of structurality. This formulation is a direct
application of the principles for reducing a process to a model thereof, and clarifies
when reduction is valid.

If, in addition, y does not Granger cause z (see Granger, 1969), then the marginal
distribution Dz(zt|Xt−1,λ2) can be simplified without loss to Dz(zt|Zt−1,λ2), so that
zt is strongly exogenous forφ. This condition is needed to sustain conditional dynamic,
or multi-period, forecasts and conditional dynamic simulation.

Finally, if zt is weakly exogenous for φ, and λ1 is invariant to changes in λ2, then
zt is super exogenous for φ (see Engle and Hendry, 1993).

1The system may be closed as in a VAR, in which case there are no non-modelled variables
zt, except possibly deterministic variables such as a constant, trend or seasonals.
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Since we restrict attention to linear systems, the {xt} will generally have been
transformed from the original raw data such that linearity is a reasonable approxima-
tion. Consequently, we commence by selecting yt and zt and specifying the statistical
structure as in (9.5). The econometric model then seeks to isolate the autonomous re-
lationships with interpretable parameters, having an economic theory basis, while still
remaining statistically consistent with the system.

9.5 System dynamics

Having assumed linearity, specified the menu comprising {xt}, and classified the vari-
ables into {yt} and {zt}, the system formulation is complete when the degrees and
roots of every lag polynomial are specified.2 Let:

yt | zt,Xt−1 ∼ Nn

[
p0zt +

h∑
i=1

pixt−i,Ω

]
, (9.6)

so that the longest lag is h periods and the conditional distribution is normal. Then the
conditional system of n linear equations for t = 1, . . . , T is:

yt =

m∑
i=1

π1iyt−i +

r∑
j=0

π2jzt−j + vt where vt ∼ Nn [0,Ω] , (9.7)

and h = max (r,m), noting that p0 = π20 and pi = (π1i : π2i) for i = 1, . . . , h. A
subset of the variables in yt can be linked by identities but otherwise Ω is symmetric,
positive definite and unrestricted. Then (9.7) is the general, unrestricted, conditional dy-
namic system once r and m are specified. Let Π = (π11 . . .π1mπ20 . . .π2r), then Π

and Ω are variation-free and are the parameters of interest in the sequential conditional
distribution, though not necessarily the parameters of interest in the overall analysis.

At this stage, the main requirement is that the system in (9.7) should be a congru-
ent representation of the data, since it will be the specification against which all other
simplifications are tested, and hence is the baseline for encompassing: see Hendry and
Richard (1982), Hendry and Richard (1989) and Mizon and Richard (1986). Congru-
ency requires that:
1. {vt} is a homoscedastic innovation process against Xt−1, which depends on the

adequate specification of the lag structure (see Hendry, Pagan, and Sargan, 1984);
2. zt is weakly exogenous for (Π, Ω) (see Engle, Hendry, and Richard, 1983); and:
3. (Π, Ω) is constant ∀t (see Hendry and Richard, 1983).

Once the system is congruent, a structural model of that system can be developed.
Although the system (9.7) corresponds to what is often called the unrestricted reduced
form (URF), it is the initial formulation and not a derived representation based on a
prior structural specification. This is an important difference, since if the system is

2For estimation, models of the system need not be complete but must be fully specified (see
Richard, 1984).
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mis-specified, owing to residual autocorrelation, parameter non-constancy, and so on,
further restrictions on it will be invalid, and tests thereof will be against an invalid base-
line. In the conventional approach, where the structural model is estimated first, tests of
the structural over-identifying restrictions against the URF are conditional on untested
assumptions about the validity of the latter. When the URF is itself a parsimonious
specification, assumptions about its validity are less than fully plausible.

The selection of r and m is usually data-based, given a prior maximum lag length.
Since (9.7) is a statistical model, parsimony is not essential at this stage, whereas ensur-
ing that the {vt} are innovations is crucial for later inferences. This argument supports
commencing with an over-parametrized representation. Although the context is multi-
variate, lag selection is susceptible to the usual approaches (see, for example, Hendry,
Pagan, and Sargan, 1984).

The next issue for valid inference concerns the degree of integration of the time
series in {xt} since the correct critical values of tests are different between I(0) and I(1)
or higher orders (for an overview, see Banerjee, Dolado, Galbraith, and Hendry, 1993,
Hendry, 1995, and Johansen, 1995b). Moreover, equilibrium correction mechanisms
(ECMs) – which are isomorphic to cointegration in linear models – play a fundamental
role in stabilizing economic behaviour and attaining long-run targets, as well as imple-
menting insights from economic theory into dynamic statistical analyses, see §9.7.

9.6 System evaluation
If system residuals are not innovations, or parameters are statistically non-constant over
time, then the distributions of likelihood ratio tests will not correspond to those con-
ventionally assumed even after the transformation to I(0) variables. Restricting the
parametrization by structural formulations of the system, without changing the condi-
tioning or lag assumptions, cannot remove, but could camouflage, such problems. Sys-
tem evaluation seeks to reduce the chances of imposing restrictions on a system only to
discover at a later stage that the framework cannot provide an adequate representation
of the data.

There is a wide range of hypotheses to be investigated corresponding to the three
basic information sets of past, present and future data, applied to the system as a whole
rather than to single equations isolated from it. The modelling procedures and tests are
vector analogues of those arising for single equations albeit that modelling a system is
more difficult than modelling a single conditional relationship. System tests of congru-
ency can be constructed for vector residual autocorrelation(for example, Lagrange Mul-
tiplier tests for dependence between vt and vt−1), vector heteroscedasticity (for exam-
ple, testing whether squared residuals depend on squared functions of conditioning vari-
ables), dynamic mis-specification (the significance of a longer lag (yt−m−1, zt−r−1)),
weak exogeneity (modelling zt as a function of (yt−i, zt−i; i = 1, . . . , h) and perhaps
further lagged non-modelled variables, and testing cross-equation independence from
the yt system), and constancy (using recursive procedures). Weak exogeneity is also
indirectly testable via super exogeneity tests which include tests of (Π, Ω) being con-
stant. Some of the zt could be dummy variables so that the corresponding parameters
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are transients. Normality is useful but not essential in a linear formulation, and is also
testable. For example, the various constancy statistics from multivariate RLS match
those from univariate RLS closely, so the analysis applies to, for example, break-point
tests of one equation from the system or the system as a whole. The formulae for fore-
cast statistics are also similar. Details of all the available tests in PcGive are presented
in Chapter 11 for the system.

The weak exogeneity of zt for the parameters of interest in the system remains im-
portant. Subject to a correct specification of the marginal system for zt, the errors on
the conditional system could be tested for being uncorrelated with those in the marginal
system. The difficulty lies in appropriately formulating the marginal system, especially
when conditioning is desired because of anticipated non-constancy in the marginal pro-
cess. Direct tests on the common presence of the cointegrating vectors in both marginal
and conditional systems at least check for weak exogeneity of zt for the long-run pa-
rameters (see Chapter 12).

9.7 The impact of I(1) on econometric modelling
At first sight, unit-root econometrics seems wholly different from stationary econo-
metrics. On the statistical side, the limiting distributions of estimators and tests are
functionals of Brownian motions, so the forms of analysis, the resulting distributions
and the associated critical values of tests are usually different. On the conceptual side,
the treatment of many ‘problems’ differs for integrated data. For example, collinearity
problems may be owing to including in a relationship all the elements in a cointegrating
combination (a ‘problem’ which cannot be solved by deleting variables); and measure-
ment errors may be irrelevant (if I(0)) or even more serious than usual (if I(1) and not
cointegrated). Parameter change may lead to confusing an I(1) process with an I(0)
subject to shifts (see Hendry and Neale, 1991) and so on.

However, both the statistical and conceptual differences seem less marked on sec-
ond sight. Many functionals of Brownian motions in fact have normal distributions (for
a summary, see Banerjee and Hendry, 1992). Moreover, even with I(1) data, many tests
have conventional distributions; and conditioning later tests on the I(1) decision for the
number of cointegrating combinations allows them to be treated as having conventional
distributions once variables are reduced to I(0) (see e.g. Johansen, 1992a). Further,
I(0) and I(1) are more like the ends of a continuum than discrete entities (see Molinas,
1986): a root of nearly −1 on a moving-average error in a unit-root autoregression
essentially cancels the latter, leaving a process which is empirically similar to white
noise. Conversely, a stationary process with a root near unity may be better treated as if
it were I(1) in samples of the size common in economics (see, for example, Campbell
and Perron, 1991, for a survey). In practice, therefore, modelling decisions may sensi-
bly be conditioned on the outcome of unit-root tests, even if theory tests remain open to
question (as with tests for ‘persistence’ of shocks).

In cointegrated processes, weak exogeneity of the conditioning variables for the
parameters of interest remains as vital as it has proved to be in stationary processes –
even for the long-run parameters (see Johansen, 1992b, and Hendry, 1995). One nec-
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essary condition is the absence of cointegrating vectors in other equations, and system
modelling seems advisable until weak exogeneity has been ascertained (see Hendry and
Doornik, 1994, for further details).

On the positive side, a number of benefits are clear. The Granger representation the-
orem links cointegration to equilibrium correction mechanisms (ECM), so that ECMs
do not necessarily violate rationality in an I(1) world. Thus, the links between eco-
nomic theory or long-run equilibrium reasoning and data modelling have been placed
on a sounder footing. Other problems appear in a new light. For example, a linear
system is invariant under non-singular linear transforms, but usually its parameters are
altered by such transforms. However, in I(1) processes, the cointegrating vector β is an
invariant of a linear system. Further, β is invariant to seasonal adjustment by a diagonal
scale-preserving seasonal filter (like X-11, see Ericsson, Hendry, and Tran, 1994).

Conditional models of I(1) data essentially complete the circle to reinstate structural
dynamic models as a viable research vehicle. Now it is possible to test for the existence
of a long-run relation before devoting resources to modelling it. Weak exogeneity of a
subset of the variables for the long-run parameters simplifies doing so by allowing con-
temporaneous conditioning. Once a long-run relation is established, then conditional
on a reduction from I(1) to I(0), the analysis can proceed as a reduction of the system
to a parsimonious and interpretable econometric model thereof. The tutorials in Part II
follow this approach through all the steps of an empirical application.

9.8 The econometric model and its identification

The main criterion for the validity of the system is its congruence, since that is a neces-
sary condition for efficient statistical estimation and inference. An econometric model
is a restricted version of a congruent system which sustains an economic interpreta-
tion, consistent with the associated theory. All linear structural models of (9.7) can be
obtained by premultiplying (9.7) by a non-singular matrix B which generates:

Byt =

m∑
i=1

Bπ1iyt−i +

r∑
j=0

Bπ2jzt−j + Bvt. (9.8)

Let Bi = −Bπ1i for i = 1, . . . ,m and Cj = −Bπ2j for j = 0, . . . , r with ut = Bvt,
then:

m∑
i=0

Biyt−i +

r∑
j=0

Cjzt−j = ut where ut ∼ INn [0,Σ] , (9.9)

with Σ = BΩB′ and B0 = B. Let C = (B1 . . .BmC0 . . .Cr), with A = (B : C)

and X = (Y : W) being the matrices of all the coefficients and all the observations
respectively, partitioned by current endogenous and all other variables. We drop the
sample subscripts on data matrices, and implicitly assume that the diagonal of B0 is
normalized at unity to ensure a unique scaling in every equation: other normalizations
are feasible. Further, the reformulation in I(0) space would have the same form, but
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in terms of I(0) variables: the notation W is intended to highlight that reformulation.
Then (9.9) can be written in compact notation as:

BY′ + CW′ = AX′ = U′. (9.10)

When identities are present, the corresponding elements of {ut} are precisely zero,
so the model can be written as:

AX′ =

(
A1

A2

)
X′ =

(
U′1
0

)
, (9.11)

where n = n1 + n2, for n1 stochastic equations and n2 identities. The elements of
A2 must be known and do not need estimation. In what follows, we set n2 = 0 for
simplicity: the program handles identities as required.

However, without some restrictions, the coefficients in A in (9.11) will not be iden-
tified. The matrix B used to multiply the system to obtain the model could in turn be
multiplied by an arbitrary non-singular matrix, D say, and still produce a linear model,
but with different coefficients. To resolve such arbitrariness, we need to know the form
of A in advance (or perhaps of Σ), and it must be sufficiently restricted that the only
admissible D matrix is In1 . This issue of unique parametrization is further discussed in
Chapter 13.

9.9 Simultaneous equations modelling
So far, we have assumed that the structural form of the DGP was known. Textbook pre-
sentations of simultaneous equations estimation usually treat A(φ) as given, then derive
the reduced form from this structure (for example, Judge, Griffiths, Hill, Lütkepohl, and
Lee, 1985, Chapter 14). However, since the reduced form has many more parameters
than there are φs in the structure, such an approach is simple to general and so is open
to all the difficulties discussed in Hendry, Neale, and Srba (1988). Moreover, by not
first testing the validity of the reduced form, which is the basis of the test of over-
identifying restrictions used to validate the structural form, all inferences are doubtful
(see Sims, 1980, and Hendry, 1987). Thus, in practice, the statistical system should be
modelled from the data to determine its congruency before any structural interpretation
can be attempted in terms of an econometric model of that system (as discussed in, for
example, Spanos; Spanos, 1986, 1989). Our approach, therefore, remains within the
general→ specific modelling methodology, extended to allow for the complications of
multi-equations, cointegration and identification.

For the model to be a valid, congruent representation of the data, given that the
system already is, the model must parsimoniously encompass the system (see Hendry
and Richard, 1989). In the present context, that can be checked by a likelihood ratio
test for over-identifying restrictions. Denote the concentrated likelihood function for
the system with n1 stochastic equations by ` and that for the complete model by `0.
The test is computed by:

ξ
(
M − n2

1

)
= 2

(̂̀
0 − ̂̀) ã χ2

(
M − n2

1

)
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for M a priori restrictions on A. If ξ (.) is significant, the model fails to encompass the
system, so that particular implementation of the underlying theory should be rejected.
To ensure that appropriate critical values are selected, the system must first be mapped
to I(0) space.

There may be several models consistent with the identification restrictions, even if
all are highly over-identified. In particular, this is true for just-identified models when
M = n2

1, so that ξ (·) is not computable. More generally, however, satisfying the test is
insufficient to justify a model, especially if the system is itself not rigorously tested for
congruency.

Consequently, the modelling approach described in detail in the tutorials first
specifies the statistical dynamic system, assesses its congruency against the past (ho-
moscedastic innovation errors), thereby ensuring an adequate lag length, then tests con-
stancy. At present, such tests are only approximate when the data are I(1) but seem to
provide reasonable guides in practice. Next, cointegration is investigated, thereby de-
termining the degree of integration of the system en route. Once the cointegration rank
and the number of unit roots have been determined, identified cointegration vectors can
be considered, allowing useful tests of necessary conditions for weak exogeneity of
some of the potential conditioning variables for the parameters of interest. The roles
of deterministic variables and their presence/absence from the long run also can be in-
vestigated. Given that information, the system can be reduced to I(0) space in terms
of differences and cointegrating combinations of the levels data using tests based on
appropriate critical values.

Next, that system can be modelled. Depending on the outcomes of the weak ex-
ogeneity tests, conditional representations in terms of open systems may be feasible.
These are unique by construction, but need not always represent agent behaviour. Si-
multaneous equations offer the possibility of jointly obtaining parsimonious and struc-
tural representations, so these merit careful consideration given the underlying theory.
The final model can be checked for unique identification (which does not by itself pre-
clude other observationally-equivalent representations, although regime shifts tend to
make such an outcome unlikely). If dummies are needed to make any marginal pro-
cesses constant, then super-exogeneity tests are feasible. Finally, the model can be
tested for parsimonious encompassing of the system and its parsimony may allow more
powerful tests of some hypothesis of interest, especially constancy. Forecasting exer-
cises are then feasible and have some credibility (see Clements and Hendry, 1998b, for
a more detailed analysis).

9.10 General to specific modelling of systems
Enforcing a system approach to simultaneous equations modelling necessitates a large
modelling burden, primarily determined by the ‘infoglut’ of handling large numbers
of variables, equations, and parameters. While PcGive is specifically designed to help
attenuate that burden by its graphical presentation of information and its support of
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simplification procedures, it behoves us to consider the potential advantages of com-
mencing from the unrestricted joint density of all the stochastic variables.

We presented a number of arguments for general to specific methods in Volume I
(Hendry and Doornik, 2013), including developing directed search strategies; validly
interpreting intermediate test outcomes by avoiding later potential contradictions; es-
caping the non sequitur of accepting the alternative hypothesis when a test rejects a
null; determining the baseline innovation-error process on the available information;
and circumventing the drawbacks of correcting flaws only to have to alter their interpre-
tation later. These are powerful arguments for commencing an empirical econometric
study from the most general model it is feasible to consider at the outset. Certainly, it
is difficult to specify that general system when the sample may be small and hetero-
geneous, or the potential model class includes non-linear specifications. Nevertheless,
tracking deliberate simplifying assumptions made at the commencement of an analy-
sis can clarify later problems and potential directions for their resolution. This advice
remains applicable even if a complete economic theory specification is available, since
it can be embedded in a extended dynamic system that it should encompass when its
claimed completeness is indeed correct.

In the limit, the joint density should comprise all relevant economic variables, but
an important source of an investigator’s value added is appropriate specifications of
the sets of variables which necessitate joint modelling. We now develop some further,
inter-related, reasons for commencing econometric analyses of economic time series
from the joint density (see Hendry and Doornik, 1994).

9.10.1 The economy is a system

This is the most obvious reason for joint modelling, and was the basis for the advances
in econometrics precipitated by Haavelmo (1944). Potentially all variables are endoge-
nously determined by the economic mechanism, and these interact in many ways. In
a Walrasian general-equilibrium setting, all variables influence each other in the long
run (like a waterbed, which oscillates in all directions when disturbed anywhere). It
may happen that some sectors or variables can be decoupled (i.e., the system is block
decomposable), but that is an empirical matter. However, to make progress some sim-
plifying assumptions will be essential, depending on the numbers of variables involved
and the available sample size. Implicitly, all empirical analyses are based on reductions
of the DGP from marginalizing with respect to all variables omitted from the system
under study: the crucial issue is to retain as informative a set as possible.

9.10.2 To test marginalization

To check the validity of marginalizing with respect to any set of variates, their joint
density must be modelled. Let wt denote the vector of possibly relevant variables, and
DW,X (·) the joint density of all the variables characterized by the parameter ψ ∈ Ψ,
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then since:

DW,X

(
W1

T ,X
1
T |W0,X0,ψ

)
= DW|X

(
W1

T | X1
T ,W0,ψ1

)
DX

(
X1
T | X0,ψ2

)
(9.12)

the conditions for a fully efficient analysis from DX (·) alone mirror those of weak
exogeneity (see Engle, Hendry, and Richard, 1983, and Ericsson, 1992) namely:
• the parameters of interest φ are a function of ψ2 alone; and
• (ψ1,ψ2) ∈ Ψ1 ×Ψ2 (variation free).

In such a case, ψ2 = θ in (9.4), and there is no loss of relevant information about φ
from analyzing the marginal density only. A necessary condition for the validity of such
a reduction is that W1

t−1 does not Granger cause xt: this can only be tested from either
DW,X (·) or DW|X (·).

9.10.3 Simultaneity

Simultaneity is a system property. Although individual-equation (limited information)
methods exist, and the curse of dimensionality relative to data availability remains a
serious limitation, computational problems no longer provide an excuse for avoiding
system methods. Simultaneity is also a long-standing reason, dating from Haavelmo
(1943), but a much disputed formulation in the history of econometrics (see Hendry
and Morgan, 1995).

9.10.4 To test weak exogeneity

To test conditioning on a subset of stochastic variables (denoted {zt} ⊂ {xt}) rather
paradoxically first requires modelling zt, then testing that the marginal density does not
contain information relevant to the parameters of interest. For example, elements of φ
(such as cointegration vectors) could occur in λ2 which would violate weak exogeneity,
and could induce serious distortions of inference in I(1) systems (see below).

9.10.5 To check identification

The necessary and sufficient criterion for identification (in the sense of uniqueness)
under linear restrictions on simultaneous systems is given by the rank condition (see
Koopmans, 1950), which depends on the (unknown) values of the parameters in all
equations. These other equations need to be specified to ensure the condition is met.
PcGive checks generic identification within the system being modelled, by using non-
zero random values for parameters, so global unidentification does not occur when that
condition is satisfied.

9.10.6 Cointegration is a system property

The rank of the long-run system matrix can only be determined by considering the
complete vector of variables xt, which necessitates modelling the joint density either
explicitly (as in Johansen, 1988) or implicitly (as in Phillips, 1991). Similarly, deter-
mining the matrix of cointegrating vectors involves a system analysis. This requirement
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interacts with the issue of testing weak exogeneity, since if elements of the cointegrating
vectors from the ith equation enter any other equation weak exogeneity for parameters
of interest which include cointegrating vectors is violated. Tests on the structure of the
feedback matrix provide information about cointegration links, are easily conducted,
and have conventional (χ2) distributions asymptotically when cointegration rank is pre-
served (see Johansen, 1992b, and Boswijk, 1992).

9.10.7 To test cross-equation dependencies

Cross-equation links include many forms of restrictions, cross-equation serial correla-
tion and so on. Any test for system mis-specification logically requires system analysis.
One important test is that of over-identifying restrictions, and is equivalent to a test of
whether the restricted model parsimoniously encompasses the VAR (see Hendry and
Mizon, 1993).

9.10.8 To test super exogeneity and invariance

In many economic processes, a VAR will not manifest constant parameters. This is be-
cause it is a derived, rather than a structural, representation so every equation involves
functions of the more basic parameters of agents’ decision rules. When one of the
agents is a policy maker, or an agency of the central government, regime shifts are li-
able to have occurred, so a constant linear parametrization will be insufficient to capture
the data behaviour. Thus, some dummy variables may be needed to make the system
approximately constant in practice, especially in equations for policy variables (which
the investigator may not wish to model). Conditioning on such variables without first
testing for weak and super exogeneity runs the risk that the resulting model will not
sustain policy analysis, and may be inadequate as a forecasting device when economic
policy change occurs. Engle and Hendry (1993) develop constant-parameter represen-
tations of the policy processes, then test the irrelevance of the newly-created variables
in the equations of interest. This is most usefully conducted in a system context, and
a natural generalization of their test is the significance of the additional variables from
the joint marginal model in the joint conditional model under analysis.

9.10.9 To conduct h-step forecasts

The system context has no effect on 1-step forecasts, and each equation could be used in
isolation from the others. However, for h-step forecasting when h ≥ 2 and the system
is dynamic, then to predict ∆xT+2,∆x̂T+1 must first be forecast, so the system context
is of the essence.

We believe that any of these reasons by itself is sufficient justification for com-
mencing an econometric analysis from the joint density to allow a sustainable analysis
of any proposed empirical models. Together, they constitute a strong case for joint
modelling, without resolving how general the starting point must be. Data limitations
alone preclude beginning with more than a relatively small number of variables, and the
illustration in the tutorials only involves 4 variables, but the issue is one of modelling
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principles. In particular, knowledge acquisition tends to be progressive and partial,
rather than once-for-all crucial discoveries that permanently resolve a modelling prob-
lem by forging an empirical ‘law’.



Chapter 10

Some Matrix Algebra

An essential element of multivariate analysis is concise notation using matrix algebra.
In this section we shall summarize the matrix algebra required to understand Part III
of this book. No proofs will be given. For a more thorough overview consult Magnus
and Neudecker (1988), Dhrymes (1984), Rao (1973, Chapter 1) or Anderson (1984,
Appendix A), among others.

First consider the four-equation model which generated the artificial data set as used
in Volume I:

∆ct = −0.9 + 0.4 ∆yt + 0.15 (y − c)t−1 − 0.9 ∆pt + ε1t (10.1)

∆yt = −75.0 + 0.3 ∆ct + 0.25 (q − y)t−1 + 0.25 ∆qt + ε2t (10.2)

∆pt = 0.3 + 0.7 ∆pt−1 + 0.08 (q − 1200)t−1 + ε3t (10.3)

∆qt = 121.3− 0.1 qt−1 − 1.30 ∆pt−1 + ε4t (10.4)

The relevant matrices are:
1 −0.4 0.9 0

−0.3 1 0 −0.25

0 0 1 0

0 0 0 1




∆ct
∆yt
∆pt
∆qt

+


0.9 −0.15 0 0 0

75 0 −0.25 0 0

95.7 0 0 −0.08 −0.7

−121.3 0 0 0.1 1.3




1

(y − c)t−1

(q − y)t−1

qt−1

∆pt−1

 =


u1t

u2t

u3t

u4t

 .

(10.5)
In matrix form the model can be expressed as:

Byt + Cwt = ut, t = 1, . . . , T, (10.6)

in which the matrices are written in bold face upper case and the vectors in bold face
lower case. B is a (4 × 4) matrix, C is (4 × 5), yt and ut are (4 × 1) and wt is
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(5 × 1). The simultaneous system (10.6) can be expressed more concisely by merging
all T equations. Take yt for example:

Y′ = (y1 · · · · · ·yT ) =


∆c1 · · · · · ·∆cT
∆y1 · · · · · ·∆yT
∆p1 · · · · · ·∆pT
∆q1 · · · · · ·∆qT

 .

Using this notation the model becomes:

BY′ + CW′ = U′,

in which Y and U are (T×4) and W is (T×5). The matrices B and C are unchanged.
Of course this is identical to:

YB′ + WC′ = U.

To define the elementary operators on matrices we shall write (aij)m,n for the (m×
n) matrix A when this is convenient:

A = (aij)m,n =

 a11 · · · a1n

...
. . .

...
am1 · · · amn

 .

• addition, A is (m× n), B is (m× n):

A + B = (aij + bij)m,n .

• multiplication, A is (m× n), B is (n× p), c is a scalar:

AB =

(
n∑
k=1

aikbkj

)
m,p

, cA = (caij)m,n .

• Kronecker product, A is (m× n), B is (p× q):

A⊗B = (aijB)mp,nq .

For example, with Ω = (ωij)2,2 , S = (sij)2,2:

Ω⊗ S =


ω11s11 ω11s12 ω12s11 ω12s12

ω11s21 ω11s22 ω12s21 ω12s22

ω21s11 ω21s12 ω22s11 ω22s12

ω21s21 ω21s22 ω22s21 ω22s22

 .

• Hadamard product, A is (m× n), B is (m× n):

A�B = (aijbij)m,n .

For example:

Ω� S =

(
ω11s11 ω12s12

ω21s21 ω22s22

)
.
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• transpose, A is (m× n):
A′ = (aji)n,m .

• determinant, A is (n× n):

|A| =
∑

(−1)c(j1,...,jn)
n∏
i=1

aiji

where the summation is over all permutations (j1, . . . , jn) of the set of integers
(1, . . . , n), and c(j1, . . . , jn) is the number of transpositions required to change
(1, . . . , n) into (j1, . . . , jn). In the 2× 2 case, the set (1, 2) can be transposed once
into (2, 1), so |Ω| = (−1)0ω11ω22 + (−1)1ω12ω21.

• trace, A is (n× n):

trA =

n∑
i=1

aii.

• rank, A is (m × n): the rank of A is the number of linearly independent columns
(or rows, row rank always equals column rank) in A, r(A) ≤ min(m,n). If A is
(n× n) and of full rank then:

r (A) = n.

• symmetric matrix, A is (n× n): A is symmetric if:

A′ = A.

• matrix inverse, A is (n × n) and of full rank (non-singular, which is equivalent to
|A| 6= 0) then A−1 is the unique (n× n) matrix such that:

AA−1 = In.

This implies that A−1A = In; In is the (n× n) identity matrix:

In =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

• orthogonal matrix, A is (n× n): A is orthogonal if:

A′A = In.

Then also AA′ = In; further: r(A) = n, A′ = A−1.
• orthogonal complement, A is (m× n),m > n and r(A) = n, define the orthogonal

complement A⊥ as the (m× (m− n)) matrix such that: A′A⊥ = 0 with r(A⊥) =

m − n and r(A : A⊥) = m. A⊥ spans the null space of A; r(A⊥) is called the
nullity of A.
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• idempotent matrix, A is (n× n): A is idempotent if:

AA = A.

An example is the projection matrix MX = IT −X (X′X)
−1

X′.
• vectorization, A is (m× n):

vecA =



a11

...
am1

...
a1n

...
amn


,

which is an (mn × 1) vector consisting of the stacked columns of A. Transposing
the vectorized form of the B′ matrix of (10.5) gives:

(vec (B′))
′

= (1 −0.4 0.9 0 −0.3 1 0 −0.25 0 0 1 0 0 0 0 1) .

This is the order we wish to have the model coefficients in: stacked by equation.
We use vec(B′) ≡ vecB′. With a an (n× 1) vector: vec(a) = a.
If A is (n×n) and symmetric, we can use the vech operator to vectorize the unique
elements, thus ignoring the elements above the diagonal:

vechA =



a11

...
an1

a22

...
an2

...
ann


,

which is a ( 1
2n(n+ 1)× 1) vector.

• unrestricted elements, when deriving simultaneous equations estimators, it is of-
ten convenient to restrict attention to the parameters that are to be estimated and
ignore the remaining parameters. (·)u selects the unrestricted elements of a vec-
tor, or crosses out rows and columns of a matrix, thus reducing the dimensionality.
(·)vu transposes and vectorizes a matrix, stores the elements in a column vector,
and selects the unrestricted elements. In the B matrix of (10.5), the 0s and 1s are



Chapter 10 Some Matrix Algebra 135

restrictions, the remainder are parameters, so:

Bvu = (vec (B′))
u

=


−0.4

0.9

−0.3

−0.25

 .

• diagonalization, A is (n× n):

dgA =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 = diag (a11, a22, . . . , ann) .

• positive definite, A is (n × n) and symmetric: A is positive definite if x′Ax > 0

for all (n× 1) vectors x 6= 0, positive semi-definite if x′Ax ≥0 for all x 6= 0, and
negative definite if x′Ax <0 for all x 6= 0.

• eigenvalues and eigenvectors, A is (n × n): the eigenvalues of A are the roots of
the characteristic equation:

|A− λIn| = 0.

If λi is an eigenvalue of A, then xi 6= 0 is an eigenvector of A if it satisfies:

(A− λiIn) xi = 0.

• Choleski decomposition, A is (n× n) and symmetric positive definite, then:

A = LL′,

where L is a unique lower-triangular matrix with positive diagonal elements.
• singular value decomposition, decomposes an (m × n) matrix A, m ≥ n and

r(A) = r > 0, into:
A = UWV′,

with:

U is (m× r) and U′U = Ir,

W is (r × r) and diagonal, with non-negative diagonal elements,
V is (n× r) and V′V = Ir.

This can be used to find the orthogonal complement of A. Assume r(A) = n and
compute the singular value decomposition of the (m×m) matrix B = (A : 0).
The last m− n diagonal elements of W will be zero. Corresponding to that are the
last m− n columns of U which form A⊥:

B = (A : 0) = UWV′ = (U1 : U2)

(
W1 0

0 0

)(
V′1
V′2

)
.

Here U, V and W are (m×m) matrices; U′2U1 = 0 so that U′2A =

U′2U1W1V
′
1 = 0 and r(A : U2) = m as U′2U2 = I(m−n).
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• differentiation, define f (·) : Rm 7→ R then:

∇f =
∂f (a)

∂a
=


∂f(a)
∂a1

...
∂f(a)
∂am

 , ∇2f =
∂2f (a)

∂a∂a′
=

(
∂2f (a)

∂ai∂aj

)
m,m

.

If f (·) is a log-likelihood function we shall write q (·) for the first derivative (or
score), and H (·) for the second derivative (or Hessian) matrix.
For f (·) : Rm×n 7→ R we define:

∂f (A)

∂A
=

(
∂f (A)

∂aij

)
m,n

.

• Jacobian matrix, for a vector function f (·) : Rm 7→ Rn we define the (n × m)

Jacobian matrix J:

∂f (a)

∂a′
=


∂f1(a)
∂a1

· · · ∂f1(a)
∂am

...
...

∂fn(a)
∂a1

· · · ∂fn(a)
∂am

 =

 (∇f1)
′

...
(∇fm)

′

 = (∇f)
′
.

The transpose of the Jacobian is called the gradient, and corresponds to the q (·)
above for n = 1 (so in that case the Jacobian is (1×m) and the score (n× 1)).
The Jacobian is the absolute value of the determinant of J when m = n: ||J||.
Normally we wish to compute the Jacobian matrix for a transformation of a coeffi-
cient matrix: Ψ = F (Π′) where F is a matrix function F (·) : Rm×n 7→ Rp×q:

J =
∂vecΨ

∂ (vecΠ′)′
,

with Π (n×m) and Ψ (p× q) so that J is (pq ×mn).
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Some useful relations (c is scalar, λi are eigenvalues of A):

• product, determinant, trace, rank

(AB)′ = B′A′

(AB)−1 = B−1A−1, if A,B non-singular
(A−1)′ = (A′)−1

|AB| = |A| |B| ,A,B are (n× n)

|A′| = |A|
|cA| = cn |A| ,A is (n× n)∣∣A−1

∣∣ = |A|−1

tr(AB) = tr(BA)

tr(A + B) = trA + trB
trA =

∑
λi,A is (n× n)

|A| =
∏
λi,A is (n× n)

if A (n× n), symmetric with p roots λi 6= 0 and n− p roots λi = 0,

then r(A) = p.

• Kronecker, vec

(A⊗B)′ = A′ ⊗B′

(A⊗B)−1 = A−1 ⊗B−1, if A,B non-singular
|A⊗B| = |A|m |B|n ,A is (n× n) and B is (m×m)

(A⊗B)(C⊗D) = AC⊗BD

c⊗A = cA = Ac = A⊗ c
tr(A⊗B) = trAtrB
(vecA)′vecB = tr(A′B),A,B both (m× n)

vec(a′) = vec(a) = a,a is (n× 1)

vec(ABC) = (C′ ⊗A)vecB, if ABC defined
tr(ABCD) = (vecD′)′(C′ ⊗A)vecB = (vecD)′(A⊗C′)vecB′

since vecB′ ≡ vec(B′)

• Jacobian matrix

V
[
vec F

(
Π̂′
)]

= JV
[
vecΠ̂′

]
J′,

where J is the Jacobian matrix. This relation is only approximately valid, unless
F (·) is linear. Here V[x] denotes the (co)variance matrix of the vector x:

V [x] = E
[
(x− E [x]) (x− E [x])

′]
,

and E[·] is the expected value.
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• differentiation

∂ log |A|
∂A

= A′−1 if A asymmetric

∂ log |A|
∂A

= 2A−1 − dg
(
A−1

)
if A symmetric

∂tr(BA)

∂B
= A′ if B asymmetric

∂tr(BA)

∂B
= A + A′ − dgA if B symmetric

∂g (f (a))

∂a′
=

∂g (b)

∂b′
∂f (a)

∂a′

with f (·) : Rm 7→ Rn, g (·) : Rn 7→ Rp, b = f (a)

∂vec(ABC)

∂(vecB)′
= C′ ⊗A

∂vec
(
A−1

)
∂(vecA)′

= −A−1′ ⊗A−1

• partitioned matrices

Let F =

(
A C

B D

)
be non-singular. If A and H = D − BA−1C are non-

singular then:

F−1 =

(
A−1 + A−1CH−1BA−1 −A−1CH−1

−H−1BA−1 H−1

)
.

If D and G = A−CD−1B are non-singular then:

F−1 =

(
G−1 −G−1CD−1

−D−1BG−1 D−1 + D−1BG−1CD−1

)
.

If A is non-singular:
|F| =

∣∣D−BA−1C
∣∣ |A| .

If D is non-singular:
|F| =

∣∣A−CD−1B
∣∣ |D| .



Chapter 11

Econometric Analysis of the System

11.1 System estimation
As discussed in Chapter 9, the modelling process in PcGive starts with the statistical
system, which is the maintained hypothesis against which further reductions can be
tested. We assume in this chapter that all the variables in the system have been reduced
to I(0), that the conditions for valid weak exogeneity of the zt for the parameters of
interest in the conditional system are satisfied, and write the system as:

yt = Πwt + vt, t = 1, . . . , T, (11.1)

with
E [vt] = 0 and E [vtv

′
t] = Ω, (11.2)

where w here contains z, r lags of z and m lags of y:

w′t =
(
y′t−1, . . . ,y

′
t−m, z

′
t, . . . , z

′
t−r
)
.

As in Chapter 9, we take yt as an (n× 1) vector and zt as (q × 1).
As an example of a system, consider the parsimonious unrestricted reduced form

corresponding to the model which generated the artificial data set (see Chapter 10):


∆ct
∆yt
∆pt
∆qt

 =


π11 π12 π13 π14 π15

π21 π22 π23 π24 π25

π31 π32 π33 π34 π35

π41 π42 π43 π44 π45




∆pt−1

1

(y − c)t−1

(q − y)t−1

qt−1

+


v1t

v2t

v3t

v4t

 .

(11.3)
The system (11.1) can be written more compactly by using Y′ = (y1 y2 . . .yT ),

and W′, V′ correspondingly:

Y′ = ΠW′ + V′, (11.4)

139
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in which Y′ is (n × T ), W′ is (k × T ) and Π is (n × k), with k = nm + (r + 1)q

(assuming no lags have been dropped altogether, as in the example of equation (11.3)).
This is simply the multivariate linear regression model since there is a common set
of regressors in each equation. Formulae for parameter and equation standard errors,
test statistics etc. are generalized analogues of those in ordinary least squares (OLS),
as in single equation modelling. Anderson (1984) contains an extensive discussion of
the multivariate linear regression model, also see Spanos (1986). If q = 0 (no zs) the
system is a vector autoregression (VAR): see, for example, Lütkepohl (1991) or Ooms
(1994).

The multivariate least squares estimates of the coefficients and residual covariance
are:

Π̂′ = (W′W)
−1

W′Y and Ω̃ = V̂′V̂/ (T − k) , (11.5)

where the residuals are defined by:

V̂ = Y −WΠ̂
′

= MWY. (11.6)

MW is the symmetric idempotent projection matrix which annihilates W:

MW = IT −W(W′W)−1W′ = IT −QW , (11.7)

MWW = 0, and MWMW = MW .
To derive the variance of the estimated coefficients, we need:

V
[
vecΠ̂′

]
= E

[
vec
(
Π̂′ −Π′

)(
vec
(
Π̂′ −Π′

))′]
. (11.8)

Note that vecΠ′ is an (nk × 1) column vector of coefficients, stacked by equation.
In dynamic models, this calculation is intractable, and an asymptotic approximation is
used as follows. It is convenient to consider the transpose of (11.4) in vectorized form,
with π = vecΠ′, y = vecY and v = vecV:

y = (In ⊗W)π + v. (11.9)

So:

π̂ =
(
(In ⊗W)

′
(In ⊗W)

)−1
(In ⊗W)

′
y =

(
In ⊗ (W′W)

−1
W′
)

y (11.10)

and:
π̂ − π =

(
In ⊗ (W′W)

−1
W′
)

v. (11.11)

In the case of fixed W, direct evaluation yield:

E
[
(π̂ − π) (π̂ − π)

′]
=
(
In ⊗ (W′W)

−1
W′
)

(Ω⊗ In)
(
In ⊗W (W′W)

−1
)

= Ω⊗ (W′W)
−1
.

(11.12)
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A corresponding formula holds asymptotically (when suitably scaled by T ) in I(0) dy-
namic processes:
√
T (π̂ − π)

D→ Nn2

[
0,Ω⊗ S−1

W

]
where SW = plimT→∞ T−1W′W. (11.13)

The estimated variance matrix of the coefficients is:

V
˜[
vecΠ̂′

]
= Ω̃⊗ (W′W)

−1 (11.14)

The variance matrix of coefficients derived from Π, Ψ = f (Π′), has the general
form:

V
[
vec f

(
Π̂′
)]

= V
[
vecΨ̂

]
' J′V

[
vecΠ̂′

]
J (11.15)

where J is the Jacobian matrix of the transformation Ψ = f (Π′) :

J =
∂vecΨ

∂ (vecΠ′)′
. (11.16)

This approximation is asymptotically valid in that from (11.13), when ψ =vecΨ:
√
T
(
ψ̂ −ψ

)
D→ Nns

[
0,J

(
Ω⊗ S−1

W

)
J′
]
.

With Π̂ an (n× k) matrix and Ψ̂ an (s× n) matrix, J will be (ns× nk).

11.2 Maximum likelihood estimation

Under the assumptions that (11.1) is the DGP, vt ∼ INn[0,Ω], and that all the coeffi-
cient matrices are constant, the log-likelihood function ` (Π,Ω|Y,W) depends on the
multivariate normal distribution:

` (Π,Ω | Y,W) = −Tn2 log 2π − T
2 log |Ω| − 1

2

T∑
t=1

v′tΩ
−1vt

= K − T
2 log |Ω| − 1

2 tr
(
Ω−1V′V

)
= K + T

2 log
∣∣Ω−1

∣∣− 1
2 tr
(
Ω−1V′V

)
.

(11.17)

The sample is denoted t = 1, . . . , T after creating all necessary lags.
We first concentrate ` (·) with respect to Ω, which involves differentiating (11.17)

with respect to Ω−1 and equating that to 0. Taking account of its symmetry (that
is, ωij = ωji) we find:

2V′V − dg (V′V) = 2TΩ− Tdg (Ω) , (11.18)

evaluated at Ω = Ωc, yielding:

Ωc = T−1
T∑
t=1

vtv
′
t = T−1V′V. (11.19)
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This is a rather natural result, given that E[T−1V′V] = Ω. The resulting concentrated
log-likelihood function (CLF) `c (Π|Y,W; Ω) is:

`c (Π | Y,W; Ω) = K − T
2 log |V′V|+ Tn log T

2 − Tn
2

= K∗ − T
2 log

∣∣(Y′ −ΠW′) (Y −WΠ′
)∣∣ . (11.20)

We know the minimizer of
(
Y′ −ΠW′) (Y −WΠ′

)
from least-squares theory, and

find the maximum likelihood estimates:

Π̂′ = (W′W)
−1

W′Y and Ω̂ = T−1V̂′V̂, (11.21)

The attained maximum of ` (·) is:

̂̀= Kc −
T

2
log
∣∣∣Ω̂∣∣∣ (11.22)

with:
Kc =

−Tn
2

(1 + log 2π) . (11.23)

Note that Ω̂ is scaled by T , whereas Ω̃ is scaled by T − k. This convention is adopted
throughout the book.

11.3 Recursive estimation
Recursive least squares (RLS) is OLS where coefficients are estimated sequentially, and
is a powerful tool for investigating parameter constancy. The sample starts from a mini-
mal number of observations, and statistics are recalculated adding observations one at a
time. The multivariate version of RLS is analogous to univariate RLS, and involves little
additional computation since the formulae for updating the regressor second-moment
matrix are identical owing to the common regressors. Write W′

t = (w1 . . .wt). The
parameter estimates up to t are:

Π̂′t = (W′
tWt)

−1
W′

tYt and Ω̃t = V̂′tV̂t/ (t− k) . (11.24)

If the sample is increased by one observation, we can avoid inverting the second mo-
ment matrix by using the following rank-one updating formula for the inverse:(

W′
t+1Wt+1

)−1
= (W′

tWt)
−1 −

λt+1λ
′
t+1

1 + w′t+1λt+1
(11.25)

where:
λt+1 = (W′

tWt)
−1

wt+1.

From this, Π̂t+1 can be calculated by application of (11.24). To update Ω̃t, we
define the innovations νt and the standardized innovations (or recursive residuals, see
Harvey, 1990) st:

νt = yt − Π̂t−1wt, st =
νt√

1 + w′tλt
. (11.26)
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Successive innovations are independent, E[νtν
′
t+1] = 0. Now (see, for example,

Hendry, 1995):
V̂′t+1V̂t+1 = V̂′tV̂t + st+1s

′
t+1, (11.27)

from which Ω̃t+1 and Ω̂t+1 can be derived. The 1-step residuals at t + 1 are yt+1 −
Π̂t+1wt+1. Sequences of parameter constancy tests are readily computed and their use
for investigating parameter constancy is discussed in §11.8.1.

11.4 Unrestricted variables
If any variables (such as, for example, the constant, seasonal shift factors or trend) are
included unrestrictedly in all equations, the likelihood function can be concentrated
with respect to these. The stochastic part of the system is then rewritten as:

Y′ = ΠW′ + DS′ + V′ (11.28)

where D is the (n× s) of coefficients of the unrestricted variables, and S is the T × s
matrix of observations on these variables (where, for example, s = 1 if only a constant
term is partialled out). The log-likelihood for (11.28) is:

` (Π,D,Ω | Y,W,S)

= K + T
2 log

∣∣Ω−1
∣∣− 1

2 tr
(
Ω−1(Y′ −ΠW′ −DS′) (Y −WΠ′ − SD′)

)
= K + T

2 log
∣∣Ω−1

∣∣
− 1

2 tr
(
Ω−1

{
(Y′ −ΠW′) (Y −WΠ′)− 2Y′SD′ + 2ΠW

′
SD′ + DS′SD′

})
.

(11.29)
Therefore, since D is unrestricted:

∂` (·)
∂D

= 1
2 Ω−1

(
2Y′S− 2ΠW′S− 2DS′S

)
. (11.30)

Equating the derivative to zero yields the solution D′c as a function of Π′:

D′c = (S′S)
−1

S′
(
Y −WΠ′

)
= P′Y −P′WΠ′. (11.31)

and in turn the maximum likelihood estimator of D′ is:

D̂′ = P′Y −P′W Π̂′. (11.32)

P′W , P′Y are the ‘prior coefficients’ from regressing W on S and Y on S respectively.
Although Π is not known at the time D is eliminated, the effect of (11.31) is to remove
S from (11.28) and replace the original data by deviations from the ‘seasonal’ means.
Using (11.7), we let Y̌ = MSY and W̌ = MSW denote the ‘deseasonalized’ data
(that is, the residuals from the least-squares regressions of Y and W on S; we shall
also refer to these as the data after ‘partialling out’ S).
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The CLF is:

`c (Π,Ω | Y,W,S; D) = K+
T

2
log
∣∣Ω−1

∣∣− 1
2 tr
(
Ω−1

(
Y̌′ −ΠW̌′) (Y̌ − W̌Π′

))
(11.33)

Now Π can be estimated using:

Y̌′ = ΠW̌
′
+ V̌′. (11.34)

The formula for the variance matrix of D̂ after obtaining Π̂ is derived in Hendry
(1971). Using the Jacobian matrix:

JS = − (In ⊗P′W ) , (11.35)

it is given as:

V
˜[
vecD̂′

]
= Ω̃⊗ (S′S)

−1
+ ĴSV

˜[
vecΠ̂′

]
Ĵ′S (11.36)

with:

V
˜[
vecΠ̂′

]
= Ω̃⊗

(
W̌′W̌

)−1
. (11.37)

Thus, the model can be stated throughout in terms of deseasonalized data Y̌, W̌, and
multivariate least squares applied to the smaller specification.

11.5 Forecasting
Forecasting may be done 1-step ahead or h-steps ahead. The former are ex post (or
static): any lagged information required to form forecasts is based on observed values.
The latter are ex ante (or dynamic) and will reuse forecasts from previous period(s) if
required. Consider the simple 1-equation system:

yt = π1yt−1 + π2yt−2 + π3zt + vt

estimated over t = 1, . . . , T ; zt is not modelled. Assuming a forecast horizon ofH = 3,
we find:

static forecast dynamic forecast
T + 1 ŷT+1 = π̂1yT + π̂2yT−1 + π̂3zT+1 ŷT+1 = π̂1yT + π̂2yT−1 + π̂3zT+1

T + 2 ŷT+2 = π̂1yT+1 + π̂2yT + π̂3zT+2 ŷT+2 = π̂1ŷT+1 + π̂2yT + π̂3zT+2

T + 3 ŷT+3 = π̂1yT+2 + π̂2yT+1 + π̂3zT+3 ŷT+3 = π̂1ŷT+2 + π̂2ŷT+1

+π̂3zT+3

(11.38)
Both types of forecast require data for t = 1, . . . , T to obtain the coefficient estimates.
Beyond that, static forecasts require z for t = T + 1, . . . , T + H and y up to T +

H − 1, whereas dynamic forecasts only need z for t = T + 1, . . . , T + H . In both
types of forecast, the parameter estimates in PcGive are not updated over the forecast
period. This would be possible in principle for static forecasts, and would then mimic
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an operational procedure where a system was re-estimated each period on the maximum
data prior to forecasting. However, given the unrealistic assumption that the future z are
known, we prefer to think of static forecasts as delivering information about parameter
constancy, and therefore use the usual (rather than the recursive) residuals.

To distinguish the two types of forecast we let ŷT+i,h denote the h-step forecast
made for period T + i (i ≥ h) and based on parameter estimation up to T . The h-
step forecasts use actual values for lagged ys which go further back than h periods.
An extreme case is 1-step forecasts, ŷT+h,1 (h = 1, . . . ,H), which always use actual
values for lagged ys. Dynamic forecasts, ŷT+h,h (h = 1, . . . ,H), are at the other end of
the spectrum: they never use actual values beyond T . In addition to these two cases it is
possible to define intermediate (h) step forecasts. Using the new notation and dropping
the zs:

1-step 2-step 3-step
T + 1 ŷT+1,1 − −
T + 2 ŷT+2,1 ŷT+2,2 = π̂1ŷT+1,1 + π̂2yT −
T + 3 ŷT+3,1 ŷT+3,2 = π̂1ŷT+2,1 + π̂2yT+1 ŷT+3,3 = π̂1ŷT+2,2

+π̂2ŷT+1,1

...
...

...
...

T + i ŷT+i,1 ŷT+i,2 = π̂1ŷT+i−1,1 + π̂2yT+i−2 ŷT+i,3 = π̂1ŷT+i−1,2

+π̂2ŷT+i−2,1

(11.39)
In this terminology, the static forecasts are equivalent to the 1-step forecasts, whereas
the dynamic forecasts are the sequence of 1, 2, . . . ,H step forecasts.

The innovations defined in (11.26) can be seen as 1-step forecast errors, where
the parameter estimates are updated after each step. From (11.41) below, the variance
matrix of the 1-step forecast error vector in the notation of (11.26) is Ω (1 + w′tλt).

11.5.1 Static forecasting

To test for predictive failure, 1-step forecast errors eT+i,1 = yT+i − ŷT+i,1 are calcu-
lated as:

eT+i,1 = ΠwT+i + vT+i − Π̂wT+i

=
(
Π− Π̂

)
wT+i + vT+i

e′T+i,1 = w′T+i

(
Π− Π̂

)′
+ v′T+i

vec
(
e′T+i,1

)
= eT+i,1 =

(
In ⊗w′T+i

)
vec
(
Π′ − Π̂′

)
+ vT+i

(11.40)

Note that et is (n×1) and that In⊗w′T+i is (n×nk). To a first approximation, Π̂ is an
unbiased estimator of Π for forecasting purposes (see Clements and Hendry, 1998b),
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so E[eT+i,1] ' 0 and:

V [eT+i,1] = Ω +
(
In ⊗w′T+i

)
V
[
vecΠ̂′

]
(In ⊗wT+i)

= Ω + Ω⊗w′T+i (W′W)
−1

wT+i

= Ω
(

1 + w′T+i (W′W)
−1

wT+i

)
= ΨT+i,

(11.41)

so that:
eT+i,1 ãpp INn [0,ΨT+i] , (11.42)

where ΨT+i reflects both innovation and parameter uncertainty (also see Chong and
Hendry, 1986 and Clements and Hendry, 1994). The parameter uncertainty is of order
T−1 and tends to be small relative to Ω. However, the derivation assumes constant
parameters and homoscedastic innovation errors over the forecast period, which may
be invalid assumptions in practice – see Clements and Hendry (1998b) on the general
issue of forecasting under conditions of parameter change.

To derive forecast accuracy and constancy tests we require the full variance matrix
of all forecast errors. Transposing the error vector of (11.40), and stacking the H rows
on top of each other we may write (11.40) as:

E = WH

(
Π− Π̂

)′
+ VH . (11.43)

E is the (H × n) matrix of 1-step forecast errors, WH is the (H × k) matrix of data
for the forecast period T + 1, . . . , T +H . Proceeding in similar fashion:

e = vecE = (IH ⊗WH) vec
(
Π′ − Π̂′

)
+ vecVH . (11.44)

So again E[e] = 0, and:

E[ee′] = Ω⊗
(
IH + WH (W′W)

−1
W′

H

)
= Ψ. (11.45)

Under the null of no parameter change, tests can be based on the following approximate
test statistics over a forecast horizon of H periods:

ξ1 = e′
(
Ω̃⊗ IH

)−1

e =
∑H
i=1 e′T+iΩ̃

−1eT+i ãpp χ
2 (nH)

ξ2 =
∑H
i=1 e′T+iΨ̃

−1
T+ieT+i ãpp χ

2 (nH)

ξ3 = e′Ψ̃−1e ãpp χ
2 (nH)

ηi = (nH)
−1
ξi, i = 1, 2, 3 ãpp F (nH, T − k)

(11.46)
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The first test arises from ξ2 when Ψ̃T+i= Ω̃H is used, thus ignoring the parameter
uncertainty. This implies ξ1 ≥ ξ2. The ηi are the F equivalents of ξi and are expected
to have better small-sample properties. The form of ξ3 as given in (11.46) requires an
(nH × nH) matrix, and is computationally inconvenient. Analogous to the procedure
used in single equation modelling, the test may be rewritten as:

ξ3 = tr
(

Ω̃−1E′
(
IH + WH (W′W)

−1
W′

H

)−1

E

)

= tr
(
Ω̃−1E′

(
IH −WH

(
W′W + W′

HWH

)−1
W′

H

)
E
) (11.47)

The first line involves inversion of an (H × H) matrix, whereas the inversion in the
second expression is (k × k). Single equation output, which has n = 1, reports ξ1 and
η3.

11.5.2 Dynamic forecasting

To derive expressions for dynamic forecasts, we need to take the lag structure of y into
account. Consider a simple system with one lag of the dependent variable:

yt = π1yt−1 + π2zt + vt (11.48)

Using backward substitution for any h (h = 1, . . . ,H) commencing at T we find:

yT+h = π1yT+h−1 + π2zT+h + vT+h

= π1 (yT+h−2 + π2zT+h−1 + vT+h−1) + π2zT+h + vT+h

= πh1 yT +
h−1∑
j=0

πj1π2zT+h−j +

h−1∑
j=0

πj1vT+h−j .

(11.49)

The forecast at h is:

ŷT+h,h = π̂h1 yT +

h−1∑
j=0

π̂j1π̂2zT+h−j , (11.50)

so that the forecast error at h is:

eT+h,h = yT+h − ŷT+h,h

= (πh1 − π̂h1 )yT +

h−1∑
j=0

(πj1π2 − π̂j1π̂2)zT+h−j +

h−1∑
j=0

πj1vT+h−j .

(11.51)
When the parameter uncertainty is negligible, the forecast error is:

eT+h,h =

h−1∑
j=0

πj1vT+h−j (11.52)
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with variance:

V [eT+h,h] = E

h−1∑
i=0

h−1∑
j=0

πi1vT+h−iv
′
T+h−jπ

j′
1

 =

h−1∑
j=0

πj1Ωπj′1 (11.53)

since E
[
viv
′
j

]
= 0 for i 6= j; E [viv

′
i] = Ω. The next section takes parameter uncer-

tainty into account.
With m lags of the dependent variable we may still use expression (11.53) by writ-

ing the system:

yt =

m∑
i=1

πiyt−i +

r∑
j=0

πm+1+jzt−j + vt (11.54)

in companion form:


yt

yt−1

...
yt−m+1

 =


π1 π2 · · · πm−1 πm
In 0 · · · 0 0

0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0




yt−1

yt−2

...
yt−m



+


πm+1 · · · πm+1+r

0 · · · 0
...

. . .
...

0 · · · 0


 zt

...
zt−r

+


vt
0
...
0


or more briefly:

y∗t = Dy∗t−1 + Ez∗t + v∗t . (11.55)

With the companion matrix, D, of dimension (nm× nm), taking the place of π1 in
(11.53), the variance of the forecast error e∗T+h,h = y∗T+h − ŷ∗T+h,h becomes:

V
[
e∗T+h,h

]
=

h−1∑
j=0

Dj0Dj′, 0 =

 Ω 0 · · ·
0 0 · · ·
...

...
. . .

 . (11.56)

The relevant part of this expression is the (n× n) top-left block.
The system must characterize the economy as accurately in the forecast period as it

did over the estimation sample if the forecast errors are to be from the same distribution
as that assumed in (11.55) (ignoring the sampling variation owing to estimating D).
This is a strong requirement, and seems unlikely to be met unless D is constant within
sample: the further condition that D is invariant to any regime changes out-of-sample
is not considered here. Even if D is both constant and invariant, V[y∗T+h,h − ŷ∗T+h,h]

will generally increase with h, often quite rapidly, and the forecast errors will be het-
eroscedastic and serially correlated, so care is required in interpreting forecast errors.



Chapter 11 Econometric Analysis of the System 149

Clements and Hendry (1998a) give forecast error variances for the whole sequence of
forecasts. Clements and Hendry (1999) discuss forecasting with non-stationary series.

Finally, we may wish to compute h-step forecasts, where h ≤ H is a fixed number,
rather than running from 1 to H as in dynamic forecasting. Using the companion form
(11.55):

ŷ∗T+i,h = D̂ŷ
∗
T+i−1,h−1 + Êz

∗
T+i

= D̂hy∗T+i−h +

h−1∑
j=0

D̂jÊz∗T+i−j , i = h, . . . ,H.

(11.57)

Again we ignore the parameter uncertainty in computing the error variance of the h-step
forecast errors, so that we may use (11.56): when h is fixed the variance is constant.

11.5.3 Dynamic forecasting: parameter uncertainty

Equation (11.53) ignored the parameter uncertainty in forming dynamic forecasts. The
static forecast standard errors of (11.41) take this into account, and we shall now derive
this component for dynamic forecasts in a similar way, which corresponds to Schmidt
(1974). It is assumed that the system has been mapped to an I(0) representation, and
there are no unrestricted variables.

Rewrite the dynamic forecast at T + h as:

ŷT+h,h = π̂h1 yT +

h∑
j=1

π̂h−j1 π̂2zT+j = ÂhWh, (11.58)

where
Âh =

(
π̂h1 , π̂

h−1
1 π̂2, π̂

h−2
1 π̂2, . . . , π̂2

)
, (11.59)

and
Wh =

(
y′T , z

′
T+1, z

′
T+2, . . . , z

′
T+h

)′
. (11.60)

The matrix Âh is (n× r) and Wh is (r× 1) where r = n+hq when z is (q× 1). Note
that yT still belongs to the estimation sample, and is known when forecasting. Write
yT+h,h for the forecasts when the parameters are known:

yT+h,h = πh1 yT +

h∑
j=1

πh−j1 π2zT+j = AhWh. (11.61)

Then the parameter uncertainty component of the forecast errors is:

p = yT+h,h − ŷT+h,h =
(
Ah − Âh

)
Wh, (11.62)

from which we can derive:

vec(p) = p = (W′
h ⊗ In) vec

(
Ah − Âh

)
, (11.63)
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so that

Ṽ [p] ≈ (W′
h ⊗ In) Ĵ

˜
V
[
vecΠ̂

]
Ĵ′ (Wh ⊗ In) , (11.64)

where

J =
∂vecAh

∂ (vecΠ)
′ . (11.65)

Using

∂vec
(
πh
)

∂ (vecπ)
′ =

h−1∑
i=0

(π′)
h−1−i ⊗ πi (11.66)

the (nr × nk) Jacobian matrix can be found:

J =



(
∂vecπh1
∂ (vecπ1)

′

)
n2×n2

(
∂vecπh1
∂ (vecπ2)

′

)
n2×nq(

∂vecπh−1
1 π2

∂ (vecπ1)
′

)
nq×n2

(
∂vecπh−1

1 π2

∂ (vecπ2)
′

)
nq×nq

...
...(

∂vecπ2

∂ (vecπ1)
′

)
nq×n2

(
∂vecπ2

∂ (vecπ2)
′

)
nq×nq


, (11.67)

J = (J1 : J2) =



h−1∑
i=0

(π′1)
h−1−i ⊗ πi1 0

h−2∑
i=0

π′2 (π′1)
h−2−i ⊗ πi1 Iq ⊗ πh−1

1

...
...

π′2 ⊗ In Iq ⊗ π1

0 Iq ⊗ In


. (11.68)

As Calzolari (1987) points out, the J matrix can be quite massive, for example for
n = 5, q = 20, h = 10 the matrix is (1025 × 125). However, we are not interested in
J per se, but in (W′

h ⊗ In)J and find using:

(W′
h ⊗ In) =

(
y′T ⊗ In : z′T+1 ⊗ In : · · · : z′T+h ⊗ In

)
(11.69)

the following expression:

(W′
h ⊗ In) J1 =

h−1∑
i=0

y′T (π′1)
h−1−i ⊗ πi1 +

h−1∑
j=1

h−1−j∑
i=0

z′T+jπ
′
2 (π′1)

h−1−j−i ⊗ πi1,

(W′
h ⊗ In) J2 =

h∑
j=1

z′T+j ⊗ π
h−j
1 =

h−1∑
i=0

z′T+h−i ⊗ πi1.

(11.70)
Hence, we see that the results in Schmidt (1974) do not require computation of J.
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Reordering the double summation and using (11.61) yields for the first part of
(11.70):

(W′
h ⊗ In) J1 =

h−1∑
i=0

y′T (π′1)
h−1−i ⊗ πi1 +

h−2∑
i=0

h−1−i∑
j=1

z′T+jπ
′
2 (π′1)

h−1−j−i ⊗ πi1

=
h−1∑
i=0

y′T+h−1−i,h−1−i ⊗ πi1
(11.71)

Combining J1 and J2, and writing b′T+h−i =
(
y′T+h−1−i,h−1−i : z′T+h−i

)
, b′T =(

y′T : z′T+1

)
:

(W′
h ⊗ In) J =

h−1∑
i=0

b′T+h−i ⊗ πi1. (11.72)

This is computationally more convenient than (11.70).
To express the Jacobian in terms of V[vecΠ̂′], rather than V[vecΠ̂], requires column

reordering. The asymptotic variance of p is then estimated by:

Ṽ [p] ≈

(
h−1∑
i=0

π̂i1 ⊗ b̂′T+h−i

)
˜

V
[
vecΠ̂′

](h−1∑
i=0

π̂i1 ⊗ b̂′T+h−i

)′
, (11.73)

which corresponds to the result in Calzolari (1987). When more than one lag of the
dependent variable is used, π1 should be replaced by the companion matrix D, but
b̂T+h−i remains unchanged.

The formulae can be derived somewhat differently, bringing out more clearly the
terms which are omitted in the approximation. Write:

π̂1 = π1 + δ, (11.74)

so that, ignoring higher order terms in δ:

π̂h1 = (π1 + δ)
h

≈ πh1 +
h−1∑
i=0

πi1δπ
h−1−i
1

= πh1 +
h−1∑
i=0

πi1 (π̂1 − π1)πh−1−i
1 .

(11.75)

In a closed system, this would lead to:

Ṽ [p] ≈

(
h−1∑
i=0

y′T (π̂′1)
h−1−i ⊗ π̂i1

)
˜

V
[
vecΠ̂

](h−1∑
i=0

y′T (π̂′1)
h−1−i ⊗ π̂i1

)′
,

(11.76)
which corresponds to the first component in (11.70).
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Next, consider the part arising from non-modelled variables, for j = 1, . . . , h− 1:

π̂j1π̂2 − πj1π2 = πj1 (π̂2 − π2) +
(
π̂j1 − π

j
1

)
π2 −

(
πj1 − π̂

j
1

)
(π̂2 − π2)

≈ πj1 (π̂2 − π2) +
(
π̂j1 − π

j
1

)
π2

≈ πj1 (π̂2 − π2) +
j−1∑
i=0

πi1 (π̂1 − π1)πj−1−i
1 π2.

(11.77)
The first approximation ignores (πj1− π̂

j
1) (π̂2 − π2), then (11.75) is used. Combining

(11.75) and (11.77) gives:

p =
(
πh1 − π̂h1

)
yT +

h∑
j=1

(
πh−j1 π2 − π̂h−j1 π̂2

)
zT+j

≈
h−1∑
i=0

πi1 (π1 − π̂1)πh−1−i
1 yT + (π2 − π̂2) zT+h+

h∑
j=1

(
πh−j1 (π2 − π̂2) +

h−j−1∑
i=0

πi1 (π1 − π̂1)πh−j−1−i
1 π2

)
zT+j

=
h−1∑
i=0

πi1 (π1 − π̂1)πh−1−i
1 yT +

h−1∑
i=0

πi1 (π2 − π̂2) zT+h−i

+
h−1∑
j=1

h−j−1∑
i=0

πi1 (π1 − π̂1)πh−j−1−i
1 π2zT+j ,

which leads directly to (11.70).
When the system is in I(1) space, it can be expressed as an I(0) model augmented

with I(1) linear combinations of variables (essentially ‘nonsense regressions’). The
standard errors of the latter are not well defined (see, for example, Phillips, 1986,
and Banerjee, Dolado, Galbraith, and Hendry, 1993). Moreover, the approximation
in (11.75) may be poor, in that unit roots are generally underestimated. When the sys-
tem is properly estimated in I(0) space, forecasts and their standard errors for levels can
be obtained by augmenting the system with identities of the form

yT ≡ yT−1 + ∆yT .

Unit roots are estimated, and the resulting (explosive) confidence bands reflect the cu-
mulative uncertainty.

11.5.4 Dynamic simulation and impulse response analysis

A concept closely related to dynamic forecasting is dynamic simulation. Dynamic sim-
ulation values are obtained by computing dynamic forecasts from a starting point within
the estimation sample. Commencing from period M as initial conditions:

ŝt =

m∑
i=1

π̂iŝt−i +

r∑
j=0

π̂j+m+1zt−j for t = M + 1, . . . ,M +H ≤ T, (11.78)

where ŝt−i = yt−i for t− i ≤M .



Chapter 11 Econometric Analysis of the System 153

Dynamic simulation uses actual values of the non-modelled variables, but the sim-
ulated values of the ys. It can be seen as conditional dynamic forecasting within the
estimation sample. However, the forecast error-variance formulae do not apply. As
Chong and Hendry (1986) argue, dynamic simulation is not a valid method of model
selection or model evaluation. To quote: ‘In fact, what dynamic simulation tracking ac-
curacy mainly reflects is the extent to which the explanation of the data is attributed to
non-modelled variables.’ However, dynamic simulation could be useful to investigate
theory consistency or data admissibility. In addition, it can help elucidate the dynamic
properties of the model. This information is also available through the eigenvalues of
the companion matrix: roots outside or on the unit circle entail an unstable system with
explosive behaviour. In that case, (11.56) will diverge as the forecast horizon increases
towards infinity.

Impulse response analysis is similar to dynamic simulation, but focuses on the dy-
namics of the endogenous variables only:

ı̂t =

m∑
i=1

π̂i ı̂t−i for t = 2, . . . ,H <∞, (11.79)

where ı̂t = 0 for t ≤ 0 and ı̂1 = i1. Various forms are commonly used for the
initial values i1. A simple form is to take all but one values zero, which can be set to
unity, or the residual standard error of that equation. This effectively gives powers of
the companion matrix. Then the matrix of {̂ıt} with In as a basis shows the system
equivalent of the moving-average representation. Alternatively, initial values can be
taken from the orthogonalized system: see Lütkepohl (1991).

11.6 Dynamic analysis
Consider the system (11.1), and rewrite it slightly as (cf. equation 11.54):

yt =

m∑
i=1

πiyt−i +

r∑
j=0

Γjzt−j + vt, vt ∼ INn [0,Ω] , (11.80)

with yt (n× 1) and zt (q × 1), Π = (π1 · · ·πm,Γ0 · · ·Γr). Write this as:

(I− π (L)) yt = B(L)yt = Γ (L) zt + vt, (11.81)

where B (L) and Γ (L) are matrix lag polynomials of order m and r respectively.1 L is
the lag operator:

Lixt = xt−i,

and a matrix lag polynomial of order m is:

B (L) = B0 + B1L
1 + · · ·+ BmL

m.

1Note that this use of B and Γ is different from that in §9.3.
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So B0 = In, B1 = −π1, B2 = −π2, etc. Also π(1) = π1 + · · · + πm, with m
the longest lag on the endogenous variable(s), and Γ(1) = Γ0 + · · · + Γr, with r the
longest lag on any non-modelled variable. The lag polynomial B (L) is invertible if all
solutions zi to |B (z) | = 0 lie outside the unit circle (the modulus of all λi = 1/zi is
less than unity), in which case, the inverse can be written as:

B (L)
−1

=
∞∑
i=0

GiL
i.

P0 = −B(1) = π(1) − In can be inverted only if it is of rank p = n, in which
case, for q > 0, y and z are cointegrated. If p < n, only a subset of the ys and zs are
cointegrated: see Chapter 12. If P0 is invertible, and the variables are I(0), we can write
the static long-run solution as:

E [yt] = −P−1
0 Γ (1) E [zt] . (11.82)

Let ut = −P−1
0 vt, then the covariance matrix of {ut} is the long-run covariance

matrix of {yt}, namely:
V [ut] = P−1

0 ΩP−1′
0 (11.83)

If q = 0, the system is closed (that is, a VAR), and (11.82) is not defined. However,
P0 can still be calculated, in which case, p characterizes the number of cointegrating
vectors linking the ys (again see Chapter 12).

The unconditional covariance matrix Φy of yt can be derived from the companion
form (11.55):

Φ∗y = V [y∗t ]

= E
[(

Dy∗t−1 + v∗t
) (

y∗′t−1D
′ + v∗′t

)]
= DE

[
y∗t−1y

∗′
t−1

]
D′ + E [v∗tv

∗′
t ]

= DΦ∗yD
′ + 0

(11.84)

using the stationarity of vt, and with 0 as in (11.56). Φy is the (n× n) top left block
of Φ∗y:

Φy = π(1)Φyπ(1)′ + Ω. (11.85)

Then, using vectorization:

vecΦy = (π(1)⊗ π(1)) vecΦy + vecΩ, (11.86)

so that:
vecΦy = (I− π(1)⊗ π(1))

−1 vecΩ. (11.87)

The estimated static long-run solution is:

ŷ = −P̂−1
0 Γ̂ (1) z. (11.88)

The variance of P̂ = −P̂−1
0 Γ̂ (1) is most easily derived in two steps. Changing notation

slightly, we write P = −B−1C, A = (B : C) = (P0 : Γ (1)).2 With R summing the
2Here the use of B and C is different from, but analogous to, that in Chapter 13.
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two parts of Π (defined below equation (11.80)), so A = ΠR, we have:

V
[
vecÂ′

]
= HV

[
vecΠ̂′

]
H′ where H = (In ⊗R′) (11.89)

R is (k × (n + q)) so that H is (n(n + q) × nk); remember that P is (n × q). The
Jacobian matrix of the transformation in (11.88) based on A can now be written as:

J =
∂vecP′

∂ (vecA′)′
=

(
∂vecP′

∂ (vecB′)′
:

∂vecP′

∂ (vecC′)′

)
K′

=
(
(Iq ⊗−C′)

(
−B−1 ⊗B−1′) : −B−1 ⊗ Iq

)
K′

=
(
−B−1 ⊗P′ : −B−1 ⊗ Iq

)
K′

= −B−1 ⊗ (P′ : Iq) . (11.90)

The (nq × n(n + q)) matrix J does not have its elements in the right order to allow
partitioning. However, JK does, when K is the (n(n + q) × n(n + q)) matrix which
permutes columns of J, so that for each row, we first take the derivatives with respect to
elements of B, and then with respect to elements of C. As K is orthogonal, K−1 = K′.
When moving from line 3 to line 4 in (11.90), K′ drops out again, as the same column
reordering is required to collect the partitioned component on the right-hand side.

The variance of the static long-run coefficients may now be computed as:

V
˜[
vecP̂′

]
= ĴĤV

˜[
vecΠ̂′

]
Ĥ′Ĵ′. (11.91)

This is a multivariate extension of the results derived by Bårdsen (1989).
Returning to the companion form (11.55), we find by back substitution that yt con-

sists of the accumulation of past zs and errors:

y∗t =

∞∑
i=0

DiEz∗t−i +

∞∑
i=0

Div∗t−i. (11.92)

A dynamically stable system requires Di → 0 as i → ∞, which implies that all
eigenvalues of D must lie inside the unit circle. When the system is closed (q = 0),
under stationarity, the unconditional variance of y∗t is also given by:

V [y∗t ] =

∞∑
i=0

Di0Di′. (11.93)

When {zt} is strongly exogenous and stationary, (11.93) applies to the variance of y∗t
around its long-run mean.

11.7 Test types
Various test principles are commonly used in econometrics and the three main ones are
Wald (W), Lagrange multiplier (LM, also called score test) and likelihood ratio (LR)
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tests (for a thorough discussion of these tests, and testing in general, see Hendry, 1995,
and Godfrey, 1988, and the references cited therein). For example, the Chow (1960)
test for parameter constancy in a single equation is derivable from all three principles,
whereas the test of over-identifying restrictions is LR, most of the mis-specification tests
are LM, and tests for non-linear parameter restrictions are Wald tests. In each instance,
the choice of test type tends to reflect computational ease. Under the relevant null
hypothesis and for local alternatives, the three test types are asymptotically equivalent
in stationary systems; however, if equations are mis-specified in other ways than that
under test, or the sample size is small, different inferences can result.

With a k vector of parameters θ ∈ Θ ⊂ Rk and corresponding likelihood function
L (θ|·) we assume that the regularity conditions hold, so that the limiting distribution of
the MLE θ̂ is: √

T
(
θ̂ − θp

)
D→ Nk [0,Σ] , (11.94)

where θp denotes the population value of θ, and Σ is the variance-covariance matrix of
the limiting distribution. In finite samples, we approximate the distribution in (11.94)
by:

θ̂ ãpp Nk
[
θp, T

−1Σ
]
. (11.95)

The general problem is formulated as follows. The maintained hypothesis Hm: θ ∈ Θ

defines the statistical model within which all testing will take place. We wish to know
which of two hypotheses holds within Hm, the null hypothesis denoted by H0 or the
alternative hypothesis H1. Thus, we wish to test the r restrictions imposed by H0:

H0: θ = θ0 or θ ∈ Θ0 versus H1: θ 6= θ0 or θ /∈ Θ0.

The likelihood ratio λ is given by:

0 ≤ λ =
maxθ∈Θ0

L (θ)

maxθ∈Θ L (θ)
≤ 1. (11.96)

If Hm is true and the regularity conditions hold, the likelihood ratio test is:

− 2 log λ̂ = 2`
(
θ̂
)
− 2`

(
θ̂0

)
D→ χ2 (r) (11.97)

when H0 holds and imposes r restrictions and ` (·) = log L (·).
Writing the r restrictions implied by the null hypothesis as:

H0: f(θ) = 0 (11.98)

where f : Θ 7→ Θ0, the Wald test of hypothesis (11.98) is expressed as:

ŵ = f(θ̂)′
(

J(θ̂)V[̂θ̂]J′(θ̂)

)−1

f(θ̂)
D−→
H0

χ2 (r) (11.99)

where J is the Jacobian matrix of the transformation: J(θ) = ∂f(θ)/∂θ′.
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The Lagrange multiplier (or efficient score) test may be expressed as:

q
(
θ̂0

)
V[̂θ̂0]q′

(
θ̂0

)
D−→
H0

χ2 (r) , (11.100)

in which the score and variance of the unrestricted model are evaluated at the restricted
parameters. With respect to the last two expressions, we may point out three consis-
tent estimators of the asymptotic variance of the MLEs under the maintained being a
congruent model:

V1 [̂θ̂] = I
(
θ̂
)−1

,

V2 [̂θ̂] = −H
(
θ̂
)−1

,

V3 [̂θ̂] =

(
T∑
t=1

qt

(
θ̂
)

q′t

(
θ̂
))−1

.

(11.101)

I is the information matrix, E[
∑T
t=1 qt(θ)q′t(θ)]; the second form involves the Hes-

sian matrix H, ∂2`/∂θ∂θ′; the third form is based on the sample outer product of the
gradients (OPG).

The LR test requires estimation of both the unrestricted and the restricted model; the
W test requires estimation of the unrestricted model, whereas the LM test only requires
estimation of the restricted model.

11.8 Specification tests
The objective of specification testing in PcGive is to simplify the specification of the
system at hand. As the unrestricted system has already been estimated, the most conve-
nient candidates for test types are LR and W.

An obvious example of a specification test is testing whether a group of variables
can be omitted from the system, that is, testing whether columns of Π are significantly
different from zero. With the system expressed as in (11.4) and taken to be congruent,

Y′ = ΠW′ + V′, (11.102)

and partitioning the coefficients as Π = (Π1 : Π2) and W accordingly, we may write
this test as:

H0 : Π2 = 0 versus H1 : Π2 6= 0 with Hm as in (11.102). (11.103)

Π is (n× k), Πi is (n× ki), so that k = k1 + k2. The likelihood ratio follows from
Section [11.2]:

λ̂ =
L0

(
Π̂1 : 0

)
L
(
Π̂
) =

Kc

∣∣∣Ω̂0

∣∣∣−T/2
Kc

∣∣∣Ω̂∣∣∣−T/2 =

(∣∣∣Ω̂∣∣∣ ∣∣∣Ω̂0

∣∣∣−1
)T/2

. (11.104)
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T Ω̂0 = V̂′0V̂0 = Y′MW1
Y, V̂0 are the residuals from regressing Y on W1, whereas

Ω̂ comes from the unrestricted system (11.102). Minus twice the logarithm of (11.104)
is asymptotically χ2 (nk2) distributed under the null hypothesis. Anderson (1984, Sec-
tion 8.4) and Rao (1973, Section 8b.2) derive the exact distribution of λ2/T for fixed
W; Anderson gives small-sample correction factors for the χ2 test.

The restriction imposed by H0 in (11.103) may be expressed as:

ΠR = (Π1 : Π2)

(
0

Ik2

)
= 0, (11.105)

in which R is (k × k2). The Jacobian matrix of this transformation is J = In ⊗R′, so
that the Wald test may be written as:

ŵ =
(

vec
(
Π̂R

))′{
Ω̂−1 ⊗

(
R′ (W′W)

−1
R
)−1

}
vec
(
Π̂R

)

= tr
{(

(W′W)
22
)−1

Π̂′2Ω̂
−1Π̂2

}
,

(11.106)

where (W′W)
22 is the relevant block of (W′W)

−1. ŵ has an asymptotic χ2 (nk2)

distribution. When testing one column of Π (that is, the significance of one variable),
the trace is taken of a scalar expression. In this case, the test statistic ŵ is an instance
of the Hotelling T2 statistic, and is distributed as (assuming normality and fixed regres-
sors):

ŵ
T − k
Tn

∼ F (n, T − k) . (11.107)

Expressions (11.104) and (11.106) are more similar than they might seem at first
sight. From §11.4, we know that V̂′ = Y′MW1

− Π̂2W
′
2MW1

, so:

V̂′V̂ = Y′MW1Y − Π̂2W
′
2MW1W2Π̂

′
2

follows. Using partitioned inversion, (11.106) can be written as:

ŵ/T = tr
(
Π̂2W

′
2MW1

W2Π̂
′
2Ω̂
−1/T

)
= tr

((
Ω̂0−Ω̂

)
Ω̂−1

)
. (11.108)

ŵ/T is known as the Lawley–Hotelling trace criterion.
R2-type measures of goodness of fit, as reported by PcGive, are based on LM and

LR. The LM-test of (11.103) is:

l̂m/T = tr
((

Ω̂0−Ω̂
)

Ω̂−1
0

)
, (11.109)

(Anderson calls this the Bartlett–Nanda–Pillai trace criterion), so that we may define:

R2
r = 1−

∣∣∣Ω̂∣∣∣ ∣∣∣Ω̂0

∣∣∣−1

R2
m = 1− 1

n tr
(
Ω̂Ω̂

−1

0

)
.

(11.110)
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In a one-equation system (n = 1), these two measures are identical, but they only
correspond to the traditional R2 if the constant term is the only variable excluded in the
specification test.

Following Rao (1952), as described in Rao (1973, Section 8c.5) or Anderson (1984,
Section 8.5.4), we may define an F-approximation for likelihood-ratio based tests of
(11.103) as:

1−
(
1− R2

r

)1/s
(1− R2

r)
1/s

.
Ns− q
nk2

ãpp F (nk2, Ns− q) , (11.111)

with:

s =

√
n2k2

2 − 4

n2 + k2
2 − 5

, q = 1
2 nk2−1, N = T−k1−k2− 1

2 (n− k2 + 1) (11.112)

and:

k1 number of regressors in restricted system
k2 number of regressors involved in test
n dimension of unrestricted system
T number of observations in unrestricted system
T − k1 − k2 degrees of freedom in unrestricted system

(11.113)

This F-approximation is exact for fixed regressors when k2 ≤ 2 or n ≤ 2.
The following table gives the degrees of freedom of Rao’s F-approximation for

T = 100, k = 20:

k2 n = 1 n = 2 n = 3 n = 4

1 1, 80 2, 79 3, 78 4, 77

2 2, 80 4, 158 6, 156 8, 154

3 3, 80 6, 158 9, 189.98 12, 204.01

4 4, 80 8, 158 12, 206.66 16, 235.88

5 5, 80 10, 158 15, 215.73 20, 256.33

6 6, 80 12, 158 18, 221.10 24, 269.83

7 7, 80 14, 158 21, 224.52 28, 279.05

8 8, 80 16, 158 24, 226.82 32, 285.56

9 9, 80 18, 158 27, 228.44 36, 290.29

10 10, 80 20, 158 30, 229.62 40, 293.83

The first two columns and the first two rows correspond to exact F-distributions (as-
suming fixed regressors and stationarity). Testing the significance of k2 regressors in
a single equation system is F(k2, T − k); (11.114) below does not follow from Rao’s
F-approximation, although it is the same distribution. Testing the significance of one
regressor in an n-equation system is F(n, T − k + 1− n).

Testing for significance within a single equation of the n equation system proceeds
as in the univariate case. This derives from the fact that T Ω̂ and Π are independent
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with respectively a Wishart and a normal distribution. To test whether k2 coefficients in
equation i are zero:

RSS0 −RSS
RSS

.
T − k
k2

∼ F (k2, T − k) , (11.114)

whereRSS andRSS0 are the ith diagonal element of T Ω̂ and T Ω̂0 respectively. Also,
the t-test may be used to test the significance of a single coefficient in an equation:

Π̂ij − 0√
σ̃2 (W′W)

−1
jj

∼ t (T − k) , (11.115)

where σ̃2 is the ith diagonal element of Ω̃.

11.8.1 Parameter constancy tests

Parameter constancy tests for a one-off break at T1, T = T1 + T2, as introduced by
Chow (1960), may be described within the framework of this section. First, consider
the prediction test where T2 observations are added to the T1 we already have. The
Chow test may be expressed as a test for significance of D in:

Y′ = ΠW′ + DS′ + V′, (11.116)

where S consists of dummies removing the influence of the last T2 observations (see
Salkever, 1976). The parameter constancy test is H0: D = 0. This test is more con-
veniently done through two separate regressions: for the first T1 observations (yielding
Ω̂T1

; this is the unrestricted system, as it has all the dummies in it); and for all obser-
vations, yielding Ω̂T . The first term has to be corrected for the sample size, so that the
F-test may be based on:

R2
r = 1−

(
T1

T

)n ∣∣∣Ω̂T1

∣∣∣ (∣∣∣Ω̂T

∣∣∣)−1

. (11.117)

The Wald test of H0: D = 0 is identical to the parameter-constancy test ξ3 of
(11.46). That equation gives an F-version with a degrees-of-freedom correction which
is different from the LR-derived F-test based on (11.117).

When testing within a single equation (a row of D), the familiar F-test arises:

RSST −RSST1

RSST1

.
T1 − k
T2

∼ F (T2, T1 − k) . (11.118)

Now RSST and RSST1 are the ith diagonal element of T Ω̂T and T1Ω̂T1
. This is ap-

proximate in dynamic models. After recursive estimation, these tests are computed for
every possible break-point (although the distribution only holds for a one-off, known
break-point). If T2 is large enough, an analysis-of-covariance type test may be com-
puted, by fitting the system three times, over T1, T2 and T , and performing a likelihood
ratio test (see, for example, Pesaran, Smith, and Yeo, 1985):

2
(̂̀
T1

+ ̂̀T2
− ̂̀T) ãpp χ

2
(
nk − 1

2 n (n+ 1)
)
. (11.119)
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11.9 Mis-specification tests
Mis-specification tests check whether the system is deficient in the direction of more
general specifications, such as systems incorporating heteroscedasticity, serial corre-
lation, etc. The model should have constant parameters and residuals which are ho-
moscedastic innovations, in order to allow us to perform specification tests. Note that
rejection of the null hypothesis should not lead to automatic acceptance of the alterna-
tive hypothesis, as the tests could have power against other deficiencies. Hendry (1995)
discusses these issues and the issue of multiple testing.

Mis-specification testing starts after system specification and estimation, so it can
be no surprise that most tests encountered are derived as LM tests.

Diagnostic testing in PcGive is performed at two levels: individual equations and the
system as a whole. Individual-equation diagnostics take the residuals of each equation
of the system in turn, and treat them as if they are from a single equation. Usually this
means that they are only valid if the remaining equations are problem-free. We first
consider single equation statistics.

11.9.1 Single equation tests

To simplify notation, write a single equation of the system (11.1) as:

yt = π′wt + vt. (11.120)

In (11.120), the (k × 1) vector π is the transpose of a row of Π of (11.1) and E[v2
t ] =

σ2. Many tests take the form of:
TR2 (11.121)

for an auxiliary regression, so that they are asymptotically distributed as χ2 (s) under
their nulls, and hence have the usual additive property for independent χ2s. In addition,
following Harvey (1990) and Kiviet (1986), F-approximations of the form

R2

1− R2
.
T − k − s

s
∼ F (s, T − k − s) (11.122)

are calculated because they may be better behaved in small samples. We can relate
these to the Lagrange multiplier and Wald tests of (11.109) and (11.108) by writing
σ̂2 =

∑
v̂2
t /T and σ̂2

0 =
∑

(yt − ȳ)2/T , giving:

R2 =
(
σ̂2

0

)−1 (
σ̂2

0 − σ̂2
)

and
R2

1− R2
=
(
σ̂2
)−1 (

σ̂2
0 − σ̂2

)
. (11.123)

When the covariance matrix is block diagonal between regression and scedastic
function parameters, tests can take the regression parameters as given, see Davidson
and MacKinnon (1993, Ch. 11):

R2

1− R2
.
T − s
s
∼ F (s, T − s) .

This may be slightly different if not all parameters are included in the test, or when
observations are lost.
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11.9.1.1 Portmanteau statistic

This is a degrees-of-freedom corrected version of the Box and Pierce (1970) statistic
(it is sometimes called Ljung–Box or Q∗-statistic), designed as a goodness-of-fit test
in stationary autoregressive moving-average models. It is only a valid test in a single
equation with no exogenous variables. An appropriate test for residual autocorrelation
is provided by the LM test below. The statistic calculated is:

LB (s) = T 2
s∑
j=1

r2
j

T − j
, (11.124)

where s is the length of the correlogram and rj is the jth coefficient of residual auto-
correlation:

r∗j =

∑T
t=j+1 v̂tv̂t−j∑T

t=1 v̂
2
t

. (11.125)

Under the assumptions of the test, LB (s) is asymptotically distributed as χ2 (s− k),
with k being the lag length in an autoregressive model. The degrees-of-freedom cor-
rection in (11.124) is not exactly identical to that in Ljung and Box (1978), who use
T (T + 2) instead of T 2, but chosen to coincide with the vector analogue below.

11.9.1.2 LM test for autocorrelated residuals

A Lagrange-multiplier test for serial correlation uses the formulation:

vt =

s∑
i=r

αivt−i + εt, 1 ≤ r ≤ s (11.126)

with εt ∼ IID[0, σ2]. This test is done through the auxiliary regression of the residuals
on the original variables and lagged residuals (missing lagged residuals at the start of
the sample are replaced by zero, so no observations are lost). Then the significance
of all regressors in this regression is tested through the χ2 (s− r + 1) and F-statistic,
based on R2. The null hypothesis is no autocorrelation, which would be rejected if
the test statistic is too high. This LM test is valid for systems with lagged dependent
variables, whereas neither the Durbin–Watson nor residual autocorrelations based tests
are valid in that case.

11.9.1.3 LM test for autocorrelated squared residuals

In the linear ARCH model (autoregressive conditional heteroscedasticity, see Engle,
1982) the variance is specified as:

σ2
t = E

[
v2
t | vt−1, . . . , vt−s

]
= c+

s∑
i=1

γiv
2
t−i. (11.127)

An LM-test for the hypothesis γ = (γ1, . . . , γs)
′

= 0, called the ARCH test, may be
obtained as TR2 from the regression of v̂2

t on a constant and v̂2
t−1 to v̂2

t−s. This test
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is asymptotically distributed as χ2 (s) on H0: γ = 0. The F-form (11.122) may also
be computed, in this case distributed as F(s, T − 2s).3 Engle, Hendry, and Trumbull
(1985) investigate the small-sample properties of this test.

11.9.1.4 Test for normality

Let µ, σ2 denote the mean and variance of v, and write µi = E[v−µ]i, so that σ2 = µ2.
The skewness and kurtosis are defined as:√

β1 =
µ3

µ
3/2
2

and β2 =
µ4

µ2
2

. (11.128)

Sample counterparts are defined by:

v̄ =
1

T

T∑
i=1

vi, mi =
1

T

T∑
i=1

(vi − v̄)
i
,
√
b1 =

m3

m
3/2
2

and b2 =
m4

m2
2

. (11.129)

A normal variate will have
√
β1 = 0 and β2 = 3. Bowman and Shenton (1975) consider

the test:
T
(√
b1
)2

6
+
T (b2 − 3)

2

24
ã χ2 (2) (11.130)

unsuitable unless used in very large samples. The statistics
√
b1 and b2 are not indepen-

dently distributed, and the sample kurtosis especially approaches normality very slowly.
The test reported by PcGive is fully described in Doornik and Hansen (1994). It derives
from Shenton and Bowman (1977), who give b2 (conditional on b2 > 1 + b1) a gamma
distribution, and D’Agostino (1970), who approximates the distribution of

√
b1 by the

Johnson Su system. Let z1 and z2 denote the transformed skewness and kurtosis, where
the transformation creates statistics which are much closer to standard normal. The test
statistic is:

e2 = z2
1 + z2

2 ãpp χ
2 (2) . (11.131)

Table 11.1 compares (11.131) with its asymptotic form (11.130). It gives the rejection
frequencies under the null of normality, using χ2(2) critical values. The experiments
are based on 10 000 replications and common random numbers.

Table 11.1 Empirical size of normality tests

nominal probabilities of e2 nominal probabilities of (11.130)
T 20% 10% 5% 1% 20% 10% 5% 1%

50 0.1734 0.0869 0.0450 0.0113 0.0939 0.0547 0.0346 0.0175
100 0.1771 0.0922 0.0484 0.0111 0.1258 0.0637 0.0391 0.0183
150 0.1845 0.0937 0.0495 0.0131 0.1456 0.0703 0.0449 0.0188
250 0.1889 0.0948 0.0498 0.0133 0.1583 0.0788 0.0460 0.0180

3Versions 12 and earlier of PcGive used F(s, T − k − 2s), see §11.9.1.5.
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11.9.1.5 Test for heteroscedasticity

This test is based on White (1980), and involves an auxiliary regression of {v̂2
t } on a

constant, the original regressors {wit}, and all their squares
{
w2
it

}
. The null is uncon-

ditional homoscedasticity, and the alternative is that the variance of the {vt} process
depends on wt and on the

{
w2
it

}
. Assuming that the auxiliary regression has 1 + s

regressors (one of which is the intercept), the two statistics are distributed as χ2 (s) and
F(s, T − s − 1).4 If one of the {wit} is the constant term, and no other variables are
redundant when squared, s = (k − 1)

2. Redundant variables are automatically omitted
from the regression, and s is adjusted accordingly. Also removed are observations that
have a residual that is (almost) zero:

|v̂t| < 10−11 max
s=1,...,T

|v̂s|.

11.9.2 Vector tests

During development of PcGive 8 (in 1992) tests were implemented which operate on
the system as a whole. Whenever the vector tests are implemented through an auxiliary
multivariate regression, we define extensions of the χ2 and F-statistics of (11.121) and
(11.122). The first is an LM test in the auxiliary system, defined in terms of (11.110):

TnR2
m ãpp χ

2 (sn) . (11.132)

The second uses the F-approximation of (11.111). In addition to computational sim-
plicity, this gives the vector tests of PcGive the attractive property of reducing to the
single equation tests in a one-equation system.

11.9.2.1 Vector portmanteau statistic

This is the multivariate equivalent of the single equation portmanteau statistic, and is
a valid asymptotic test only in a VAR. The portmanteau statistic uses a small-sample
correction. Define:

Ĉrs =
1

T

T∑
t=1

v̂t−rv̂
′
t−s, with v̂i = 0 for i ≤ 0. (11.133)

Then Ĉ00 = Ω̂. The vector Box–Pierce statistic is:

BP (s) = T

s∑
j=1

tr
(
Ĉ′0jĈ

−1
00 Ĉ0jĈ

−1
00

)
, (11.134)

4Versions 12 and earlier of PcGive used F(s, T − s − 1 − k). However, as argued in (e.g.)
Davidson and MacKinnon (1993, Ch. 11), since the covariance matrix is block diagonal between
regression and scedastic function parameters, tests can take the former as given. Also see Hendry
and Krolzig (2003).
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whereas the vector portmanteau equals:

LB (s) = T 2
s∑
j=1

1

T − j
tr
(
Ĉ′0jĈ

−1
00 Ĉ0jĈ

−1
00

)
. (11.135)

See Hosking (1980) or Lütkepohl (1991). Under the assumptions of the test (one of
them being that s is large: s = O(T 1/2)), with s the chosen lag length and m the lag
length of the n dependent variables, both statistics are asymptotically χ2(n2(s −m)).
The multivariate LB statistic is the only statistic in PcGive that does not reduce to its
univariate counterpart in a one-equation system. This would require Ĉ−1

jj instead of
Ĉ−1

00 as the last term in (11.135). The actual implementation is computationally simpler.

11.9.2.2 Vector error autocorrelation test

For lags r . . . s with 1 ≤ r ≤ s, this tests the null hypothesis:

H0: Rr = · · · = Rs = 0 (11.136)

in the augmented system with vector autoregressive errors:

Y′ = ΠW′ + V′ where V′ =

s∑
i=r

RiV
′
i + E′. (11.137)

It is implemented through the auxiliary system:

Y′ = ΠW′ + RrV̂
′
r + · · ·+ RsV̂

′
s + E′. (11.138)

Lagged residuals are partialled out from the original regressors, and the original system
is re-estimated using the new regressors, providing a Lagrange-multiplier test based on
comparing the likelihoods for H0 and H1: Rr 6= 0, . . . ,Rs 6= 0. The LM form of
the χ2 test will be asymptotically χ2

(
(s− r + 1)n2

)
distributed. For a discussion, see

Godfrey (1988). The F-approximation is also computed. Simulations on this test are
reported in Doornik (1996), showing that the F-approximation behaves considerably
better in small samples than the χ2 form, without loss of power.

11.9.2.3 Vector normality test

First standardize the residuals of each equation. Call the new residuals rt, with R′ =

(r1 . . . rT ). So C = T−1R′R is the correlation matrix. Following Doornik and Hansen
(1994), we define the transformed residuals:

et = EΛ−1/2E′ (rt − r̄) (11.139)

with Λ = diag(λ1, . . . , λn) the matrix with the eigenvalues of C on the diagonal. The
columns of E are the corresponding eigenvectors, such that E′E = In and Λ = E′CE.
Equation (11.139) transforms residuals rt ∼ INn[0,C] into independent normal: et ∼
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INn[0, I]. We may now compute univariate skewness and kurtosis of each transformed
residual. Defining b′1 = (

√
b11, . . . ,

√
b1n), b′2 = (b21, . . . , b2n), the test statistic:

Tb′1b1

6
+
T (b2 − 3ι)

′
(b2 − 3ι)

24
ã χ2 (2n) . (11.140)

will again require large samples. The reported statistic is:

e2n = z′1z1 + z′2z2 ãpp χ
2 (2n) , (11.141)

where z′1 = (z11, . . . , z1p) and z′2 = (z21, . . . , z2p) are determined as in (11.131). So,
after transformation to standard normals, the univariate test is applied to each dimen-
sion. The transformation involved in (11.139) is the square root of C. An alternative
would be to use Choleski decomposition, but then the subsequent test would not be
invariant to reordering of equations.

11.9.2.4 Vector heteroscedasticity test (using squares)

The test implemented by PcGive amounts to a multivariate regression of all error vari-
ances and covariances on the original regressors and their squares. Consider, for ex-
ample, a two-equation system with a constant and zt as regressors. In this case the
auxiliary regression would be: v̂2

11 · · · v̂2
T1

v̂2
12 · · · v̂2

T2

v̂11v̂12 · · · v̂T1v̂T2

 =

 ω2
1

ω2
2

ω12

+

 β11 β12

β21 β22

β31 β32

( z1 · · · zT
z2

1 · · · z2
T

)
+ε.

(11.142)
The vector heteroscedasticity test checks the significance of the βs in the auxiliary
system (11.142) with n(n + 1)/2 equations. Two statistics may be computed. The
first is the LM test for β = 0, which is χ2(sn(n + 1)/2), where s is the number
of non-redundant added regressors (collinear regressors are automatically removed).
Doornik (1996) shows that this test is identical to the Kelejian (1982) procedure using
a common regressor set. The second statistic is the F-approximation. Unlike the vector
autocorrelation test, there is not so much benefit of using the F-approximation. In
general, this test tends to underreject.

When there are four or more equations, the test is based on the transformed residuals
(11.139) and omitting the cross-product. This test is labelled ZHetero instead of Hetero,
and keeps the number of equations down to n (see Doornik, 1996).

11.9.2.5 Vector heteroscedasticity test (using squares and cross-products)

This test is similar to the heteroscedasticity test, but now both squares and cross-
products of the regressors are included in the auxiliary regression. Again, the null
hypothesis is no heteroscedasticity (the name ‘functional form’ was used in version 8
of PcGive).

This concludes the discussion of the system statistics based on assuming that the
data are I(0). We now consider the issues of unit roots and cointegration.
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Cointegration Analysis

12.1 Introduction
This chapter gives a summary introduction to cointegration analysis as implemented in
PcGive. There is a vast literature on unit roots and cointegration analysis. The main
reference for the current chapter is Johansen (1995b). For more expository overviews,
we recommend Doornik, Hendry, and Nielsen (1998) and Hendry and Juselius (2001)

12.2 Equilibrium correction models
In the dynamic analysis of the system (see §11.6), we referred to the rank of the long-
run matrix as determining the number of cointegrating vectors. In this chapter, we shall
discuss how to estimate this rank. The original system contains n endogenous variables
y and q non-modelled variables z:

yt =

m∑
i=1

πiyt−i +

r∑
j=0

Γjzt−j + vt,vt ∼ INn [0,Ω] , (12.1)

so yt is n× 1 and zt is q × 1. Introducing lag-polynomials, this system is written as:

(In − π (L)) yt = Γ (L) zt + vt, (12.2)

with P0 = π (1)− In, the matrix of long-run responses.
In much of this chapter, we shall assume that no variables are known to be weakly

exogenous for (Π,Ω), and work with a fully endogenized system (q = 0, that is, the
VAR):

yt =

m∑
i=1

πiyt−i + vt where vt ∼ INn [0,Ω] . (12.3)

All non-singular transformations of (12.3) are isomorphic, and in particular retain
an equivalent basic innovation process. When the data {yt} are I(1), a useful reformu-
lation of the system is to equilibrium-correction form (see Hendry, Pagan, and Sargan,
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1984, Engle and Granger, 1987, Johansen, 1988, Boswijk, 1992 and Banerjee, Dolado,
Galbraith, and Hendry, 1993):

∆yt =

m−1∑
i=1

δi∆yt−i + P0yt−1 + vt, (12.4)

which has the same innovation process {vt}.1 The transformations imply that
(π1,π2,π3, . . . ,πm) = (P0 +δ1 +In, δ2−δ1, δ3−δ2, . . . ,−δm−1) = (γ1 +In,γ2−
γ1,γ3 − γ2, . . . ,P0 − γm−1).

No restrictions are imposed by the transformation in (12.4). However, when yt is
I(1), then ∆yt is I(0) and the system specification is balanced only if P0yt−1 is I(0).
Clearly P0 cannot be full rank in such a state of nature since that would contradict the
assumption that yt was I(1), so let rank(P0) = p < n. Then P0 = αβ′ where α and
β are n × p matrices of rank p, and β′yt must comprise p cointegrating I(0) relations
inducing the restricted I(0) representation:

∆yt =

m−1∑
i=1

δi∆yt−i +α (β′yt−1) + vt. (12.5)

To ensure that yt is not I(2), a further requirement is that:

rank (α′⊥Γβ⊥) = n− p when Γ = In −
m−1∑
i=1

δi. (12.6)

Γ is the long-run matrix of the differenced model; α⊥ and β⊥ are orthogonal comple-
ments of α and β respectively (see Chapter 10, which also shows how to compute the
orthogonal complement). Should the analysis commence in I(2) space, then α′⊥Γβ⊥ is
also reduced rank, so some linear combinations first cointegrate from I(2) to I(1), and
then others (perhaps with I(1) differences of I(2) variables) cointegrate to I(0). Thus,
both I(2) and I(1) impose reduced-rank restrictions on the initial formulation in (12.3),
and the former imposes restrictions on (12.5). See §12.5 for a further discussion.

The rank of P0 is estimated using the maximum likelihood method proposed by
Johansen (1988), described in the next section.

The representation of a cointegrated process in (12.3) above is via an autoregression.
There is also a moving-average representation of yt, obtained by inverting the VAR (see
Banerjee, Dolado, Galbraith, and Hendry, 1993, and Johansen, 1995b):

yt = y0 + C(1)µt+ C(1)

t∑
i=1

vi + C∗ (L) vt.

Then C(1) is the moving-average impact matrix. It is computed from:

C(1) = β⊥ (α′⊥Γβ⊥)
−1
α′⊥

1 In the early cointegration literature, the convention was to write: ∆yt =
∑m−1

i=1 γi∆yt−i+

P0yt−m + vt, and: (π1,π2,π3, . . . ,πm) = (γ1 + In,γ2 − γ1,γ3 − γ2, . . . ,P0 − γm−1).
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where
rank (α′⊥Γβ⊥) = n− p

as above.

12.3 Estimating the cointegrating rank

Since the {∆yt−i} on the left-hand side of (12.4) enter with unrestricted coefficients,
we may concentrate these out as in §11.4: regress ∆yt and yt−1 on {∆yt−i}, giving
residuals r0t, r1t respectively (both (n× 1) vectors) for t = 1, . . . , T . Writing R′i =

(ri1 ri2 · · · riT ) for i = 0, 1, the concentrated system is:

R′0 = P0R
′
1 + V′. (12.7)

From §11.2, we may find the concentrated likelihood function of the system (12.7) as:

`c (P0) = Kc − T
2 log

∣∣T−1 (R′0 −P0R
′
1) (R0 −R1P

′
0)
∣∣

= Kc − T
2 log |S00 −P0S10 − S01P

′
0 + P0S11P

′
0| .

(12.8)

In the last line, we introduced Sij = T−1R′iRj for i, j = 0, 1. If P0 were unrestricted,
we would maximize the CLF by minimizing the sum of squares, and find:

P̂0 = S01 (S11)
−1
. (12.9)

We may impose the reduced-rank restriction by writing P0 = αβ′, where α is an
(n× p) and β′ is a (p× n) matrix, and concentrate `c (α,β) with respect to α:

∂`c (α,β)

∂α cαc

= 0, (12.10)

which implies that:
αc (β) = S01β (β′S11β)

−1
. (12.11)

Substituting the expression for α back into (12.8) yields the final CLF `∗c (β):

`∗c (β) = Kc −
T

2
log
∣∣∣S00 − S01β (β′S11β)

−1
β′S10

∣∣∣ . (12.12)

Differentiating `∗c (β) with respect toβ uses the same algebra as the limited-information
maximum likelihood estimator for simultaneous equations (LIML). The determinant in
(12.12) is (using the determinantal relation for partitioned matrices):

|S00| |β′S11β|
−1 ∣∣β′ (S11 − S10S

−1
00 S01

)
β
∣∣ . (12.13)

Since |S00| is a constant relative to β, maximizing `∗c (β) with respect to β entails
minimizing the generalized variance ratio, which is:∣∣β′ (S11 − S10S

−1
00 S01

)
β
∣∣

|β′S11β|
. (12.14)
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This is a ratio of determinants of quadratic forms, such that the denominator matrix
exceeds the numerator by a non-negative definite matrix. A normalization is needed on
β to select a unique outcome, and we use β′S11β = Ip. The MLE therefore requires
minimizing: ∣∣β′ (S11 − S10S

−1
00 S01

)
β
∣∣ subject to β′S11β = Ip, (12.15)

so we must solve:2 ∣∣λS11 − S10S
−1
00 S01

∣∣ = 0 (12.16)

for the p largest eigenvalues 1 > λ̂1 > · · · > λ̂p > · · · > λ̂n > 0. The corresponding
eigenvectors are found from:(

λ̂iS11 − S10S
−1
00 S01

)
β̂i = 0, (12.17)

subject to β̂′iS11β̂i = 1 and β̂′iS11β̂j = 0 for i 6= j. Selecting the p largest eigenvalues,
with corresponding eigenvector matrix β̂, corresponds to imposing a cointegrating rank
of p. From (12.15) and (12.17) we find the restricted likelihood to be proportional to:∣∣∣β̂′ (S11 − S10S

−1
00 S01

)
β̂
∣∣∣ =

∣∣∣Ip − Λ̂p

∣∣∣ =

p∏
i=1

(
1− λ̂i

)
, (12.18)

where Λ̂p is the (p× p) diagonal matrix of eigenvalues. Consequently, from (12.12)
and (12.13):

`∗c

(
β̂
)

= Kc −
T

2
log |S00| −

T

2

p∑
i=1

log
(

1− λ̂i
)

(12.19)

corresponding to the p largest eigenvalues.
When P0 is estimated unrestrictedly, the maximum of the likelihood is:

`∗c

(
β̂0

)
= Kc −

T

2
log |S00| −

T

2

n∑
i=1

log
(

1− λ̂i
)
, (12.20)

where β̂0 denotes the (n× n) matrix of eigenvectors.
The hypothesis that there are 0 ≤ p < n cointegrating vectors yields (12.19), so

tests can be based on twice the difference of (12.19) and (12.20):

ηp = −T
n∑

i=p+1

log
(

1− λ̂i
)

for p = 0, 1, . . . , n− 1. (12.21)

The distribution of the ηp test, derived under the hypothesis that there are p cointegrating
vectors, is a functional of n−p dimensional Brownian motion. Testing proceeds by the

2This is a generalized eigenvalue problem which can be transformed to the standard eigen-
value problem by writing S11 = LL′. Let γ = L′β, then (12.15) may be written as:
|γ′(Ip − L−1S10S

−1
00 S01L

′−1)γ| subject to γ′γ = Ip.
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sequence η0, η1, . . . , ηn−1. Then p is selected as the first insignificant statistic ηp, or
zero if η0 is not significant. This is the trace statistic for Hp within Hn, akin to a vector
Dickey–Fuller test.

Tests of the hypothesis of p cointegrating vectors within Hp+1 (that is, testing if
there are p when at most p+ 1 exist) can be based on the (p+ 1)

st eigenvalue using:

ξp = −T log
(

1− λ̂p+1

)
, (12.22)

called the maximum eigenvalue statistic. Again ξp has a distribution that is a functional
of vector Brownian motion.

The sequence of trace tests leads to a consistent test procedure, but no such result
is available for the maximum eigenvalue test. Therefore current practice is to only
consider the former. Critical values for the trace tests have been tabulated by inter alia
Johansen (1988), Johansen and Juselius (1990), Osterwald-Lenum (1992), and Doornik
(1998). The p-values which are reported in PcGive are based on the approximations to
the asymptotic distributions derived by Doornik (1998).

The solution to the unrestricted system is (12.20), with coefficient estimates α̂0,
β̂0 where β̂0 is the full (n× n) matrix of orthogonalized eigenvectors (the coefficients
in the equilibrium-correction mechanisms), and α̂0 the (n× n) matrix of feedback
coefficients on the ECMs (the ‘loadings’) which may be found from (12.11): α̂0 =

S01β̂0. The unrestricted long-run matrix is P̂0 = α̂0β̂
′
0. If, on the basis of the test

procedure, it is decided to accept a rank of p, 0 < p < n, the solution is (12.19), with
loadings α̂ (the first p columns of α̂) and coefficients β̂ (the first p columns of β̂0). The
reduced rank long-run matrix will be α̂β̂

′
, and β̂′yt−1 are the equilibrium-correction

terms (this follows from Granger’s representation theorem: see, for example, Banerjee,
Dolado, Galbraith, and Hendry, 1993).

12.4 Deterministic terms and restricted variables
The above results are presented for the simplest model to clarify the analysis. One
natural extension is the presence of intercepts in equations. Under the null of no cointe-
grating vectors, non-zero intercepts would generate trends. However, in equations with
equilibrium corrections, two possibilities arise, namely, the intercept only enters the
equilibrium correction (to adjust its mean value), or it enters as an autonomous growth
factor in the equation.

Let us reintroduce the (q × 1) variable zt to indicate the additional variables in the
system. Usually zt contains variables such as the constant, trend or centred seasonals.
The second possibility implies that zt enters unrestricted, and it is concentrated out to-
gether with the {∆yt−i}, leaving the procedure otherwise unaltered; denote these qu
variables by zut . The first possibility means that some zs are restricted to enter the coin-
tegrating space, which now becomes β′(yt−1 : zrt ), so that β′ is now (p× (n+ qr)).
Then S01 and S11 change accordingly, but otherwise the analysis of the previous sec-
tion goes through unaltered, adding qr eigenvalues of zero. It is important to note that
the distributions of the tests are affected by the presence of (un)restricted zt.
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In practice, how the deterministic components are treated has an important impact
on the statistics and careful thought should be given at the outset as to whether or not zt
can be restricted to the cointegrating space. If one component is a trend, such restriction
is essential when there are unit roots unless a quadratic trend in levels is anticipated
(although the inclusion may be an attempt to induce similarity in the associated tests:
see Kiviet and Phillips, 1992). Because of its importance, this issue featured extensively
in the tutorials, see §§4.2, 4.6, §5.3. Three models for the deterministic components
merit consideration when determining the rank of cointegration space rank. These can
be described by the dependence of the expected values of y and β′y on functions of
time t:

Hypothesis y β′y Constant Trend
Hl(p) linear linear unrestricted restricted
Hc(p) constant constant restricted not present
Hz(p) zero zero not present not present

12.5 The I(2) analysis

Tests in I(2) models combine testing the rank of P0 in:

∆2yt = P0yt−1 − Γ∆yt−1 + Φqt + vt, t = 1, . . . , T, (12.23)

with a reduced rank condition on Γ.
The equivalent of Hl(p) is discussed in Rahbek, Kongsted, and Jørgensen (1999)

This is the trend-stationary model which precludes a quadratic trend but allows for a
linear trend in the levels:

∆2yt = P0 (yt−1 − µ− τ (t− 1)) + Γ (∆yt−1 − τ ) + vt. (12.24)

In the I(2) model presented in (12.23) there are two reduced rank matrices. The first
is P0 = αβ′, where α and β are n×p matrices as before. Next, define the n× (n−p)
matrix α⊥ so that α′⊥α⊥ = In−p and α′⊥α = 0. The second reduced rank condition
is:

α′⊥Γβ⊥ = ξ′η, (12.25)

where ξ and η are (n− p)× s matrices.
The statistical analysis follows the two-step procedure proposed by Johansen

(1995c):
1. In the first step, ∆yt−1 and a constant enter unrestrictedly in an I(1) analysis of

∆2yt on yt−1 with a restricted trend. This gives α̂ and β̂ for each rank p, and
corresponding orthogonal complements.

2. The second step is a reduced rank analysis of α̂′⊥∆2yt on (β̂′⊥β̂⊥)−1β̂′⊥∆yt−1

with restricted constant and the differenced linear combinations of I(2) variables
from the first step entered unrestrictedly.
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The first step of the procedure involves testing the rank of P0, leaving Γ unre-
stricted. The test statistic is denoted by Q(p). This step amounts to testing the number of
I(2) components. The second step then tests for the number of I(1) components remain-
ing, and is denoted by Q(p, s). The test statistic of interest is S(p, s) = Q(p) + Q(p, s).

The hypotheses involved are:
• Q(p) tests whether rank(P0) ≤ p given that rank(P0) ≤ n: H(p)|H(n). When

there are no I(2) relations: n − p − s = 0, and Q(p) equals T(p), the trace test in
the I(1) case.

• Q(p, s) tests whether rank(P0) ≤ p and there are ≤ n − p − s I(2) components
given that rank(P0) ≤ n and there are ≤ n− p components which are I(2).

• S(p, s) tests whether rank(P0) ≤ p and there are≤ n−p−s I(2) components given
that rank(P0) ≤ n. When there are no I(2) relations: S(p, n− p) = Q(p) = T(p).
As for the I(1) tests, 5 cases may be distinguished, although we rule out the cases

without a constant term, and with a quadratic trend:

Constant Trend Model, ∆2yt =

Hl unrestricted restricted P0 (yt−1 − µ− τ (t− 1)) + Γ (∆yt−1 − τ ) + vt,
Hlc unrestricted none P0 (yt−1 − µ) + Γ (∆yt−1 − τ) + vt,
Hc restricted none P0 (yt−1 − µ) + Γ∆yt−1 + vt.

The theory for Hl is developed in Rahbek, Kongsted, and Jørgensen (1999), Hlc and
Hc are tabulated in Paruolo (1996). Models Hz and Hql are omitted here; the former
is tabulated in Johansen (1995c), the latter in Paruolo (1996). Doornik (1998) provides
distributional approximations for Hl, Hlc, and Hc, which are used in PcGive.

12.6 Numerically stable estimation

From the perspective of numerical analysis, it is not recommended to use equation
(12.16) as it stands. The computations can become numerically unstable, and in some
rare cases we have eigenvalues that are far outside the (0, 1) interval (in which they
should fall theoretically). Doornik (1995a) found that a singular value decomposition
based implementation avoids these pitfalls. A full discussion of the numerical aspects of
cointegration analysis is in Doornik and O’Brien (2002); PcGive uses their Algorithm 4.

12.7 Recursive estimation

Recursive estimation of the cointegrating space requires solving the eigenvalue problem
(12.16) for each sample size t = M, . . . , T . A choice has to be made between doing the
whole procedure recursively, or fixing the short-run dynamics at their full sample values
(hence recursively solving from (12.7) onwards). Hansen and Johansen (1992) call the
former the Z-representation and the latter the R-representation. Both representations
have been implemented in PcGive.
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12.8 Testing restrictions on α and β

12.8.1 Introduction

Having accepted Hp: cointegrating rank = p, we may test further restrictions on α
and β. Over time, we have seen the development of procedures for testing a range
of hypotheses. Initially, these were imposing the same restrictions on each vector, but
now they are primarily concerned with identifying cointegrating vectors and testing for
long-run weak exogeneity.

Table 12.1 Summary of restrictions on cointegrating space

hypothesis reference
Ha α = A1θ1 Johansen (1991), Johansen and Juselius (1990)
Hb β2 = H2φ2 Johansen (1988), Johansen (1991)

Johansen and Juselius (1990)
Hc β3 = (H3 : φ3) Johansen and Juselius (1992)
Hd β4 = (H4ϕ : ψ) Johansen and Juselius (1992)
He β5 = (H1ϕ1 . . .Hpϕp) Johansen (1995a), Johansen and Juselius (1994)
Hf vecβ6 = Hϕ+ h, Boswijk (1995)

vecα′6 = Gθ

Hg β7 = fβ (θ) ,α = fα (θ) Doornik (1995b), Hendry and Doornik (1994),
Boswijk and Doornik (2004)

Table 12.1 gives a summary of various hypotheses on the cointegrating space with
references to their development and application. As one moves down the table, the
complexity of the implementation increases.

Hg , which allows for general restrictions is the richest and encompasses the other
test statistics. However, it is also the hardest to compute. Computation of Ha to Hc
involves a modified eigenproblem, whereas the other test procedures use iterative meth-
ods. The hypothesis on α of type Ha can be combined with restrictions on β without
substantial change to the methods; but often it is more interesting to test exclusion re-
strictions on the α matrix.

In the remainder, we shall first discuss several types of restriction separately, and
then combine the tests on α and β. Finally the more general procedures are discussed.
Because all tests in this section are conditional on Hp, they are in I(0) space, and like-
lihood ratio test statistics have conventional χ2 distributions (asymptotically). Detailed
descriptions of the mathematics of the tests have been omitted.
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12.8.2 Restrictions on α, Ha: α1 = A1θ1

Suppose that we have a VAR of three equations, y = (y1, y2, y3)′, so P0 is (3 × 3).
Then we could (for example) test that none of the cointegrating vectors enters the first
equation (believing that the cointegrating rank is 2: α and β are (3× 2)). This restricts
the α matrix and is expressed as αr = Aθ:

A =

 0 0

1 0

0 1

 , θ =

(
θ11 θ12

θ21 θ22

)
, Aθ =

 0 0

θ11 θ12

θ21 θ22

 . (12.26)

This choice of A implies a selected cointegrating rank ≤ 2. If this restriction is re-
jected, ∆y1 is not weakly exogenous for α and β (the distribution of ∆y1 given lagged
∆y1,∆y2,∆y3 contains elements of α and β).

12.8.3 Restrictions on β, Hb: β2 = H2φ2

The first hypothesis on β, β = Hφ, allows us to impose linear restrictions linking coef-
ficients in the cointegrating vectors. Suppose we wish to test that the first two variables
enter the cointegrating vector with opposite sign. Assuming p = 2, the unrestricted
vectors are:

β′y =

(
β11y1 + β21y2 + β31y3

β12y1 + β22y2 + β32y3

)
. (12.27)

We can impose β21 = −β11, β22 = −β12:

H =

 1 0

−1 0

0 1

 , φ =

(
φ11 φ12

φ21 φ22

)
, φ′H′ =

(
φ11 −φ11 φ21

φ12 −φ12 φ22

)
.

(12.28)
This H implies a selected cointegrating rank ≤ 2.

12.8.4 Restrictions on β, Hc: β3 = (H3 : φ3)

The second hypothesis on β allows us to impose known cointegrating vectors. Consider
that the first vector is y1 − y2 − y3. Again assuming p = 2, the H matrix is:

H =

 1

−1

−1

 , φ =

 φ11

φ21

φ31

 , (H : φ)
′

=

(
1 −1 −1

φ11 φ21 φ31

)
. (12.29)

12.8.5 Combining restrictions on α and β

The combination of tests on α and β is explained more easily if we see that all tests
start with a second moment matrix, which is transformed: S11 S12

S21 S22

 −→
 S11.1 S12.1

S21.1 S22.1

 , (12.30)
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and then solve the eigenproblem:∣∣λS22.1 − S21.1S
−1
11.1S12.1

∣∣ = 0. (12.31)

The test on α effectively reduces the dimension of the S11 part, the test on β that of the
S22 part. So combining Ha with either Hb or Hc works by first transforming according
to Ha, then replacing S00, S01, S11, S10 by Saa.b, Sa1.b, S1a.b, S11.b. Next Hb or Hc
are implemented, and the resulting eigenvalue problem may be solved. From this β̂
may be derived as in the previous two sections.

12.8.6 Testing more general restrictions

The appeal of the aforementioned tests is that they all have a general eigenproblem as
their solution. The drawback, however, is that the tests require separate implementa-
tion, while not exhausting all interesting hypotheses. The primary interest here is in
restrictions of the form βi = Hiφi, i = 1, . . . , p, perhaps combined with restrictions
on α: αi = Aiψi. It is crucial to check that the set of restrictions yields uniquely
identified βi: see Johansen (1995a). These tests are all in I(0) space and correspond to
LR tests, so the easiest implementation is direct maximization of the likelihood function
allowing for general restrictions (possibly non-linear). This is done sequentially using
a numerical optimization procedure outlined below.

Again assume a cointegrating rank p. The hypothesis is expressed as:

Hg: {α = f (αu)} ∩ {β = f (βu)} , (12.32)

where α and β are expressed as a function of the unrestricted elements αu, βu. The
function in (12.32) may be non-linear, and even link α and β. Consider an example
with n = 4, p = 2:

α =


θ0 θ1

θ2 θ3

θ4 θ5

θ6 θ7

 , β′ =

(
θ8 θ9 θ10 θ11

θ12 θ13 θ14 θ15

)
. (12.33)

A possible restriction we may wish to test is θ6 = 0, θ7 = 0, θ10 = θ11, θ14 = θ15.
Another could be θ6θ11 + θ7θ15 = 0; this type of restriction is considered by Hunter
(1992) and Mosconi and Giannini (1992) (also see Toda and Phillips, 1993, who note
the need for care in testing when some parameters vanish from the hypothesis when
others are zero).

12.9 Estimation under general restrictions
PcGive can estimate restrictions of the type He, Hf and Hg . The log-likelihood being
maximized is:

`c (αu,βu) ∝ − log

∣∣∣∣(In : −αβ′
)( S00 S01

S10 S11

)(
In
−βα′

)∣∣∣∣ .
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There are various reasons why this is a difficult optimization problem: it may happen
that not all parameters are identified, it could be that normalization is on coefficients
which are actually not well identified, and when switching, the resulting function can
be very flat, leading to slow progress. The current implementation has been tuned over
quite a few years, and is hopefully robust in most practical settings.

Input of restrictions is not in the form of H matrices, but in the form of explicit
relations. These restrictions are then analyzed as follows:
1. Analytical differentiation at two random points is used to check for linearity. If

linear this yields the F and f matrices:[
(vecα′)′ : (vecβ)

′
]′

= Fφ+ f .

2. Next, it is checked whether the restrictions on α and β are variation free, i.e.
whether F is block diagonal. If so, this yields the G, g, H and h matrices:

vecβ = Hϕ+ h, vecα′ = Gθ + g.

3. The α restrictions are homogeneous when g is zero.
4. The β restrictions are scale-homogeneous when all non-zero elements in h have a

corresponding row of zeros in H (i.e. each normalization is directly in terms of a
βi and does not involve any φs).

5. The absence of cross-equation restrictions on β implies that H is block diagonal.
6. The restrictions on α are simple if they consist of exclusion restrictions only.
7. Scale removal

When the α restrictions are homogeneous and simple, the β restrictions scale-
homogeneous, and the joint restrictions are linear and variation free PcGive im-
plements scale removal. When a normalizing restriction is imposed on each equa-
tion, the restrictions can be written in various ways. For example, the restriction
β′ = (1, 0,−1, 1) can be written as:

(β1 = 1, β2 = 0, β3 = −1, β4 = 1),

or as:
(β1 = φ, β2 = 0, β3 = −φ, β4 = φ),

in combination with the normalization φ = 1. Thus, PcGive is able to rewrite the
equality restrictions on β, which makes the switching more robust and much faster.

The currently available implemented estimation methods are as follows:
• Switching (scaled linear)

This method alternates between α|β and β|α. Each of these is a restricted linear
regression problem which can be solved explicitly, as discussed in Boswijk (1995).
The scaled variant removes the normalization prior to estimation, and then reim-
poses it afterwards.

• Switching (linear)
This method is similar to the previous one, but here the restrictions did not allow
scale removal. It requires linear and variation-free restrictions.
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• Switching
In PcGive version 8, non-linear switching was the only available method. The prin-
ciple is the same as in linear switching, but with each maximization step performed
using non-linear optimization (BFGS, see Chapter 14). When the restrictions are
linear, this is somewhat less efficient. With non-linear restrictions, the previous
methods are not available.
All these methods may suffer from slow convergence, or even failure of convergence

(when some parameters diverge to very large or to very small values, or both happen).
The starting values are derived from the unrestricted cointegration analysis, fol-

lowed by two steps:
1. beta switching

Occasionally, the rank of the initial β0 matrix is less than p (this happens when the
restrictions on different vectors are linearly dependent). In that case the beta switch-
ing method is applied to obtain full rank starting values. This method switches be-
tween restricted cointegrating vectors, keeping all but one fixed. At each step, this
requires solution of a generalized eigenproblem, after the matrices have been de-
flated using the fixed vectors. Beta switching was suggested by Johansen (1995a),
and is available when α is unrestricted, and the β restrictions are linear, within
equation, and homogeneous (after the normalization has been removed).

2. Gauss–Newton warm-up
The Gauss–Newton/quasi-Newton method is applied simultaneously to all the un-
known parameters in both α and β as long as this improves the log-likelihood by
at least 1.5%. When the restrictions are not identifying, the Hessian matrix in the
Gauss–Newton is singular, and the generalized inverse is used.

A first requirement for convergence is that the relative increase in the likelihood is
less than 0.001ε1. Then strong convergence (see §14.3.6) leads to termination, as does
four successive occurrences of weak convergence.

12.10 Identification

Deriving the degrees of freedom involved in these test is not straightforward, especially
whenα restrictions are involved. For example, version 8.0 of PcGive would not always
get it correct. When beta switching is allowed, the global method of Johansen (1995a)
could be used. This will not work for more general restrictions, and the generic iden-
tification check of Doornik (1995b) is used instead, see Boswijk and Doornik (2004).
This involves checking the rank of the Jacobian matrix of P0(θ) = α(θ)β(θ)′ with
respect to θ at a randomly selected parameter value θ∗.

It is important to bear in mind that the following situations may occur:
• some cointegrating vectors are identified, but others are not;
• although restrictions have been imposed, these are just rotations, not affecting the

likelihood at all;
• restrictions have been imposed, but no identification achieved.
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It is easy to illustrate the inherent complexity of counting restrictions. For simplic-
ity, we assume that the identifying restrictions are imposed on β. In the unrestricted
case of rank p, there are np parameters in α and np − p2 in β. Restrictions on β are
only binding if they cannot be ‘absorbed’ by the αs, and vice versa. This is most easily
seen for rank n: restricting β′ = In results in α̂ = P̂0, whereas imposing α = In
gives β̂′ = P̂0. But setting α = 0 imposes n2 restrictions (which, of course, violate
cointegration).

Restrictions of the form θ8 = 0, or θ8 = 0 and θ9 = 1 in example (12.33) are
not binding, because we may choose L such that θ8 = θ13 = 0, θ9 = θ12 = 1.
However, imposing θ8 = θ9 = 0 would be binding, as it would require a singular L;
instead it involves one restriction, because only one of the zeros can be absorbed by
a non-singular L. The hypothesis θ10 = θ11, θ14 = θ15 equates two columns of β′,
one of which can be absorbed, resulting in two restrictions. This explains the number
of restrictions involved in Hb, which amounts to fixing (n − s) columns of p elements
each. Fixing a row of β′, as does Hc, constrains only n − p parameters, as the first p
may be absorbed by L (provided it can be done with a non-singular L).

Further examples on the identification of the cointegrating vectors are given in
Chapter 5.

Finally, some forms of constraint on α and β can induce a failure of identification
of the other under the null, in which case the tests need not have χ2-distributions (see,
for example, Toda and Phillips, 1993).



Chapter 13

Econometric Analysis of the
Simultaneous Equations Model

13.1 The econometric model
The main criterion for the validity of the system:

yt = Πwt + vt, vt ∼ INn [0,Ω] , t = 1, . . . , T, (13.1)

is its congruence, since that is a necessary condition for efficient statistical estimation
and inference. Chapter 11 established notation and discussed the econometric tech-
niques for estimation and evaluation of (13.1). An econometric model is a restricted
version of a congruent system which sustains an economic interpretation, consistent
with the associated theory. All linear structural models of (13.1) can be obtained by
premultiplying (13.1) by a non-singular (n× n) matrix B which generates:

Byt + Cwt = ut, ut ∼ INn [0,Σ] , t = 1, . . . , T, (13.2)

with ut = Bvt, Σ = BΩB′ and C = −BΠ. We implicitly assume that the diagonal
of B is normalized at unity to ensure a unique scaling in every equation: other normal-
izations are feasible. Further, the reformulation in I(0) space would have the same form.
Then (13.2) can be written in compact notation as:

BY′ + CW′ = AX′ = U′. (13.3)

So A = (B : C) and X = (Y : W): these are (n × (n + k)) and (T × (n + k))

matrices respectively.
We shall require the matrices R and Q:

R = (In : −Π) , Q′ = (Π′ : Ik) .

This allows us to express the system (13.1) in matrix form as RX′ = V′. Comparing
with AX′ = U′, we have BR = A. This is usually expressed as BΠ + C = 0, but a
more convenient form is obtained by AQ = 0.

180
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When identities are present, the corresponding elements of {ut} are precisely zero,
so the model can be written as:

AX′ =

(
A1

A2

)
X′ =

(
U′1
0

)
, (13.4)

where n = n1 + n2, for n1 stochastic equations and n2 identities. The elements of A2

must be known, so do not need estimation. In much of what follows, we set n2 = 0 for
simplicity: however, the program handles identities by finding the value of A2 once the
‘menu’ of variables in each identity is known.

Given the system formulation, the model depends on the mapping between the un-
known coefficients in the matrix A and the parameters of interest φ. This mapping can
be written in many different notations: the one that follows is natural in a computer
programming context, and is that used in PcGive, namely φ = Avu . First we stack the
rows of A as a vector (each row of A corresponds to an equation). From this vector, we
select only unrestricted elements. Other than the elements of φ and the normalization
that the diagonals of B are unity, the remaining elements of A are zero. Thus, (·)vu
codes where in A the unrestricted elements occur and selects them in the right order.
An example is given in Chapter 10.

13.2 Identification
Without some restrictions, the coefficients in A in (13.4) will not be identified. The ma-
trix B used to multiply the system to obtain the model could in turn be multiplied by an
arbitrary non-singular matrix, D say, and still produce a linear model, but with different
coefficients. To resolve such arbitrariness, we need to know the form of A in advance,
and it must be sufficiently restricted that the only admissible D matrix is In. The order
condition for identification concerns the number of unrestricted coefficients in A. Since
Π is n× k, no more than k regressors can enter any equation, and no more than n× k
unknowns in total can enter A, where k = n ×m + q × (r + 1) (m is the number of
lags on yt, q is the number of variables in zt and the model includes zt, . . . , zt−r). This
condition is easily checked by just counting the number of unrestricted elements of A.
However, to ensure that no equation can be obtained as a linear combination of other
equations, these elements need to be located in the appropriate positions. This requires
the exclusion of some variables and the inclusion of others in every equation. Since Q

is the conditional expectation matrix of xt given wt:

E [xt | wt] = E

[(
yt
wt

)
| wt

]
=

(
Π

Ik

)
wt = Qwt, (13.5)

it is unique, so that the identification of A rests on being able to uniquely solve for A

from AQ = 0. The order condition ensures a sufficient number of equations, and the
rank condition that these equations are linearly independent. A rank condition can only
be determined on a probability-one basis: if a variable is included in an equation, then
its associated coefficient aij in the matrix A is assumed to be non-zero (1+δ, where δ is
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a uniform random number), although in practice an estimate may be zero or there may
exist linear combinations of coefficients that are collinear and hence lower the rank. An
implication of this analysis is that any linear system like (13.1) can be interpreted as the
unrestricted solved, or reduced, form of a just-identified structural econometric model
(see Hendry and Mizon, 1993).

13.3 The estimator generating equation
Estimation methods in PcGive are summarized by the estimator generating equation
(EGE) based on Hendry (1976); for general discussions of simultaneous equations esti-
mation, see, for example, Judge, Griffiths, Hill, Lütkepohl, and Lee (1985, Chapter 15),
Spanos (1986, Chapter 25), or Hendry (1995, Chapter 11). Consider the system of n
structural simultaneous equations in (13.2), written as:

Byt + Cwt = Axt = ut with ut ∼ INn [0,Σ] . (13.6)

There are n endogenous variables yt and k weakly exogenous or lagged variables wt

where the parameters of interest φ in (13.6) are assumed to be identified and |B| 6= 0.
In this section, we will only consider models in which A is a linear function of φ.

In fact, (13.6) is a useful way to view the claims of econometrics: a stochastic vec-
tor xt, multiplied by the correct constant matrix A, is asserted to be a homoscedastic,
normally distributed white-noise process ut. Expressed in that form, the claim is am-
bitious, and although xt is a carefully selected vector, the claim does yield insight into
econometrics as filtering data through a matrix A to produce an unpredictable compo-
nent ut ∼ INn[0,Σ]. Large macro-econometric models are generally non-linear in both
variables and parameters, so are only approximated by (13.6), but in practice linearity
seems a reasonable first approximation.

The statistical structure of (13.6) is expressed in (13.5) through the conditional ex-
pectation:

E [xt | wt] = Qwt (13.7)

and we now interpret Π as −B−1C, so that:

yt | wt ∼ Nn [Πwt,Ω] with Ω = B−1ΣB′−1. (13.8)

These relationships are the inverse of those associated with (13.2). Whenever confusion
is likely, we shall write Πu, Ωu for the unrestricted reduced form coefficients (obtained
by multivariate least squares), and Πr, Ωr for the restricted reduced-form coefficients,
obtained out of B, C, Σ from the simultaneous equations model (which itself is derived
from the URF by imposing (over-)identifying restrictions).

The likelihood function is that of the multivariate normal distribution dependent on
(Π,Ω) = f (φ,Σ) , namely ` (Π,Ω). We wish to maximize ` (·) with respect to φ, so
first map to ` (φ,Σ). Then φ corresponds to θ1 and Σ corresponds to θ2 in ` (θ1,θ2).
However, Q will also be part of θ2 (see Hendry, 1976). Consider the condition:

E [wtu
′
t] = 0 (13.9)
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entailed by the fact that the wt are the conditioning variables, and so are uncorrelated
with the ut. Since (13.7) implies that Qwt (the best predictor of xt given wt) is also
uncorrelated with ut:

E [Qwtu
′
t] = 0. (13.10)

But u′t = x′tA
′
t, so (13.10) becomes:

E [Qwtx
′
tA
′] = 0. (13.11)

However, ut is generally heteroscedastic across equations (it is assumed homoscedastic
over time), and its variance-covariance matrix is Σ, so to obtain a suitably-weighted
function of ut, postmultiply ut by Σ−1:

E
[
Qwtx

′
tA
′Σ−1

]
= 0. (13.12)

Finally (13.12) has to hold for all t. Thus, sum over the sample, and transpose the result
for convenience, to obtain the EGE:

E
[
Σ−1AX′WQ′

]
= 0. (13.13)

Dropping the expectations operator, (13.13) is in fact the conditional score equa-
tion q1 (θ1|θ2), where θ1 corresponds to A (φ) and θ2 to (Σ,Q). All known linear
simultaneous equations estimation methods are generated by special cases of (13.13).

The next section gives a formal derivation.

13.4 Maximum likelihood estimation

13.4.1 Linear parameters

Starting from the log-likelihood (11.17) and substituting Ω−1 = B′Σ−1B and Π =

−B−1C:

` (Π,Ω | X) = K + T
2 log

∣∣Ω−1
∣∣− 1

2 tr
(
Ω−1V′V

)
= K + T

2 log |Σ−1|+ T log ||B|| − 1
2 tr

(
Σ−1U′U

) (13.14)

where ||B|| is the modulus of |B| and the last right-hand term can also be written as:

− 1
2 tr

(
Σ−1 (BY′ + CW′) (YB + WC)

)
= − 1

2 tr
(
Σ−1AX′XA′

)
,

If B is not square, as in an incompletely-specified system with fewer than n equations,
the term T

2 log |B′Σ−1B| is retained in place of the two middle right-hand terms in
(13.14).

Concentrating with respect to Σ requires differentiating (13.14) with respect to
Σ−1, which yields Σc = T−1U′U = T−1AX′XA′ ( see the derivation of (11.18)
above), and the resulting concentrated likelihood function (CLF):

`c (A (φ) | X; Σ) = Kc −
T

2
log
∣∣T−1AX′XA′

∣∣+ T log ||B|| . (13.15)
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The constant Kc is given in (11.23).
We first proceed as if we are interested in A rather than φ, and differentiate the log-

likelihood `c (B,C|X; Σ) with respect to B and C, evaluating the outcome at Σc =

T−1AX′XA′:
∂`c
∂B

= TB′−1 −Σ−1
c U′Y (13.16)

and:
∂`c
∂C

= −Σ−1
c U′W. (13.17)

The trick to solving these two equations together was discovered by Durbin (presented
in 1963, published as Durbin, 1988). From the function for Σc at the first step, we have:

Σc = T−1AX′XA′, (13.18)

which on premultiplication of both sides by Σ−1
c and postmultiplication of both sides

by TB′−1 implies that:
TB′−1 = Σ−1

c AX′XR′ (13.19)

since R = B−1A = (In : −Π) and hence XR′ =
(
Y −WΠ′

)
= V is the matrix of

reduced-form errors. Thus, in (13.19), since AX′ = U′:

TB′−1 −Σ−1
c U′Y = Σ−1

c U′XR′ −Σ−1
c U′Y = −Σ−1

c U′WΠ′. (13.20)

Combining the two derivatives in (13.16) and (13.17) using (13.20):

∂`c
∂A cΣc,Qc

= −
(
Σ−1
c U′WΠ′c : Σ−1

c U′W
)

= −Σ−1
c AX′WQ′c (13.21)

which is the EGE discussed in (13.13) above. With the selection operator explicitly
present: (

∂`c
∂A

)vu
=

∂`c
∂ (Avu)

=
∂`c
∂φ

= qc1 (φ) (13.22)

we find φ̂ as the solution to:

qc1 (φ)cΣc,Qc
= −

(
Σ−1AX′WQ′

)vu
cΣc,Qc

= 0. (13.23)

The variance of φ̂ depends on −T−1 times the inverse Hessian:

− T−1 ∂2`c
∂φ∂φ′ cΣc,Qc

=
∂

∂φ′
(
Σ−1

[
T−1U′W

]
Q′
)vu
cΣc,Qc

(13.24)

which must take account of the dependence of Qc and Σc on φ. However, the cen-
tral term in qc1 (φ) is

[
T−1U′W

]
which has an expectation, and a probability limit, of

zero, so the effects of changing φ on Σc and Qc are negligible asymptotically, since
the resulting terms are multiplied by a term that vanishes. The only non-negligible
derivative asymptotically is that owing to Avu , which is an identity matrix. Further,
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plimT−1X′W = plim T−1QW′W, since plimT−1U′W = 0. Thus, the asymp-
totic variance AV [·] of

√
T (φ̂−φ) is (here (·)u simply crosses out unwanted rows and

columns):

AV
[√

T
(
φ̂− φ

)]
=
((

Σ−1 ⊗QSWQ′
)u)−1

where SW = plimT→∞ T−1W′W.

(13.25)
Consequently, it does not matter for asymptotic efficiency what estimates of Σ−1

c or Qc

are used in evaluating the EGE, providing they converge to their population values. In
fact, even inappropriate Q̂ or Σ̂−1 will suffice for consistent estimates of A in (13.21) if
they converge to non-zero, finite values Q∗ and Σ∗−1 since such choices cannot affect
the fact that wt is uncorrelated with ut. There is an infinite number of estimators that
we can get by choosing different Q̂ and Σ̂.

13.4.2 Non-linear parameters

Reconsider the model in (13.6):

A (φ) xt = ut ∼ INn [0,Σ] . (13.26)

The log-likelihood is given by (13.21), namely:

` (φ,Σ) = K +
T

2
log
∣∣Σ−1

∣∣+ T log ||B (φ) || − 1
2 tr

(
Σ−1A (φ) X′XA (φ)

′)
.

(13.27)
The score equation cannot now be written generally, since the mapping from A to φ
could cross-relate many elements, but it remains similar to that obtained above. Differ-
entiate ` (·) with respect to φi and equate to zero for a maximum:

∂`

∂φi
= tr

(
TB (φ)

′−1 ∂B (φ)

∂φi
−Σ−1A (φ) X′X

∂A (φ)
′

∂φi

)
. (13.28)

Further, as in (13.19) (omitting the conditioning on the maximizing functions for Σ

etc.):
TB (φ)

′−1
= Σ−1A (φ) X′

(
Y −WΠ′

)
. (13.29)

Thus, we obtain an expression similar to that of the previous EGE:

tr
(
Σ−1A (φ) X′WQ′Ji

)
= 0 where Ji =

∂A (φ)
′

∂φi
for i = 1, . . . , p. (13.30)

The earlier analysis of linear parameters set Ji equal to a matrix that was zero except
for unity in the position associated with the relevant parameter. Thus, the same analysis
goes through, but both the symbols and the solution are somewhat more awkward.

13.5 Estimators in PcGive
As an example of the EGE, consider two-stage least squares (2SLS), which is just a
special case of instrumental variables (IV). In 2SLS, the variance-covariance matrix is
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ignored by setting Σ̂−1 = In, which is certainly inconsistent and potentially could be
very different from Σ in general. But because Σ is part of θ2, that inconsistency does
not affect the consistency of θ1 as long as Σ̂ converges (as it does here). Next, 2SLS
estimates Q by regression:

Q̂′ = (W′W)
−1

W′X, (13.31)

which is often called the first stage of 2SLS. The predicted X is given by:

X̂ = Q̂W. (13.32)

Solve the EGE expression (13.21) for A using (13.31) and Σ = In to obtain:(
AX′W (W′W)

−1
W′X

)vu
= 0, (13.33)

which is 2SLS applied simultaneously to every equation. The asymptotic distribution
of 2SLS can be established directly, but is easily obtained from EGE theory. Writing
(13.33) as (AX′WQ̂′) = (U′WQ̂′) = 0, 2SLS is consistent and has an asymptotic
variance matrix given by σii(QSWQ′)−1 for the ith equation.

Next, we examine the full-information maximum likelihood (FIML) estimator,
which requires θ̂2 and bases θ̂1 explicitly on h(θ̂2), the entailed function from the CLF.
However, θ̂2 requires Q̂ which requires Π̂, which requires B̂ and Ĉ, which obviously
require Â. Likewise, Σ̂ is quadratic in A, because:

Σ̂ = T−1ÂX′XÂ′. (13.34)

Therefore, both Q and Σ are complicated non-linear functions of A, and we have to
solve the whole EGE expression (13.21) for Â = (B̂ : Ĉ) simultaneously:((

T−1AX′XA′
)−1

AX′W
(
−C′B′−1 : Ik

))vu
= 0. (13.35)

Trying to solve that highly non-linear problem slowed the progress of econometrics
in the 1940s, because FIML seemed too complicated to apply with existing computers.
As a result, econometrics somewhat digressed to inventing methods that were easier
to compute, and have since transpired to be other EGE solutions. The revolution in
computer power has rendered most of these short-cut solutions otiose.

We now summarize all the estimators available in PcGive, beginning with an
overview of all their acronyms:
• Single-equation OLS (1SLS);
• Two-stage least squares (2SLS);
• Three-stage least squares (3SLS);
• Limited-information instrumental variables (LIVE);
• Full-information instrumental variables (FIVE);
• Full-information maximum likelihood (FIML);
• Constrained FIML (CFIML);
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• Limited-information maximum likelihood (LIML);
• Seemingly unrelated regression equations (SURE).

The maximum likelihood methods (FIML and CFIML) are available recursively.
OLS is, of course, inconsistent in a simultaneous system, both in the statistical sense
of converging to an inappropriate parameter, and logically in that endogenous variables
in one equation are treated conditionally in another. However, for large systems with
little interdependence or small samples, it is often used. The general estimation formu-
lation is based on the EGE, from which all estimators are derived. For 2SLS, 3SLS,
LIVE and FIVE, the EGE can be solved analytically, taking Σin and Πin as input and
yielding Σout, Aout (and hence Ωout, Πout) as output. A more formal statement of the
estimation methods supported by PcGive (other than 1SLS) is given in Table 13.1.

Table 13.1 Model estimation methods

Input Σ̃ Input Π̂ Output Σ̃ Output Π̂

0 system (URF) n/a n/a ΣURF ΠURF

1 2SLS In ΠURF Σ2SLS Π2SLS

2 3SLS Σ2SLS ΠURF Σ3SLS Π3SLS

3 LIVE In Π2SLS ΣLIV E ΠLIV E

4a FIVE after 2SLS Σ2SLS Π2SLS ΣFIV E1 ΠFIV E1

4b FIVE after 3SLS Σ3SLS Π3SLS ΣFIV E2 ΠFIV E2

4c FIVE after LIVE ΣLIV E ΠLIV E ΣFIV E3 ΠFIV E3

5 FIML solves Σ and A as mutually consistent functions of φ.
6 CFIML is FIML with constraints on the parameters.
◦ LIML: as FIML with other equations in reduced form.
◦ SURE: formulate the equations and apply 3SLS.

It is not sensible to compute a lower after a higher method (for example 2 after
5) although this option is allowed. FIML and CFIML are non-linear estimation meth-
ods and require numerical optimization. CFIML requires prior estimation of FIML,
together with a specification of the constraints. Recursive implementation of FIML and
CFIML require iterative optimization at every sample point, so can take a long time to
calculate.

The estimated variance of ut is:

Σ̃ =
Â1X

′XÂ′1
T − c

=
Û′1Û1

T − c
. (13.36)

A degrees of freedom correction, c, is used which equals the average number of param-
eters per equation (rounded towards 0); this would be k for the system. The estimated
parameter variances as computed by PcGive are given in Table 13.2.
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Table 13.2 Model coefficient variances

Ṽ[φ̂] Π̂ used in Q

0. system (URF) ΩURF ⊗ (W′W)
−1 n/a

1. 2SLS
((

[dgΣ2SLS ]
−1 ⊗QW′WQ′

)u)−1

ΠURF

2. 3SLS
((

Σ−1
2SLS ⊗QW′WQ′

)u)−1

ΠURF

3. LIVE
((

Σ−1
LIV E ⊗QW′WQ′

)u)−1

ΠLIV E

4a. FIVE after 2SLS
((

Σ−1
FIV E1 ⊗QW′WQ′

)u)−1

ΠFIV E1

4b. FIVE after 3SLS
((

Σ−1
FIV E2 ⊗QW′WQ′

)u)−1

ΠFIV E2

4c. FIVE after LIVE
((

Σ−1
FIV E3 ⊗QW′WQ′

)u)−1

ΠFIV E3

5 . FIML
((

Σ−1
FIML ⊗QW′WQ′

)u)−1

ΠFIML

6. CFIML uses JṼ[φ̂]J′ with J computed analytically.

13.6 Recursive estimation

A brute force method of recursive estimation is simply repeating the estimation pro-
cedure for each sample size. Computationally, this is not as efficient as the method
employed for the system (see §11.3), but numerically, it is more stable than the rank-
one updating technique for the inverse employed for RLS. The naive brute force method
is used by PcGive for recursive estimation of FIML, albeit with some time-saving de-
vices (the coefficients and Hessian approximation of the previous step are reused in the
next). Often this method is surprisingly fast.

System parameter constancy tests are readily computed from the recursive likeli-
hood, as described in §11.8.1. As discussed there, this amounts to removing observa-
tions using dummy variables. Single-equation constancy tests are not a direct product
of the recursive estimation: successive innovations are not independent. Even though
they can be reconstructed as V′t+1Vt+1 −V′tVt, we do not end up with independent
Wishart distributed variates from which to construct the single equation tests in the
same way as for the system. In the model it is possible that RSST −RSST1

is negative
(cf. equation (11.118)). A dummy variable method is still possible: omit the dummy
variable from equation i for the period of interest.

13.7 Computing FIML

FIML and CFIML estimation all require numerical optimization to maximize the like-
lihood log L(θ) = `(θ) as a non-linear function of θ. PcGive maximization algorithms



Chapter 13 Econometric Analysis of the Simultaneous Equations Model 189

are based on the Newton scheme. These are discussed in detail in Chapter 14, but we
now note their form:

θi+1 = θi + siQ
−1
i qi (13.37)

with
• θi parameter value at iteration i;
• si step length, normally unity;
• Qi symmetric positive-definite matrix (at iteration i);
• qi first derivative of the log-likelihood (at iteration i) (the score vector);
• δi = θi − θi−1 is the change in the parameters;

PcGive uses the quasi-Newton method developed by Broyden, Fletcher, Goldfarb,
Shanno (BFGS) to update K = Q−1 directly:
1. BFGS with analytical first derivatives;

The derivatives are calculated analytically (FIML and CFIML). For CFIML, this
method computes (∂`(φ)/∂φi) together with analytical derivatives of the parameter
constraints (∂φ/∂θi). This is the preferred method and the only one allowed for
recursive FIML and CFIML.

2. BFGS with numerical first derivatives.
Uses numerical derivatives to compute ∂` (φ (θ)) /∂θi. The numerical scores are
less accurate than analytical scores, and usually more costly to obtain.
Starting values are determined as follows. Immediately after a system estimation,

the starting values are θ0 = θ2SLS . If the model has been estimated before, the most
recent parameters are used (2SLS or 3SLS provide excellent starting values). K is
initialized to In every time the optimization process starts. So if the process is aborted
(for example, by pressing Esc) and then restarted, the approximate Hessian is reset to
In.

Recursive FIML and CFIML is computed backwards: starting from the full sample
values for θ and K, one observation at a time is dropped. At each sample size, the
previous values at convergence are used to start with.

Owing to numerical problems, it is possible (especially close to the maximum) that
the calculated δi does not yield a higher likelihood. Then an si ∈ [0, 1] yielding a
higher function value is determined by a line search. Theoretically, since the direction
is upward, such an si should exist; however numerically it might be impossible to find
one. When using BFGS with numerical derivatives, it often pays to scale the data so
that the initial gradients are of the same order of magnitude.

The convergence decision is based on two tests. The first uses likelihood elasticities
(∂`/∂ log θ):

|qi,jθi,j | ≤ ε for all j when θi,j 6= 0,

|qi,j | ≤ ε for all j with θi,j = 0.
(13.38)

The second is based on the one-step-ahead relative change in the parameter values:

|δi+1,j | ≤ 10ε |θi,j | for all j with θi,j 6= 0,

|δi+1,j | ≤ 10ε for all j when θi,j = 0.
(13.39)
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13.8 Restricted reduced form
From any selected estimator, the MLE of the restricted reduced form is:

Π̂ = −B̂−1Ĉ. (13.40)

The covariance matrix of the restricted reduced-form residuals for the subset of
stochastic equations is obtained by letting:

B−1 =

(
B11 B12

B21 B22

)
, (13.41)

where B11 is n1 × n1 and so on. Then:

Ω̃ =

(
B11

B21

)
Σ̃
(
B11′ : B21′) , (13.42)

and Ω11 = B11ΣB11′ is the part corresponding to the stochastic equations.
The variance-covariance matrix of the restricted reduced-form coefficients is:

V
˜[
vecΠ̂′

]
= ĴV

[̃
φ̂
]
Ĵ′ where J =

∂vecΠ′(
∂φ̂
)′ =

(
−B−1 ⊗ (Π′ : Ik)

)u
. (13.43)

In J, we choose only those columns corresponding to unrestricted elements in A. The
derivation of J is the same as in (11.90). The estimated variances of the elements of φ̂
are given in Table 13.2.

13.9 Unrestricted variables
Variables that are included unrestrictedly in all equations of the model, such as dummy
variables for the constant term, seasonal shift factors, or trend, can be concentrated out
of the likelihood function. This reduces the dimensionality of the parameter vector, and
enhances numerical optimization. The stochastic part of the model is written as:

A1X
′ + DS′ = U′, (13.44)

where D is the n1 × s unrestricted matrix of coefficients of the unrestricted variables
and S is the T×smatrix of observations on these seasonal dummies. Then (see Hendry,
1971):

` (A1,Σ | X,S) = K + T log ||B|| − T
2 log |Σ|

− 1
2 tr
(
Σ−1 (A1X

′XA′1 + 2A1X
′SD′ + DS′SD′)

)
.

(13.45)
Since D is unrestricted, maximizing ` (·) with respect to D yields:

D̂′ = (S′S)
−1

S′XÂ
′
1. (13.46)
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Let X̌ =
(
IT − S (S′S)

−1
S′
)

X = MSX, namely the residuals from the least-
squares regression of X on S, denote the ‘deseasonalized’ data, then the concentrated
likelihood function is:

`c (A1,Σ | X,S; D) = Kc + T log ||B|| − T

2
log |Σ| − 1

2 tr
(
Σ−1A1X̌

′X̌A
′
1

)
.

(13.47)
From (13.46), the variance-covariance matrix of the D̂ coefficients is:

V
˜[
vecD̂′

]
= Σ̃⊗ (S′S)

−1
+ ĴSV

[̃
φ̂
]
Ĵ′S where JS =

(
In1
⊗ (S′S)

−1
S′X

)u
(13.48)

which is similar to (11.36) for the system.

13.10 Derived statistics

When the model encompasses the system, other derived statistics can usefully highlight
the properties of the estimated model. Such statistics include forecast tests, static long
run, etc. The results for forecasting and dynamic analysis derived for the system (sec-
tions §11.5 and §11.6) carry over after replacing Πu, Ωu by Πr, Ωr. The forecast error
variance for a single step ahead is:

V ˜[eT+i,1] = Ω̃r +
(
In ⊗w′T+i

)
ĴV
[̃
φ̂
]
Ĵ′ (In ⊗wT+i) , (13.49)

where J is given in (13.43).
The same holds to a large extent for mis-specification tests: the residuals involved in

the tests are the RRF residuals. This is straightforward for the portmanteau statistic and
the normality test. For both heteroscedasticitytests, the model is treated as if it were a
system, albeit with coefficients Πr, Ωr. This implies that these tests are likely to reject
if the test for over-identifying restrictions fails. The vector error autocorrelation test
re-estimates the model after the lagged structural residuals are partialled out from the
original regressors, using the auxiliary system:

BY′ + CW′ −RrÛ
′
r − · · · −RsÛ

′
s = E′. (13.50)

This involves recourse to numerical optimization for tests in models estimated by FIML
or CFIML.

Tests at the level of the model may have more power to reject owing to the (often
much) smaller number of free parameters estimated.

13.10.1 General restrictions

PcGive allows you to test general restrictions on parameters. Restrictions are entered in
the constraints editor.
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Given the estimated coefficients θ̂, and their covariance matrix V[̃θ̂], we can test for
(non-) linear restrictions of the form:

f(θ) = 0; (13.51)

A Wald test is reported, which has a χ2(r) distribution, where r is the number of re-
strictions (that is, equations entered in the restrictions editor). The null hypothesis is
rejected if we observe a significant test statistic.

For example, the two restrictions implied by the long-run solution of:

Y a = β0Y a1 + β1Y b+ β2Y b1 + β3Y c+ µ (13.52)

are expressed as:
(β1 + β2)/(1− β0) = 0;

β3/(1− β0) = 0;
(13.53)

which has to be fed into PcGive as (since coefficient numbering starts at 0):
(&1 + &2) / (1 - &0) = 0;

&3 / (1 - &0) = 0;

13.11 Progress
The Progress command reports on the progress made during a general-to-simple mod-
elling strategy (the Progress dialog can be used to exclude systems/models from the
default model nesting sequence).

PcGive keeps a record of the sequence of systems, and for the most recent system
the sequence of models (which could be empty). It will report the likelihood-ratio tests
indicating the progress in system modelling, the progress in model modelling, and the
tests of over-identifying restrictions of all models in the system.

In the following discussion, model refers to both model and system. A more recent
model (Model 2) is nested in an older (Model 1) if:
1. Model 2 is derived from a parameter restriction on Model 1.

This entails:

2. Model 2 is estimated over the same period.
3. Model 2 has fewer coefficients than Model 1.
4. Model 2 has a lower likelihood than Model 1.

But not necessarily:

5. Both models have the same dependent variable, and the set of explanatory variables
of Model 2 is a subset of that of Model 1.
PcGive will offer you a default nesting sequence based on (2), (3), (4) and (5), but

since it cannot decide on (1) itself, you will have the opportunity to change this nesting
sequence. However, model sequences that do not satisfy (2), (3) or (4) will always be
deleted.
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Consider, for example, Model 2:

∆Y at = µ+ γ∆Y bt (13.54)

which is nested in Model 1:

Y at = β0 + β1Y at−1 + β2Y bt + β3Y bt1 (13.55)

through two restrictions: β1 = 1 and β3 = −β2. This nesting doesn’t satisfy point
(5), and hence is not recognized by PcGive. You can mark Model 2 for inclusion in the
progress report.



Chapter 14

Numerical Optimization and
Numerical Accuracy

14.1 Introduction to numerical optimization
Any approach to estimation and inference implicitly assumes that it is feasible to obtain
a maximum likelihood estimator (MLE) in situations of interest. For any fixed set of
data and a given model specification, the log-likelihood function ` (·) depends only on
the parameters θ of the model. Consequently, obtaining the MLE entails locating the
value θ̂ of θ which maximizes ` (θ), and this is a numerical, not a statistical, prob-
lem – a matter of computational technique – which could be considered peripheral to
econometrics.

However, optimization algorithms differ dramatically in their speeds of locating
θ̂, and hence their computational costs. A statistical technique that needed (say) ten
hours of computer time could not expect routine application if a closely similar statis-
tical method required only one second on the same computer. Moreover, algorithms
have different computer memory requirements, and certain methods may be too ineffi-
cient in their memory requirements for the available computers. Next, some algorithms
are far more robust than others, that is, are much more likely to obtain θ̂ and not fail
for mysterious reasons in the calculation process. While all of these points are in the
province of numerical analysis and computing, in order to implement new methods,
econometricians need to be aware of the problems involved in optimization.

There is also an intimate connection between the statistical and the numerical as-
pects of estimation. Methods of maximizing ` (θ) yield insight into the statistical prop-
erties of θ̂. Some algorithms only calculate an approximation to θ̂, say θ̃, but if they
consist of well-defined rules that always yield unique values of θ̃ from given data, then
θ̃ is an estimator of θ with statistical properties that may be similar to those of θ̂ – but
also may be very different. Thus, computing the maximum of ` (θ) only approximately
can have statistical implications: the discussion of the estimator-generating equation in
Chapter 13 showed that different estimators can be reinterpreted as alternative numeri-
cal methods for approximating the maximum of ` (θ).

194
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There is a vast literature on non-linear optimization techniques (see, among many
others, Fletcher, 1987, Gill, Murray, and Wright, 1981, Cramer, 1986, Quandt, 1983
and Thisted, 1988). Note that many texts on optimization focus on minimization, rather
than maximization, but of course max ` (θ) = −min{−` (θ)}.

14.2 Maximizing likelihood functions

A first approach to obtaining the MLE θ̂ from ` (θ) is to consider solving the score
equations, assuming the relevant partial derivatives exist:

5 ` (θ) =
∂` (θ)

∂θ
= q (θ) . (14.1)

Then q(θ̂) = 0 defines the necessary conditions for a local maximum of ` (θ) at θ̂. A
sufficient condition is that:

52 ` (θ) =
∂2` (θ)

∂θ∂θ′
=
∂q (θ)

∂θ

′
= H (θ) = −Q (θ) (14.2)

also exists, and is negative definite at θ̂ (minimization would require positive definite-
ness). If the Hessian matrix H(·) is negative definite for all parameter values, the likeli-
hood is concave, and hence has a unique maximum; if not, there could be local optima
or singularities. When the score q(θ) is a set of equations that is linear in θ, (14.1)
can be solved explicitly for θ̂. In such a situation, it is easy to implement the estimator
without recourse to numerical optimization. To maximize ` (·) as a non-linear function
of its parameters requires numerical optimization techniques.

14.2.1 Direct search methods

A more prosaic approach views the matter as one of hill climbing. A useful analogy is to
consider the likelihood function ` (θ) as a two-dimensional hill as in Figure 14.1. This
is a well-behaved function: it is continuous, differentiable and has a unique maximum.
To maximize ` (·), we need to climb to the top of the hill. Start somewhere on the hill,
say at θ1, and take a step of length δ. The step will go either down the hill or up the
hill: in computing terms, move some distance δ each way and compute the functions
`1 = ` (θ1) and `2 = ` (θ1 + δ). Depending on `1 ≥ `2 or `2 ≥ `1, we discover in
which direction to continue: here +δ as `2 ≥ `1 (−δ otherwise). Take a second step
of δ in the appropriate direction, compute ` (θ1 + 2δ) and repeat until we go downhill
again, and have overshot the maximum, at θ1 + kδ, say. The maximum will be inside
the bracket [θ1 + (k − 1) δ, θ1 + kδ]. Take a step of δ/2 back, compute the function,
and fit a quadratic through the three points. Select θ2 which maximizes the quadratic as
the approximation to the value maximizing the function, reduce the step-length δ, and
recommence from θ2. This is a simple method for finding maxima without derivatives.

We can extend this approach to the case of climbing a three-dimensional hill, ap-
plying exactly the same principles as above, but using two-dimensional iso-likelihood
contours to represent a three-dimensional hill as in Figure 14.2.
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θ θ+ δ θ+ 2δ θ+ 3δ θ+ 4δ
Figure 14.1 Two-dimensional hill

θb

θa
1

1

θa

θb

Figure 14.2 Projection of three-dimensional hill

Start from the origin, and apply the above method to find the maximum point along
one line, say along the θa axis as in Figure 14.2 (the graph is equivalent to an in-
difference curve map, where the tangent to the highest indifference curve locates the
maximum). Next, turn 90o to the previous path at the point θ1

a and search again until
the highest point in the θb direction is reached. Turn 90o again, check for the uphill
direction and climb, and keep iterating the procedure. In this way, we will finally get to
the top of the hill.

We can of course extend this approach to situations with more than three dimen-
sions, but expensively, since it is not a very intelligent method. A better method would
be to utilize the information that accrues as we climb the hill. After changing direc-
tion once and finding the highest point for the second time, we find that we could have
done much better by taking the direction corresponding to the hypotenuse instead of
walking along the two sides of the hill. The average progress along the first two direc-
tions corresponds to a better path than either alone, and is known as the direction of
total progress (see Figure 14.3). We could get from the second path on to the direction
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of total progress and climb either vertically or horizontally until the highest position.
Then we can find the second direction of total progress and use that, providing a better
method of climbing to the top of the hill.

θb

θa
1

1

θa

θb
← total progress

Figure 14.3 Direction of total progress

This method (called conjugate directions) makes use of a Euclidean theorem: the
line joining any two parallel tangent points of two concentric ellipses goes through their
centre. So if a bivariate likelihood surface is elliptical, and we find one tangent of an
iso-likelihood ellipse, then another tangent to a higher contour and follow the direction
of total progress, we will get straight to the maximum of the likelihood.

A second way of climbing a hill is to exploit information at the starting point about
the steepness of the slope: if the gradient is known, it seems worth trying to climb
along the direction of steepest ascent. In many cases, the method progresses rapidly
and beats the previous methods. However, there are a couple of caveats. First, the slope
of a hill is not necessarily uniform, and a gradient method might be poor if the slope
changes too much. Secondly, in the starting neighbourhood, the slope might be too flat
or even point in the wrong direction. However, the obvious solution to that problem is
to provide decent initial values. An EGE will often do so for FIML. For example, 2SLS
initial values are an excellent set from which to commence FIML, and 3SLS are even
better yet do not require iterative solution.

14.2.2 Newton type methods

We saw above that q(θ̂) = 0 defines the necessary condition for a local maximum of
`(θ) at θ̂, whereas a sufficient condition is that the negated Hessian matrix, Q(θ) =

−H(θ), is positive definite at θ̂. When q(θ) is a set of equations that are linear in
θ, then q(θ̂) = 0 can be solved explicitly for θ̂, as in the multiple regression model.
More generally, q(θ) is non-linear, yielding a problem of locating θ̂ which is no more
tractable than maximizing `(θ). Thus, we consider iterative approaches in which a
sequence of values of θ (denoted θi at the ith iteration) is obtained approximating
q(θi) = 0, and corresponding to non-decreasing values of the criterion function `(·),
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so `(θi+1) ≥ `(θi):

θi+1 = h (θi) for i = 1, 2, . . . , I ≤ N (14.3)

where N is a terminal maximum number of steps, from an initial value θ0 (such as
2SLS). A convergence criterion is used to terminate the iteration, such as q(θi+1) ' 0

or |`(θi+1)− `(θi)| ≤ ε. If convergence does not occur, try using a looser convergence
criterion. These implementation-specific aspects are discussed below.

There is no optimal choice for h (·), since optimization methods differ in their ro-
bustness, in the time taken to calculate successive values of θi, in the number of iter-
ations required to achieve any given accuracy level (which may differ between prob-
lems), and in the effort needed to write a computer program to calculate h (·). More-
over, an algorithm that performs excellently for a small number of parameters may be
hopeless for a large number. The direct search methods just discussed only require ` (·)
to be programmed, and are robust but often require a large number of iterations.

Expand q(θ̂) = 0 in a first-order Taylor’s series:

q
(
θ̂
)
' q (θ1) + H (θ1) (θ − θ1) = 0, (14.4)

written as the iterative rule:

θi+1 = θi −H (θi)
−1

q (θi) , (14.5)

or alternatively:
solve Q (θi) δi = q (θi) for δi,
set θi+1 = θi + δi.

(14.6)

The gradient, q(θi), determines the direction of the step to be taken, and Q(θi)
−1

modifies the size of the step which determines the metric: this algorithm is the Newton–
Raphson technique, or Newton’s method. Even when the direction is uphill, it is possi-
ble to overstep the maximum in that direction. In that case, it is essential to add a line
search to determine a step length si ∈ [0, 1]:

θi+1 = θi + siδi, (14.7)

where si is chosen to ensure that ` (θi+1) ≥ ` (θi).
Replacing the matrix Q (·) by the unit matrix Ik is known as the method of

steepest ascent (steepest descent when minimizing) since the step is in the direction
of the gradient vector q (·) – and so is useful only if θ is sensibly scaled. Using
Qµ (·) = Q (·)+µIk (where µ > 0 is chosen to ensure that Qµ (·) is positive definite) is
known as quadratic hill climbing (see Goldfeld and Quandt, 1972) or as the Levenberg–
Marquardt method: note that Qµ (·) varies between Q (·) (Newton–Raphson) and Ik
(steepest ascent) as µ increases from zero.

When we maximize a log-likelihood function and look back to the variance es-
timates given in (11.101), two additional methods suggest themselves. Of these,
Q = −H (θ) is Newton’s method discussed above. The method of scoring replaces
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Q (·) by the information matrix I = E[Q (·)]; and the method which uses the outer
product of the gradients is sometimes called the method of Berndt, Hall, Hall and Haus-
man (see e.g., Berndt, Hall, Hall, and Hausman, 1974).

An important class of methods are the so-called variable metric or quasi-Newton
methods. These approximate the matrix Q (θi)

−1 by a symmetric positive definite ma-
trix Ki which is updated at every iteration but converges on Q (·)−1. The two most
commonly used are the Davidon–Fletcher–Powell approach (DFP), and the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) update, where the latter is generally the preferred
quasi-Newton method. Advantages of quasi-Newton methods over Newton–Raphson
are that Ki is guaranteed to be positive definite, and only first derivatives are required.
In the Newton–Raphson case, there could be parameter values for which the Hessian
matrix is not negative definite. However, if the Hessian is negative definite for all pa-
rameter values, and not too costly to derive (in terms of derivation, programming time,
and computational time), it tends to outperform the quasi-Newton methods.

Let d = siδi = θi − θi−1 and g = q (θi)− q (θi−1), then the BFGS update is:

Ki+1 = Ki +

(
1 +

g′Kig

d′g

)
dd′

d′g
− dg′Ki + Kigd′

d′g
. (14.8)

This satisfies the quasi-Newton condition Ki+1g = d, and possesses the properties
of hereditary symmetry (Ki+1 is symmetric if Ki is), hereditary positive definiteness,
and super-linear convergence. There is a close correspondence between the logic un-
derlying the earlier RLS procedure for recursive (rank-one) updating of the inverse
second-moment matrix as the sample size increases, and the BFGS method for sequen-
tial updating of the inverse Hessian approximation by rank-two updates as the number
of iterations increases.

14.2.3 Derivative-free methods

When the analytic formula for q (θ) cannot be obtained, so that only function values
are available, the choice is between a conjugate-directions method and a quasi-Newton
method using finite differences. BFGS using a numerical approximation to q (·) based
on finite difference approximations seems to outperform derivative-free algorithms in
many situations while providing an equal degree of flexibility in the choice of parame-
ters in ` (·). The numerical derivatives are calculated using:

` (θ + ει)− ` (θ − δει)
µ

' ∂` (θ)

∂ (ι′θ)
(14.9)

where ι is a unit vector (for example, (1 0 . . . 0)
′ for the first element of θ), ε is a suitably

chosen step length, and δ is either zero (forward difference) or unity (central difference)
depending on the accuracy required at the given stage of the iteration. Thus, ε represents
a compromise between round-off error (cancellation of leading digits when subtracting
nearly equal numbers), and truncation error (ignoring terms of higher order than ε in the
approximation). Although PcGive chooses ε carefully, there may be situations where
the numerical derivative performs poorly.
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It is worth noting that numerical values of second derivatives can be computed in a
corresponding way using:

` (θ+ε1ι1+ε2ι2) + ` (θ−ε1ι1−ε2ι2)− ` (θ−ε1ι1+ε2ι2)−` (θ+ε1ι1−ε2ι2)

4ε1ε2
(14.10)

where ι1 or ι2 is zero except for unity in the ith or jth position. When computed
from the MLE θ̂, (14.10) yields a reasonably good approximation to Q(θ̂) for use in
calculating the covariance matrix of θ̂.

14.2.4 Conclusion

The present state of the art in numerical optimization, and the computational speeds of
modern computers are such that large estimation problems can be solved quickly and
cheaply. Many estimators which were once described as ‘computationally burdensome’
or complex are now as easy to use as OLS but are considerably more informative. Thus,
the complexity of the appropriate estimator is no longer a serious constraint, although
it is simple to invent large, highly non-linear problems which would be prohibitively
expensive to solve.

14.3 Practical optimization
The discussion of numerical optimization above is rather abstract. Practical aspects
such as choice of convergence criteria, line search algorithm, and potential problems
are discussed in this section, with reference to the actual implementation in PcGive.

14.3.1 Maximization methods

PcGive maximizes the likelihood ` (φ (θ)) as an unconstrained non-linear function of
θ using a Newton scheme:

θi+1 = θi + siQ (θi)
−1

q (θi) (14.11)

where BFGS is used to update Q−1 directly. Two methods are available:
1. BFGS with analytical first derivatives

The derivatives ∂`/∂θi are calculated analytically. If the form of these derivatives is
not known, this method employs a mixture of analytical (∂` (φ) /∂φi) and numeri-
cal (∂φ/∂θi) derivatives. The numerical part, which corresponds to the Jacobian of
the transformation, is computed by a central finite difference approximation. Where
possible (as in CFIML and restricted cointegration analysis), the Jacobian matrix is
computed analytically.

2. BFGS with numerical first derivatives
This method uses central finite difference approximations to the derivatives ∂`/∂θi.
It is slower than using analytical first derivatives, but the only method available if
the analytical scores are unknown.
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14.3.2 Line search

It is possible (especially close to the maximum) that the calculated parameter update
δi = Q (θi)

−1
q (θi) does not yield a higher likelihood. Then an si ∈ [0, 1] yielding a

higher function value is determined by a line search. Theoretically, since the direction
is upward, such an si should exist; however, numerically it might be impossible to find
one. The line search implemented in PcGive is linear. It is only invoked when the
step is not upwards, and keeps halving si until a better value is found. If that fails,
the procedure aborts, either with weak convergence, or a failure to improve in the line
search.

14.3.3 Starting values

Immediately after a system estimation, the starting values are θ0 = θ3SLS , which
provide excellent starting values). H is initialized to Ik.

14.3.4 Recursive estimation

Recursive estimation works as follows: starting values for θ and H for the first estima-
tion (M observations) are the full sample values (T observations); then at each sample
size, the previous values for θ and H at convergence are used to start with. Often only
four steps are required, making recursive application of the optimization process very
efficient relative to the size of the problem.

14.3.5 Convergence

The convergence decision is based on two tests. The first is based on likelihood elastic-
ities (∂`/∂ log |θj |), writing θi = (θi,j), q (θi) = (qi,j), δi = (δi,j):∣∣qi,j (k−2 + θi,j

)∣∣ ≤ ε1 for all j = 1, . . . , k, (14.12)

where k is the number of parameters being estimated. The k−2 is added in case param-
eters are very close to zero.

The second is based on the one-step ahead relative change in the parameter values:

|δi+1,j | ≤ 10ε
∣∣(k−2 + θi,j

)∣∣ for all j = 1, . . . , k. (14.13)

If convergence fails, it is possible to retry using a larger convergence criterion if you
still want output. However, this could also be a result of model mis-specification or
underidentification.

14.3.6 End of iteration process

The status of the iterative process is contained in the following messages:
1. Press Estimate to start iterating

No attempt to maximize has been taken yet.
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2. Strong convergence
Both convergence tests (14.12) and (14.13) were passed, using tolerance ε1.

3. Weak convergence
The step length si has become too small. The convergence test (14.12) was passed,
using tolerance ε2.

4. No convergence (maximum no of iterations reached)
The maximum number can be increased and the search resumed from the previous
best values; the Hessian is reset to the identity matrix when restarting.

5. No convergence (no improvement in line search)
The step length si has become too small. The convergence test (14.12) was not
passed, using tolerance ε2.

6. No convergence (function evaluation failed)
This is rare in FIML, but could occur in other estimation problems. It indicates that
the program failed to compute the function value at the current parameter values.
The cause could be a singular matrix, or illegal argument to a function such as
log(·).

The chosen default values for the tolerances are:

ε1 = 10−4, ε2 = 5× 10−3. (14.14)

14.3.7 Process control

When the maximization fails, or for teaching purposes, you wish to experiment with
the maximization procedure, you can:
1. set the initial values of the parameters;
2. set the maximum number of iterations;
3. write iteration output;
4. change the convergence tolerance;
5. choose the maximization algorithm;
6. plot a grid of the log-likelihood for each parameter, see Figures 7.3, 7.4 and the next

section for some examples. A grid may reveal potential multiple optima. See the
next section for an example.

Options (1), (5) and (6) are mainly for teaching optimization. The multiple grid facility
is especially useful for this purpose.

14.4 Numerical accuracy
Any computer program that performs numerical calculations is faced with the problem
of (loss of) numerical accuracy. It seems a slightly neglected area in econometric com-
putations, which to some extent could be owing to a perception that the gradual and
steady increase in computational power went hand in hand with improvements in accu-
racy. This, however, is not true. At the level of software interaction with hardware, the
major (and virtually the only) change has been the shift from single precision (4-byte)
floating point computation to double precision (8-byte). Not many modern computer
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programs have problems with the Longley (1967) data set, which severely tests single
precision implementations. Of course, there has been a gradual improvement in the
understanding of numerical stability of various methods, but this must be offset against
the increasing complexity of the calculations involved.

Loss of numerical accuracy is not a problem, provided we know when it occurs and
to what extent. Computations are done with finite precision, so it is always possible to
design a problem with analytical solution which fails numerically. Unfortunately, most
calculations are too complex to precisely understand to what extent accuracy is lost.
So it is important to implement the most accurate methods, and increase understanding
of the methods used. The nature of economic data will force us to throw away many
correct digits, but only at the end of the computations.

Real numbers are represented as floating point numbers, consisting of a sign, a
mantissa, and an exponent. A finite number of bytes is used to store a floating point
number, so only a finite set can be represented on the computer. The main storage
size in PcGive is 8 bytes, which gives about 15 significant digits. Two sources of error
result. The first is the representation error: most numbers can only be approximated on
a computer. The second is rounding error. Consider the machine precision εm: this is
the smallest number that can be added to one such that the result is different from one:

εm = argminε (1 + ε 6= 1) .

So an extreme example of rounding error would be (1 + εm/10)− 1, where the answer
would be 0, rather than εm/10. In PcGive: εm ≈ 2.2× 10−16.

Due to the accumulation of rounding errors, it is possible that mathematically-
equivalent formulae can have very different numerical behaviour. For example, com-
puting V [x] as 1

T

∑
x2
i − x̄2 is much less stable than 1

T

∑
(xi − x̄)

2. In the first case,
we potentially subtract two quite similar numbers, resulting in cancellation of signifi-
cant digits. A similar cancellation could occur in the computation of inner products (a
very common operation, as it is part of matrix multiplication). To keep the danger of
cancellation to a minimum, PcGive accumulates these in 10-byte reals. PcGive allows
the constant term to be entered unrestricted in the system. This corresponds to taking
deviations from the mean, and hence to the second variance formula.

An interesting example of harmless numerical inaccuracies is in the case of a grid
plot of an autoregressive parameter based on the concentrated likelihood function of an
AR(k) model. Rounding errors make the likelihood function appear non-smooth (not
differentiable). This tends to occur in models with many lags of the dependent variable
and a high autoregressive order. It also occurs in an AR(1) model of the Longley data
set, see Figure 14.4, which is a grid of 2000 steps between −1 and 0, (ignoring the
warning that numerical accuracy is endangered).

It is important to distinguish numerical accuracy from other problems that may
occur. Multicollinearity, for example, is first and foremost a statistical problem. A cer-
tain parametrization of a model might make the estimates of one or more parameters
statistically imprecise (see the concept of ‘micronumerosity’ playfully introduced by
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Figure 14.4 AR(1) grid of Longley data

Goldberger in Kiefer, 1989). This imprecision could be changed (or moved) by alter-
ing the specification of the model, for example by linear or orthogonal transforms of
the variables. Multicollinearity could induce numerical instability, leading to loss of
significant digits in some or all results.

Another example is the determination of the optimum of a non-linear function that
is not concave. Here it is possible to end up in a local optimum. This is clearly not a
problem of numerical stability, but inherent in non-linear optimization techniques. A
good example is provided by Klein model I. Figure 14.5 provides a grid plot of the
FIML likelihood function for each parameter, centred around the maximum found with
the 2SLS estimates as a starting point.
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Figure 14.5 Likelihood grid of Klein model I

These grids are of a different type from the AR grid. In the former all parameters
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but one are kept fixed, whereas the AR grid actually graphs the concentrated likelihood.
In the case of one autoregressive parameter, the correct optimum may be read off the
graph, as is the case in the AR grid plot above.





Part IV

The Statistical Output of
Multiple Equation Models





Chapter 15

Unrestricted System

15.1 Introduction
This part explains the statistics computed and reported by PcGive for dynamic systems
(this chapter), cointegration tests (§15.9.1), cointegrated VAR analysis (Chapter 16),
and model analysis (Chapter 17).

A brief summary of the underlying mathematics is given in this chapter, but for a
comprehensive overview the reader is referred to Chapters 11–13. The order is similar
to that in the computer program. We first briefly describe system formulation in §15.2 to
establish notation, then system estimation in §15.3, followed by estimation output §15.4
and graphic evaluation in §15.5, and dynamic analysis and I(1) and I(2) cointegration
tests in §15.9. Section 15.10 considers testing, both at the single equation level as
well as at the system level. Sections 15.9.1–16.0.1 discuss estimating the cointegrating
space, related graphs and tests of restrictions on the space. Finally §15.11 considers the
progress made during system and model development.

15.2 System formulation
In PcGive, a linear system, often called the unrestricted reduced form (URF), takes the
form:

yt =

m∑
i=1

πiyt−i +

r∑
j=0

πm+j+1zt−j + vt for t = 1, . . . , T, (15.1)

where yt, zt are respectively n × 1 and q × 1 vectors of observations at time t on the
endogenous and non-modelled variables. The {πi} are unrestricted, except perhaps for
columns of zeros, which would exclude certain yt−i or zt−j from the system. Hence
each equation in the system has the same variables on the right-hand side. The ordersm
and r of the lag polynomial matrices for y and z should be specified so as to ensure that
{vt} is an innovation process against the available information when the {πi}matrices

209
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are constant over t. Given a data set xt, then yt is defined as the vector of endogenous
variables and (zt . . . zt−r) must be set as non-modelled (so they need to be at least
weakly exogenous for the {πi}). A system in PcGive is formulated by:
1. which variables yt, zt are involved;
2. the orders m, r of the lag polynomials;
3. classification of the ys into endogenous variables and identity (endogenous) vari-

ables;
4. any non-modelled variable may be classified as restricted or as unrestricted (Con-

stant, Seasonals and Trend are labelled as such by default). The latter variables are
separately estimated in FIML and CFIML to reduce the dimensionality of the pa-
rameter space. Their coefficients are estimated from a prior regression as described
in §11.4.
A vector autoregression (VAR) arises when there are no z variables in the statistical

system (15.1) (q = 0, but there could be a constant, seasonals or trend) and all y have
the same lag length (no columns of π are zero).

Integrated systems can be transformed to equilibrium correction form, where all
endogenous variables and their lags are transformed to differences, apart from the first
lag:

∆yt =

m−1∑
i=1

δi∆yt−i + P0yt−1 +

r∑
j=0

πm+j+1zt−j + vt for t = 1, . . . , T. (15.2)

Returning to the notation of (15.1), a more compact way of writing the system is:

yt = Πwt + vt, (15.3)

where w contains z, lags of z, and lags of y: w′t =
(
y′t−1, . . . ,y

′
t−m, z

′
t, . . . , z

′
t−r
)
.

This can be further condensed by writing Y′ = (y1 y2 . . .yT ), and W′, V′ corre-
spondingly:

Y′ = ΠW′ + V′, (15.4)

in which Y′ is (n× T ), W′ is (k × T ) and Π is (n× k).

15.3 System estimation

Since the {πi} are unrestricted (except perhaps for excluding elements from wt) the
system (15.1) can be estimated by multivariate least squares, either directly (OLS) or
recursively (often denoted RLS). These estimators are straightforward multivariate ex-
tensions of the single equation methods. Analogously, estimation of (15.1) requires
vt ∼ IDn(0,Ω), where Ω is constant over time. However, Ω may be singular owing to
identities linking elements of xt, and these are handled by estimating only the subset of
equations corresponding to stochastic endogenous variables. If vt ∼ INn[0,Ω], OLS
coincides with MLE, and estimation of (15.1) is discussed in Chapter 11; for notation,
we note that the estimated coefficients are:

Π̂′ = (W′W)
−1

W′Y, (15.5)
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with residuals:
V̂′ = Y′ − Π̂W′ (15.6)

and estimated covariance matrix:

V
̂[
vecΠ̂′

]
= Ω̃⊗ (W′W)

−1
, (15.7)

where:
Ω̃ = V̂′V̂/ (T − k) . (15.8)

In the likelihood-based statistics, we shall scale by T :

Ω̂ = V̂′V̂/T. (15.9)

15.4 System output
A listing of the system output now follows. Items marked with a * are only printed on
request, either automatically through settings in the Options dialog, or by using Further

Output.

15.4.1 Equation output

1. URF coefficients and standard errors

The coefficients Π̂, and their standard errors
√

(V
̂

[vecΠ̂′])ii. Any variables marked
as unrestricted appear here too.

2. t-value and t-probability
These statistics are conventionally calculated to determine whether individual coef-
ficients are significantly different from zero:

t-value =
π̂ij

SE [π̂ij ]
(15.10)

where the null hypothesis H0 is πij = 0. The null hypothesis is rejected if the
probability of getting a value at least as large is less than 5% (or any other chosen
significance level). This probability is given as:

t-prob = 1− Prob (|τ | ≤ |t-value|) , (15.11)

in which τ has a Student t-distribution with T − k degrees of freedom.
When H0 is true (and the model is otherwise correctly specified), a Student t-
distribution is used since the sample size is often small, and we only have an es-
timate of the parameter’s standard error: however, as the sample size increases, τ
tends to a standard normal distribution under H0. Large values of t reject H0; but,
in many situations, H0 may be of little interest to test. Also, selecting variables in
a model according to their t-values implies that the usual (Neyman-Pearson) justifi-
cation for testing is not valid (see Judge, Griffiths, Hill, Lütkepohl, and Lee, 1985,
for example).
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3. Equation standard error (σ̃) and residual sum of squares (RSS)
The square root of the residual variance for each equation:√

Ω̃ii for i = 1, . . . n. (15.12)

The RSS is (T − k) Ω̃ii, that is, the diagonal elements of V̂′V̂.

15.4.2 Summary statistics

The log-likelihood value is (including the constant Kc):

̂̀= −T
2

log
∣∣∣Ω̂∣∣∣− Tn

2
(1 + log 2π) . (15.13)

Then ` constitutes the highest attainable likelihood value in the class (15.4) (unless
either the set of variables or the lag structure is altered), and hence is the statistical
baseline against which simplifications can be tested. In textbook econometrics, (15.4)
is called the unrestricted reduced form (URF) and is usually derived from a structural
representation. Here, the process is reversed: the statistical system (15.4) is first spec-
ified and tested for being a congruent representation; only then is a structural (parsi-
monious) interpretation sought. If, for example, (15.4) is not congruent, then (15.13)
is not a valid baseline, and subsequent tests will not have appropriate distributions. In
particular, any just-identified structural representation has the same likelihood value as
(15.4), and hence will be invalid if (15.4) is invalid: the ‘validity’ of imposing further
restrictions via a model is hardly of interest.

Define Y̌ as Y after removing the effects of the unrestricted variables, and let:

Ω̂0 =
(
Y̌′Y̌/T

)−1
. (15.14)

PcGive reports:
1. the log-likelihood (15.13);
2. −T2 log |Ω̂|;
3. |Ω̂|;
4. T , the number of observations used in the estimation, and nk, the number of pa-

rameters in all equations;
5. log |Y̌′Y̌/T | = log |Ω̂0|.

Various measures of the goodness of fit of a system can be calculated. The two
reported by PcGive are:
1. R2(LR)

Reports R2
r = 1 − |Ω̂||Ω̂0|, which is an R2 based on the likelihood-ratio principle.

For a single equation system this statistic is identical to:
2. R2(LM)

Reports R2
m = 1− 1

n tr(Ω̂Ω̂0), which derives from the Lagrange Multiplier princi-
ple.

Note that these are relative to the unrestricted variables. Both measures coincide with
the traditional R2 in a single equation, provided that the constant is the only unrestricted
variable.
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15.4.3 F-tests

Significance at 5% is marked with a *, at 1% with **. Reported are:
1. F-tests against unrestricted regressors

This uses Rao’s F-approximation (see §11.8) to test the significance of R2
r , which

amounts to testing the null hypothesis that all coefficients are zero, except those
on the unrestricted variables. In a single-equation system, with only the constant
unrestricted, this is identical to the reported F-statistic.

2. F-tests on retained regressors
F-tests are shown for the significance of each column of Π̂ together with their proba-
bility values (inside square brackets) under the null hypothesis that the correspond-
ing column of coefficients is zero. So these test whether the variable at hand is
significant in the system. The statistics are F(n, T − k + 1− n).
Further F-tests of general to specific system modelling are available through the

progress report: see §15.11.

15.4.4 Correlations

• Correlation of URF Residuals
A typical element of this matrix is:

cij =
Ω̃ij√

Ω̃ii

√
Ω̃jj

. (15.15)

The diagonal reports the standard deviations of the URF residuals
• Correlation of actual and fitted

Prints the correlation between yit and ŷit for each equation i = 1, . . . , n.

15.4.5 1-step (ex post) forecast analysis

This is only reported when observations are withheld for static forecasting when the
sample size is selected.

The 1-step forecast errors (from T + 1 to T +H) are defined as:

eT+i = yT+i − Π̂wT+i =
(
Π− Π̂

)
wT+i + vT+i (15.16)

with estimated variance

V[̃eT+i] = Ω̃
(

1 + w′T+i (W′W)
−1

wT+i

)
= Ψ̃T+i. (15.17)

The forecast error variance matrix for a single step-ahead forecast is made up of a
term for coefficient uncertainty and a term for innovation errors, as discussed in §11.5.
Three types of parameter constancy tests are reported, in each case as a χ2(nH) for n
equations and H forecasts and an F(nH, T − k) statistic:
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1. using Ω.
This is an index of numerical parameter constancy, ignoring both parameter un-
certainty and intercorrelation between forecasts errors at different time periods. It
corresponds to ξ1 and η1 of (11.46).

2. using V[e].
This test is similar to (a), but takes parameter uncertainty into account, correspond-
ing to ξ2 and η2 of (11.46).

3. using V[E].
Here, V[E] is the full variance matrix of all forecast errors E, which takes both
parameter uncertainty and inter-correlations between forecast errors into account.
This test is ξ3 and η3 of (11.46).

15.4.6 *Information criteria

The four statistics reported are the Schwarz criterion (SC), the Hannan–Quinn criterion
(HQ), the Final Prediction Error (FPE) and the Akaike criterion (AIC). These can be
defined as:

SC = log
∣∣∣Ω̂∣∣∣+ k log(T )T−1,

HQ = log
∣∣∣Ω̂∣∣∣+ 2k log(log(T ))T−1,

AIC = log
∣∣∣Ω̂∣∣∣+ 2kT−1,

FPE = (T + k)
∣∣∣Ω̂∣∣∣ / (T − k) .

(15.18)

Or, in terms of the log-likelihood:

SC =
(
−2̂̀+ k log T

)
T−1,

HQ =
(
−2̂̀+ 2k log log T

)
T−1,

AIC =
(
−2̂̀+ 2k

)
T−1,

FPE = −T+k
T−k

2
T
̂̀.

(15.19)

When using Further Output will first report (15.18) followed by (15.19). In the latter,
the constant is included in the likelihood, resulting in different outcomes. In all other
cases, PcGive will only report the values based on (15.19). For a discussion of the use
of these and related scalar measures to choose between alternative models in a class,
see Judge, Griffiths, Hill, Lütkepohl, and Lee (1985) or Lütkepohl (1991).

15.4.7 *Correlation matrix of regressors

This reports the sample means and sample standard deviations of the selected variables,
followed by the correlation matrix.

15.4.8 *Covariance matrix of estimated parameters

The k× k variance-covariance matrix of the estimated parameters. Along the diagonal,
we have the variance of each estimated coefficient, and off the diagonal, the covariances.
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15.4.9 *Static (1-step) forecasts

Reports the individual forecasts with forecast error standard errors. If the actual values
are available, the forecast error and t-value are also printed.

Additional statistics are reported if more than two forecast errors are available:
1. Mean of the forecast errors;
2. Standard deviation of the forecast errors;
3. Forecast tests, single chi2 (·)

These are the individual test statistics underlying ξ1 and ξ2 above, for i = 1, . . . ,H:

using Ω e′T+iΩ̃
−1eT+i,

using V [e] e′T+iΨ̃
−1
T+ieT+i,

(15.20)

this time distributed as χ2(n). They can also be viewed graphically.
4. Root Mean Square Error:

RMSE =

[
1

H

H∑
t=1

(yt − ft)2

]1/2

,

where the forecast horizon is H , yt the actual values, and ft the forecasts.
5. Mean Absolute Percentage Error:

MAPE =
100

H

H∑
t=1

∣∣∣∣yt − ftyt

∣∣∣∣ .
RMSE and MAPE are measures of forecast accuracy, see, e.g. Makridakis, Wheel-
wright, and Hyndman (1998, Ch. 2). Note that the MAPE can be infinity if any yt = 0,
and is different when the model is reformulated in differences. For more information
see Clements and Hendry (1998a).

15.5 Graphic analysis

Graphic analysis focuses on graphical inspection of individual equations. Let yt, ŷt
denote respectively the actual (that is, observed) values and the fitted values of the
selected equation, with residuals v̂t = yt − ŷt, t = 1, . . . , T . If H observations are
retained for forecasting, then ŷT+1, . . . , ŷT+H are the 1-step forecasts.

Many different types of graph are available:
1. Actual and fitted values

This is a graph showing the fitted (ŷt) and actual values (yt) of the dependent vari-
able over time, including the forecast period.

2. Cross-plot of actual and fitted
ŷt against yt, including the forecast period.
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3. Residuals (scaled)
(v̂t/σ̃), where σ̃2 is the estimated equation error variance, plotted over t =

1, . . . , T +H .
4. Forecasts and outcomes

The 1-step forecasts can be plotted in a graph over time: yt and ŷt, t = T +

1, . . . , T + H , are shown with error bars of ±2SE (et), and centred on ŷt (that is,
an approximate 95% confidence interval for the 1-step forecast). Corresponding to
(15.16) the forecast errors are et = yt − ŷt and SE [et] is derived from (15.17). The
error bars can be replaced by bands, set in Options, and the number of pre-forecast
observations can be selected.

5. Residual density and histogram
Plots the histogram of the standardized residuals, the estimated density f̂v(·) and
a normal distribution with the same mean and variance (more details are in the
OxMetrics book).

6. Residual autocorrelations (ACF)
This plots the series {rj}where rj is the correlation coefficient between v̂t and v̂t−j .
The length of the correlogram is specified by the user, leading to a Figure that shows
(r1, r2, . . . , rs) plotted against (1, 2, . . . , s) where for any j:

rj =

∑T
t=j+1 (vt − v̄0) (vt−j − v̄j)∑T

t=j (vt − v̄)
2

, (15.21)

where v̄ is the sample mean of vt.
7. Residual partial autocorrelations (PACF)

This plots the Partial autocorrrelation function (see the OxMetrics book).
8. Forecasts Chow tests

These are the Chow tests using V [e] of (15.20), available from T + 1 to T + H ,
together with a fixed 5% critical value from χ2 (n). These are not scaled by their
critical values, unlike the graphs in recursive graphics.

9. Residuals (unscaled)
(v̂t) over t;

10. Residual spectrum
This plots the estimated spectral density (see the OxMetrics book) using v̂t as the
xt variable.

11. Residual QQ plot against N(0,1)
Shows a QQ plot of the residuals.

12. Residual density optionally with Histogram
The histogram of the scaled residuals and the non-parametrically estimated density
f̂v(·) are graphed using the settings described in the OxMetrics book.

13. Residual distribution (normal quantiles)
Plots the distribution based on the non-parametrically estimated density.

14. Residual cross-plots
Let v̂it, v̂jt denote the residuals of equation i and j. This graph shows the cross-plot
of v̂it against v̂jt for all marked equations (i 6= j), over t = 1, . . . , T +H .
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The residuals can be saved to the database for further inspection.

15.6 Recursive graphics
When recursive OLS (RLS) is selected, the Π matrix is estimated at each
t (1 ≤M ≤ t ≤ T ) where M is user-selected. Unlike previous versions, there is
no requirement that k ≤ M . So OLS is used for observations 1 . . .M − 1, RLS for
M . . . T . The calculations proceed exactly as for the single equation case since the
formulae for updating are unaffected by Y being a matrix rather than a vector. Indeed,
the relative cost over single equation RLS falls; but the huge number of statistics
(nk (T −M + 1) coefficients alone) cannot be stored in PcGive. Consequently, the
graphical output omits coefficients and their t-values. Otherwise the output is similar to
that in single equations, but now available for each equation in the system. In addition,
system graphs are available, either of the log likelihood, or of the system Chow tests.
At each t, system estimates are available, for example coefficients Πt and residuals
vt = yt −Πtwt. Unrestricted variables have their coefficients fixed at the full sample
values. Define V′t as (v1v2 . . .vt) and let yt, vt, wt denote the endogenous variable,
residuals and regressors of equation i at time t.

The following graphs are available for the system (the information can be printed
on request):
1. Residual sum of squares

The residual sum of squares RSSt for equation i is the ith diagonal element of
V̂′tV̂t for t = M, . . . , T .

2. 1-Step Residuals ±2σ̃ for equation i at each t:
The 1-step residuals v̂t are shown bordered by 0± 2σ̃t over M, . . . , T . Points out-
side the 2-standard-error region are either outliers or are associated with coefficient
changes.

3. Log-likelihood/T

l̂t = − 1
2 log

∣∣∣∣ tT Ω̂t

∣∣∣∣ = − 1
2 log

∣∣∣T−1V̂′tV̂t

∣∣∣ , t = M, . . . , T. (15.22)

Per definition: l̂t ≥ l̂t+1. This follows from the fact that both can be derived from
a system estimated up to t + 1, where l̂t obtains from the system with a dummy
for the last observation (see §11.8.1), so that l̂t+1 is the restricted likelihood. On
the other hand: ̂̀t 6≥ ̂̀t+1, as this would still require the sample size correction as
employed in l̂t. Note that the constant is excluded from the log-likelihood here.

4. Single equation chow Tests
(a) 1-step F-tests (1-step Chow-tests)

1-step forecast tests are F (1, t− k − 1) under the null of constant parameters,
for t = M, . . . , T . A typical statistic is calculated as:

(RSSt −RSSt−1) (t− k − 1)

RSSt−1
. (15.23)
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Normality of yt is needed for this statistic to be distributed as an F.
(b) Break-point F-tests (N↓-step Chow-tests)

Break-point F-tests are F (T − t+ 1, t− k − 1) for t = M, . . . , T . These are,
therefore, sequences of Chow tests and are called N ↓ because the number of
forecasts goes from T − M + 1 to 1. When the forecast period exceeds the
estimation period, this test is not necessarily optimal relative to the covariance
test based on fitting the model separately to the split samples. A typical statistic
is calculated as:

(RSST −RSSt−1) (t− k − 1)

RSSt−1 (T − t+ 1)
. (15.24)

This test is closely related to the CUSUMSQ statistic in Brown, Durbin, and
Evans (1975).

(c) Forecast F-tests. (N↑-step Chow-tests)
Forecast F-tests are F (t−M + 1,M − k − 1) for t = M, . . . , T , and are
called N↑ as the forecast horizon increases from M to t. This tests the model
over 1 to M − 1 against an alternative which allows any form of change over
M to T . Thus, unless M > k, blank graphs will result. A typical statistic is
calculated as:

(RSSt −RSSM−1) (M − k − 1)

RSSM−1 (t−M + 1)
. (15.25)

5. System Chow tests
(a) 1-step F-tests (1-step Chow-tests)

This uses Rao’s F-approximation (see §11.8), with the R2 computed as:

1− exp
(
−2l̂t−1 + 2l̂t

)
, t = M, . . . , T. (15.26)

(b) Break-point F-tests (N↓-step Chow-tests)
This uses Rao’s F-approximation, with the R2 computed as:

1− exp
(
−2l̂t−1 + 2l̂T

)
, t = M, . . . , T. (15.27)

(c) Forecast F-tests (N↑-step Chow-tests)
This uses Rao’s F-approximation, with the R2 computed as:

1− exp
(
−2l̂M−1 + 2l̂t

)
, t = M, . . . , T. (15.28)

The statistics in (4) and (5) are variants of Chow (1960) tests: they are scaled by one-off
critical values from the F-distribution at any selected probability level as an adjustment
for changing degrees of freedom, so that the significance values become a straight line
at unity. Selecting a probability of 0 or 1 results in unscaled statistics. Note that the
first and last values of (15.23) respectively equal the first value of (15.25) and the last
value of (15.24); the same relation holds for the system tests. When the system tests of
(5) are computed for a single equation system, they are identical to the tests computed
under (4).
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15.7 Dynamic forecasting
Dynamic (or multi-period or ex ante) system forecasts can be graphed. Commencing
from period T as initial conditions:

ŷt =
m∑
i=1

π̂iŷt−i +
r∑
j=0

π̂j+m+1zt−j for t = T + 1, . . . , T +H,

where ŷt−i = yt−i for t− i ≤ T.

(15.29)

Such forecasts require data on (zT+1 . . . zT+H) for H-periods ahead (but the future
values of ys are not needed), and to be meaningful also require that zt is strongly ex-
ogenous and that Π remains constant. Dynamic forecasts can be viewed with or without
‘error bars’ (or bands) based on the equation error-variance matrix only, where the vari-
ance estimates are given by the (n× n) top left block of:

V
[̃
e∗T+1

]
= 0̃,

V
[̃
e∗T+2

]
= 0̃ + D̂0̃D̂

′
,

. . .

V ˜[e∗T+H

]
=
H−1∑
i=0

D̂i0̃D̂
i′
.

(15.30)

Optionally, parameter uncertainty can be taken into account when computing the fore-
cast error variances (but not for h-step forecasts): this is allowed only when there are
no unrestricted variables. Using the companion matrix, which is (nm× nm):

D̂ =


π̂1 π̂2 · · · π̂m−1 π̂m
In 0 · · · 0 0

0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

 and 0̃ =

 Ω̃ 0 · · ·
0 0 · · ·
...

...
. . .

 , (15.31)

see §11.5.2.
Thus, uncertainty owing to the parameters being estimated is presently ignored

(compare this to the parameter constancy tests based on the 1-step forecasts). If q > 0,
the non-modelled variables could be perturbed as in ‘scenario studies’ on non-linear
models, but here with a view to assessing the robustness or fragility of ex ante fore-
casts to possible changes in the conditioning variables. If such perturbations alter the
characteristics of the {zt} process, super exogeneity is required.

It is also possible to graph h-step forecasts, where h ≤ H . This uses (15.29), but
with:

ŷt−i = yt−i for t− i ≤ max (T, t− h) . (15.32)

To be consistent with the definition of h-step forecasts in §11.5, what is graphed is
the sequence of 1, . . . , h − 1 step forecasts for T + 1, . . . T + h − 1, followed by
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h-step forecasts from T + h, . . . T + H . In other words: up to T + h are dynamic
forecasts, from then on h-step forecasts up to T + H . Thus, unless there is available
data not used in estimation, the h-step forecasts are just dynamic forecasts up to the
value of h: this data can be reserved by using a shorter estimation sample, or setting
a non-zero number of forecasts. After h forecasts, the forecast error variance remains
constant at

∑h−1
i=0 D̂i0̃D̂

i′
. For example, 1-step forecasts use ŷt−i = yt−i for t− i ≤

max (T, t− 1), and hence never use forecasted values (in this case max (T, t− 1) =

t − 1, as t ≥ T + 1). The 1-step forecast error variance used here is Ω̃, which differs
from (15.17) in that it ignores the parameter uncertainty. Selecting h = H yields the
dynamic forecasts.

To summarize, the following graphs are available:
1. Dynamic forecasts over any selected horizonH for closed systems, and the available

sample for open (with non-modelled variables, but no identities).
Graphs can be without standard errors; or standard errors can be plotted as the
forecast ±2SE, either error-variance based or parameter-variance based (i.e., full
estimation uncertainty, if no unrestricted variables).

2. h-step forecasts up to the end of the available sample, which is dependent on the
presence or absence of non-modelled variables. In the former case, data must exist
on the non-modelled variables; in the latter, the horizon H ≥ h is at choice.
Graphs can be without standard errors; or error-variance based standard errors can
be plotted as the forecast ±2SE.
The forecasts and standard errors can be printed. Although dynamic forecasting is

not available for a system with identities, it can be obtained by mapping the system to
a model of itself and specifying the identity equations.

The remaining forecast options, as discussed in Volume I, extend in a straightfor-
ward manner to multivariate models.

15.8 Dynamic simulation and impulse responses
The system can be dynamically simulated from any starting point within sample, end-
ing at the last observation used in the estimation. Computation is as in (15.29), with
T + 1 replaced by the chosen within-sample starting point. Given the critiques of dy-
namic simulation as a method of evaluating econometric systems in Hendry and Richard
(1982) and Chong and Hendry (1986), this option is included to allow users to see how
misleading simulation tracks can be as a guide to selecting systems. Also see Pagan
(1989). Like dynamic forecasting, dynamic simulation is not available for a system
with identities, but can be obtained by mapping the system to a model of itself and
specifying the identity equations.

Let yt, ŷt, ŝt denote respectively the actual (that is, observed) values, the fitted
values (from the estimation) and the simulated values of the selected equation, t =

M, . . . ,M +H . H is the number of simulated values, starting from M , 1 ≤M < T .
Four different types of graph are available:

1. Actual and simulated values
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This is a graph showing the simulated (ŝt) and actual values (yt) of the dependent
variable over time.

2. Actual and simulated cross-plot
Cross-plot of ŷt against ŝt.

3. Fitted and simulated values
ŷt and ŝt against time.

4. Simulation residuals
Graphs (yt − ŝt) over time.

Impulse response analysis disregards the non-modelled variables and sets the his-
tory to zero, apart from the initial values i1:

ît =

m∑
i=1

π̂îit−i for t = 2, . . . ,H, (15.33)

where î1 are the initial values, and ît = 0 for t ≤ 0. This generates n2 graphs, where
the jth set of n graphs gives the response of the n endogenous variables to the jth initial
values. These initial values i1,j for the jth set of graphs can be chosen as follows:
1. unity

i1,j = ej : 1 for the jth variable, 0 otherwise.
2. standard error

i1,j = σ̃j : the jth residual standard error for the jth variable, 0 otherwise.
3. orthogonalized

Take the Choleski decomposition of Ω̃, Ω̃ = PP′, so that P = (p1 . . .pn) has
zeros above the diagonal. The orthogonalized initial values are i1,j = pj . Thus, the
outcome depends on the ordering of the variables.

Graphing is optionally of the accumulated response:
∑h
t=1 ît, h = 1, . . . ,H .

15.9 Dynamic analysis
After estimation, a dynamic analysis of the unrestricted reduced form (system) can be
performed. Consider the system (15.2), but replace the πm+j+1 by Γj :

yt =

m∑
i=1

πiyt−i +

r∑
j=0

Γjzt−j + vt, vt ∼ INn [0,Ω] , (15.34)

with yt (n×1) and zt (q × 1). Use the lag operator L, defined as Lyt = yt−1, to write
this as:

(I− π (L)) yt = Γ (L) zt + vt. (15.35)

So π(1) = π1 + · · · + πm, with m the longest lag on endogenous variable(s); and
Γ(1) = Γ0 + · · · + Γr, with r the longest lag on non-modelled variable(s). P̂0 =

π̂(1) − In can be inverted only if it is of rank p = n, in which case for q > 0, y and
z are fully cointegrated. If p < n, only a subset of the ys and zs are cointegrated, see
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Chapter 12. If P̂0 can be inverted, we can write the estimated static long-run solution
as:

ŷ = −P̂−1
0 Γ̂ (1) z. (15.36)

If q = 0, the system is closed (that is, a VAR), and (15.36) is not defined. However,
P0 can still be calculated, and then p characterizes the number of cointegrating vectors
linking the ys: again see Chapter 12. We use + to denote that the outcome is reported
only if there are non-modelled variables.

If there are no identities PcGive computes:
1. Long-run matrix Pi(1)-I = Po: π̂(1)− In = P̂0;

2. Long-run covariance: P̂−1
0 Ω̃P̂

−1

0 ;

3. Static long run: −P̂−1
0 Γ̂(1);+

4. Standard errors of static long run;+

5. Mean-lag matrix
∑
πi: Ψ̂ =

∑m
i=1 iπ̂i: only shown if there is more than one lag.

6. Eigenvalues of long-run matrix: eigenvalues of π̂(1)− In;
7. I(2) matrix Gamma: the long-run matrix of the system in equilibrium correction

form, see (12.6);
8. Eigenvalues of companion matrix, D̂, given in (15.31).

Dynamic analysis is not available for a system with identities, but are available again
after estimating the simultaneous equations model.

15.9.1 I(1) cointegration analysis

When the system is closed in the endogenous variables, express P0 in (15.2) as αβ′,
where α and β are (n× p) matrices of rank p. Although vt ∼ INn[0,Ω], and so is
stationary, the n variables in yt need not all be stationary. The rank p of P0 determines
how many linear combinations of yt are stationary. If p = n, all variables in yt are
stationary, whereas p = 0 implies that ∆yt is stationary. For 0 < p < n, there are
p cointegrated (stationary) linear combinations of yt. The rank of P0 is estimated
using the maximum likelihood method proposed by Johansen (1988), fully described in
Chapter 12 and summarized here.

First, partial out from ∆yt and yt−1 in (15.2) the effects of the lagged differences
(∆yt−1 . . .∆yt−m+1) and any variables classified as unrestricted (usually the Constant
or Trend, but any other variable is allowed as discussed below). This yields the residuals
R0t and R1t respectively. Next compute the second moments of all these residuals,
denoted S00, S01 and S11 where:

Sij =
1

T

T∑
t=1

RitR
′
jt for i, j = 0, 1. (15.37)

Now solve |λS11 − S10S
−1
00 S01| = 0 for the p largest eigenvalues 1 > λ̂1 > . . . >

λ̂p . . . > λ̂n > 0 and the corresponding eigenvectors:

β̂ =
(
β̂1, . . . , β̂p

)
normalized by β̂′S11β̂ = Ip. (15.38)
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Then, tests of the hypothesis of p cointegrating vectors can be based on the trace
statistic:

ηp = −T
n∑

i=p+1

log
(

1− λ̂i
)
. (15.39)

The cointegrating combinations β′yt−1 are the I(0) linear combinations of the I(1) vari-
ables which can be used as equilibrium correction mechanisms (ECMs).

Any non-endogenous variables zt can enter in two ways:
1. Unrestricted: they are partialled out prior to the ML procedure: denote these qu

variables by zut .
2. Restricted: the qr variables zrt are forced to enter the cointegrating space, which can

then be written as β′(yt−1 : zrt−1), with β′ now a (p× (n+ qr)) matrix.
If lagged values zt, . . . , zt−m enter, reparametrize as ∆zut , . . . ,∆zut−m+1, z

r
t−1.

Output of the I(1) cointegration analysis is:
1. Eigenvalues λ̂i and the log-likelihood for each rank:

`∗c = Kc −
T

2
log |S00| −

T

2

p∑
i=1

log
(

1− λ̂i
)
, p = 0, . . . , n. (15.40)

2. Sequence of Trace test statistics
The test statistics ηp for H(rank ≤ p) are listed with p-values based on Doornik
(1998); * and ** mark significance at 95% and 99%. Testing commences at
H(rank = 0), and stops at the first insignificant statistics.
The asymptotic p-values are available for the following cases:

Hypothesis Constant Trend
Hql(p) unrestricted unrestricted
Hl(p) unrestricted restricted
Hlc(p) unrestricted none
Hc(p) restricted none
Hz(p) none none

Strictly speaking, new critical values should be computed for all other cases.
3. β̂ eigenvectors, standardized on the diagonal.
4. α̂ coefficients, corresponding to the standardized β̂.
5. Long-run matrix P̂0 = α̂β̂′, rank n.

15.9.2 I(2) Cointegration analysis

In the I(2) analysis, which requires at least two lags of the endogenous variables, there
is potentially an additional reduced rank restriction on the long-run matrix Γ of the
model in first differences (equilibrium correction form):

α′⊥Γβ⊥ = ξ′η,



224 Chapter 15 Unrestricted System

where ξ and η are (n−p)×smatrices, see §12.5. In the analysis we have the parameter
counts

s the number of I(1) relations,
n− p− s the number of I(2) relations,
p the rank of P0.

The test statistics are

Qp : H (rank(P0) ≤ p|rank(P0) ≤ n) ,

Sp,s : H (rank(P0) <= p and n− p− s I(2) components |rank(P0) ≤ n) .

For example, when n = 4 PcGive will print a table consisting of eigenvalues λp+1,
λp+1,s+1, test statistics Qp and Sp,s, and p-values for p = 0, . . . , 3 and n − p − s =

1, . . . , 4 as follows:

p = 0 1 2 3

n− p− s = 0 λ̂1 λ̂2 λ̂3 λ̂4

Qp Q0 Q1 Q2 Q3

[pval] p p p p

n− p− s = 4 3 2 1

p = 0 µ̂1,1 µ̂1,2 µ̂1,3 µ̂1,4

Sp,s S0,0 S0,1 S0,2 S0,3

[pval] p p p p

p = 1 − µ̂2,2 µ̂2,3 µ̂2,4

Sp,s − S1,1 S1,2 S1,3

[pval] − p p p

p = 2 − − µ̂3,3 µ̂3,4

Sp,s − − S2,2 S2,3

[pval] − − p p

p = 3 − − − µ̂3,4

Sp,s − − − S3,3

[pval] − − − p

Hypothesis testing normally proceeds down the columns, from top left to bottom
right, stopping at the first insignificant test statistic.

15.10 System testing

15.10.1 Introduction

Many test statistics in PcGive have either a χ2 distribution or an F distribution. F-tests
are usually reported as:

F(num,denom) = Value [Probability] /*/**
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for example:
F(1, 155) = 5.0088 [0.0266] *

where the test statistic has an F-distribution with one degree of freedom in the numerator
and 155 in the denominator. The observed value is 5.0088, and the probability of getting
a value of 5.0088 or larger under this distribution is 0.0266. This is less than 5% but
more than 1%, hence the star. Significant outcomes at a 1% level are shown by two
stars.

χ2 tests are also reported with probabilities, as for example:
Normality Chi2(2)= 2.1867 [0.3351]

The 5% χ2 critical values with two degrees of freedom is 5.99, so here normality is not
rejected (alternatively, Prob(χ2 ≥ 2.1867) = 0.3351, which is more than 5%).

The probability values for the F-test are calculated using an algorithm based on
Majunder and Bhattacharjee (1973a) and Cran, Martin, and Thomas (1977).1 Those for
the χ2 are based on Shea (1988). The significance points of the F-distribution derive
from Majunder and Bhattacharjee (1973b).

Some tests take the form of a likelihood ratio (LR) test. If ` is the unrestricted, and
`0 the restricted, log-likelihood, then under the null hypothesis that the restrictions are
valid, −2(`0 − `) has a χ2(s) distribution, with s the number of restrictions imposed
(so model `0 is nested in `).

Many diagnostic tests are done through an auxiliary regression. In the case of
single-equation tests, they take the form of TR2 for the auxiliary regression, so that
they are asymptotically distributed as χ2 (s) under their nulls, and hence have the usual
additive property for independent χ2s. In addition, following Harvey (1990) and Kiviet
(1986), F-approximations of the form:

R2

1− R2
.
T − k − s

s
∼ F (s, T − k − s) (15.41)

are calculated because they may be better behaved in small samples.
Whenever the vector tests are implemented through an auxiliary multivariate regres-

sion, PcGive uses vector analogues of the χ2 and F statistics. The first is an LM test
in the auxiliary system, defined as TnR2

m, the second uses the F approximation based
on R2

r , see §11.9.2 and §11.8. The vector tests reduce to the single-equation tests in a
one-equation system. All tests are fully described in Chapter 11; they are summarized
below.

15.10.2 Single equation diagnostics

Diagnostic testing in PcGive is performed at two levels: individual equations and the
system as a whole. Individual equation diagnostics take the residuals from the system,
and treat them as from a single equation, ignoring that they form part of a system.
Usually this means that they are only valid if the remaining equations are problem-free.

1As recommended in Cran, Martin, and Thomas (1977), the approach in Pike and Hill (1966)
is used for the logarithm of the gamma function.
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1. Portmanteau statistic
This is a degrees-of-freedom corrected version of the Box and Pierce (1970) statis-
tic. It is only a valid test in a single equation with strongly exogenous variables. If
s is the chosen lag length and m the lag length of the dependent variable, values
≥ 2(s − m) could indicate residual autocorrelation. Conversely, small values of
this statistic should be treated with caution as residual autocorrelations are biased
towards zero when lagged dependent variables are included in econometric equa-
tions. An appropriate test for residual autocorrelation is provided by the LM test for
autocorrelated residuals. The autocorrelation coefficients rj , see (15.21), are also
reported.

2. LM test for autocorrelated residuals
This test is performed through the auxiliary regression of the residuals on the origi-
nal variables and lagged residuals (missing lagged residuals at the start of the sample
are replaced by zero, so no observations are lost). Unrestricted variables are in-
cluded in the auxiliary regression. The null hypothesis is no autocorrelation, which
would be rejected if the test statistic is too high. This LM test is valid for systems
with lagged dependent variables and diagonal residual autocorrelation, whereas nei-
ther the Durbin–Watson nor the residual autocorrelations provide a valid test in that
case. The χ2 and F-statistic are shown, as are the error autocorrelation coefficients,
which are the coefficients of the lagged residuals in the auxiliary regression.

3. LM test for autocorrelated squared residuals
This is the ARCH test (AutoRegressive Conditional Heteroscedasticity: see Engle,
1982) which in the present form tests the joint significance of lagged squared residu-
als in the regression of squared residuals on a constant and lagged squared residuals.
The χ2 and F-statistic are shown, in addition to the ARCH coefficients, which are
the coefficients of the lagged squared residuals in the auxiliary regression.

4. Test for normality
This is the test proposed by Doornik and Hansen (1994), and amounts to testing
whether the skewness and kurtosis of the residuals correspond to those of a normal
distribution. Before reporting the actual test, PcGive reports the following statistics
of the residuals: mean (0 for the residuals), standard deviation, skewness (0 in a
normal distribution), excess kurtosis (0 in a normal distribution), minimum and
maximum.

5. Test for heteroscedasticity
This test is based on White (1980), and involves an auxiliary regression of the
squared residuals on the original regressors and all their squares. The null is un-
conditional homoscedasticity, and the alternative is that the variance of the error
process depends on the regressors and their squares. The output comprises TR2,
the F-test equivalent, and the coefficients of the auxiliary regression plus their in-
dividual t-statistics to help highlight problem variables. Unrestricted variables are
excluded from the auxiliary regression, but a constant is always included. Variables
that are redundant when squared or collinear are automatically removed.



Chapter 15 Unrestricted System 227

15.10.3 Vector tests

The present incarnation of PcGive has various formal system mis-specification tests for
within-sample congruency.
1. Vector portmanteau statistic

This is the multivariate equivalent of the single-equation portmanteau statistic
(again using a small-sample correction), and only a valid asymptotic test in a VAR.

2. Vector error autocorrelation test
Lagged residuals (with missing observations for lagged residuals set to zero) are
partialled out from the original regressors, and the whole system is re-estimated,
providing a Lagrange-multiplier test based on comparing the likelihoods for both
systems.

3. Vector normality test
This is the multivariate equivalent of the aforementioned single equation normality
test, see §11.9.2. It checks whether the residuals at hand are normally distributed
as:

vt ∼ INn [0,Ω] (15.42)

by checking their skewness and kurtosis. A χ2(2n) test for the null hypothesis of
normality is reported, in addition to the transformed skewness and kurtosis of the
rotated components.

4. Vector heteroscedasticity test (using squares)
This test amounts to a multivariate regression of all error variances and covariances
on the original regressors and their squares. The test is χ2(sn(n + 1)/2), where
s is the number of non-redundant added regressors (collinear regressors are auto-
matically removed). The null hypothesis is no heteroscedasticity, which would be
rejected if the test statistic is too high. Note that regressors that were classified as
unrestricted are excluded.

5. Vector heteroscedasticity test (using squares and cross-products)
This test is similar to the heteroscedasticity test, but now cross-products of regres-
sors are added as well. Again, the null hypothesis is no heteroscedasticity (the name
functional form was used in version 8 of PcGive).

15.10.4 Testing for general restrictions

Writing θ̂ = vecΠ̂′, with corresponding variance-covariance matrix V[θ̂], we can test
for (non-) linear restrictions of the form:

f (θ) = 0. (15.43)

The null hypothesis H0: f(θ) = 0 will be tested against H1: f(θ) 6= 0 through a Wald
test:

w = f
(
θ̂
)′(

ĴV
[̃
θ̂
]
Ĵ′
)−1

f
(
θ̂
)

(15.44)

where J is the Jacobian matrix of the transformation: J = ∂f(θ)/∂θ′. PcGive com-
putes Ĵ by numerical differentiation. The statistic w has a χ2(s) distribution, where s



228 Chapter 15 Unrestricted System

is the number of restrictions (that is, equations in f(·)). The null hypothesis is rejected
if we observe a significant test statistic.

Output consists of:
1. Wald test for general restrictions, this is the statistic w with its p-value;

2. *Restricted variance, the matrix ĴV[̃θ̂]Ĵ′.

15.11 Progress

PcGive can be used in two ways: for general-to-specific modelling, and for unordered
searches.

In the general-to-specific approach:
1. Begin with the dynamic system formulation.
2. Check its data coherence and cointegration.
3. Map the system to I(0) after cointegration analysis.
4. Transform to a set of variables with low intercorrelations, but interpretable parame-

ters.
5. Check the validity of the system by thorough testing.
6. Move to the dynamic model formulation.
7. Delete unwanted regressors to obtain a parsimonious model.
8. Check the validity of the model by thorough testing, particularly parsimonious en-

compassing.

Nothing commends unordered searches:
1. No control is offered over the significance level of testing.
2. A ‘later’ reject outcome invalidates all earlier ones.
3. Until a model adequately characterizes the data, standard tests are invalid.
4. If the system displays symptoms of mis-specification, there is little point in impos-

ing further restrictions on it.
PcGive does not enforce a general-to-simple modelling strategy, but it will automati-
cally monitor the progress of the sequential reduction from the general to the specific,
and will provide the associated likelihood-ratio tests.

More precisely, the program will record a sequence of systems, and for the most
recent system the sequence of models (which could be empty). The program gives a
list of the selected systems and models, reporting the estimation method, sample size
(T ), number of coefficients (k), the log-likelihood (Kc− 2

T log |Ω̂|). Three information
criteria are also reported: the Schwarz criterion, the Hannan–Quinn criterion and the
Akaike criterion, see §214.

Following this, PcGive will report the F-tests (based on Rao’s F-approximation)
indicating the progress in system modelling, as well as likelihood-ratio tests (χ2) of the
progress in modelling that system (tests of over-identifying restrictions).
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Cointegrated VAR

Following on from §15.9.1, it is possible to estimate a cointegrated VAR which has a
reduced rank long-run matrix P0 = αβ′, or, possibly, additional restrictions on α or
β.

Following estimation of a cointegrated VAR, most evaluation facilities of the un-
restricted system are available, but with the πi in (15.1) replaced with the π̂i from the
restricted VAR. Note that this is different from version 9 of PcFiml, where evaluation
was still based on the unrestricted system.

All β̂ and α̂ below relate to the restricted estimates, according to the selected rank
p, and any additional restrictions imposed in the cointegrated VAR estimation (note that
it is possible to impose no restrictions at all).

16.0.1 Cointegration restrictions

Within a cointegration VAR analysis, restrictions on α and β can be imposed:
1. general (non-linear) restrictions on α and β′;
2. restricted α : αr = Aθ;
3. restricted β : βr = Hφ;
4. known β : βr = [H : φ];
5. (1) and (2) jointly;
6. (1) and (3) jointly.
PcGive requires you to choose the rank p. For (1)–(5), the restrictions are expressed
through the A and/or H matrix. The general restrictions of (6) are expressed directly
in terms of the elements of α and β′. Examples of these tests are given in §12.8.

16.1 Cointegrated VAR output
Output of the cointegration estimation is:
1. β̂;
2. Standard errors of beta but only if the restricted β̂ is identified;
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3. α̂;
4. Standard errors of alpha;
5. Long-run matrix P̂0 = α̂β̂′, rank p;
6. Standard errors of P̂0;
7. Reduced form beta

Partition β̂′ as: (
β̂′11 β̂′12

β̂′21 β̂′22

)
where β̂′11 is the top left (p× p) block of β̂′, then when β̂′11 is non-singular, the
reduced form matrix is:

−
(
β̂′11

)−1

β̂′12.

8. Moving-average impact matrix: see §5.6.
This is followed by:

1. the log-likelihood (15.13), −T/2 log |Ω̂|;
2. T , the number of observations used in the estimation, and the number of parameters

in all equations;
3. rank of long-run matrix p;
4. number of long-run restrictions in excess of the reduced rank restriction;
5. a message whether β is identified or not;
6. a ξ2 test for over-identifying restrictions if any have been imposed.

16.2 Graphic analysis
Some graphs additional to those listed in §15.5 are available for a cointegrated VAR.

For generality, assume that the variables zr were restricted to lie in the cointegrat-
ing space. Let α0, β′0 denote the original standardized loadings and eigenvectors; αr,
β′r are obtained after imposing further restrictions on the cointegrating space. In the
unrestricted graphs, the analysis proceeds as if no rank has been chosen yet, corre-
sponding to n eigenvectors. The restricted analysis requires selection of p, the rank of
the cointegrating space, thus resulting in fewer graphs.

Write (y; z) for (y′; z′), and let (yt; zr) denote the original levels of the endogenous
variables and the variables restricted to lie in the cointegrating space; r1t = (y̌t−1; žr)

are the residuals from regressing (yt−1; zr) on the short-run dynamics ({∆yt−i}) and
unrestricted variables (zu). For all graphs there are two variants:
1. Use (Y:Z)

This uses (yt; zr).
2. Use (Y 1:Z) with lagged DY and U removed

This uses r1t.
The available graphs are:

1. Cointegration relations
β̂′0(yt; zr), or β̂′0r1t. Write the standardized ith eigenvector as (β1 · · ·βn βn+1

· · ·βn+qr )′, standardized so that βi = 1. The ith cointegration relation graph
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is:
∑
j βjyjt +

∑
k βkzkt and using concentrated components:

∑
j βj y̌jt−1 +∑

k βkžkt.
2. Actual and fitted

The graphs of the cointegrating relations are split into two components: the ac-
tuals yt and the fitted values yt − β̂′0(yt; zr). All lines are graphed in devia-
tion from mean. Alternatively: the y̌t−1 and the fitted values y̌t−1 − β̂′0r1t, in
deviation from mean. Considering the ith graph of actual and fitted, using the
above notation for the standardized ith eigenvector: yit and yit −

∑
j βjyjt −∑

k βkzkt = −
∑
j 6=i βjyjt −

∑
k βkzkt whereas using concentrated components:

yit and −
∑
j 6=i βj y̌jt−1 −

∑
k βkžkt.

3. Components of relation
Graphs all the components of β̂′0(yt; zr) or β̂′0r1t, in deviations from their means.
For the ith graph: yit, βjyjt (j 6= i) , βkzkt all in deviation from their means. Us-
ing concentrated components: y̌it, βj y̌jt−1 (j 6= i) , βkžkt also in deviation from
means.

16.3 Recursive graphics
Recursive graphics is available when the cointegrated VAR is estimated recursively.
Unrestricted variables and short-run dynamics can be fixed at their full-sample coeffi-
cients, or partialled out at each sample size.

The types of graphs are:
1. Eigenvalues λ̂it. These are only available if no additional restrictions have been

imposed.
2. Log-likelihood/T , see (15.22).

Only available if additional restrictions was used (but this can be used without spec-
ifying any code, i.e. without any restrictions).

3. Test for restrictions
The χ2 test for the restrictions; its critical value is also shown. Only available if
long-run restrictions were imposed. The p-value can be set.

4. Beta coefficients
Recursive βs. Only available if β is identified.
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Simultaneous Equations Model

Once a statistical system has been adequately modelled and its congruency satisfactorily
evaluated, an economically meaningful structural interpretation can be sought. The
relevant class of model has the form:

Byt + Cwt = ut, ut ∼ INn [0,Σ] , t = 1, . . . , T. (17.1)

The diagonal of B is normalized at unity. More concisely:

BY′ + CW′ = AX′ = U′, (17.2)

with A = (B : C) and X = (Y : W). PcGive accepts only linear, within-equation
restrictions on the elements of A for the initial specification of the identified model,
but allows for further non-linear restrictions on the parameters (possibly across equa-
tions). The order condition for identification is enforced, and as discussed in §13.2, the
rank condition is required to be satisfied for arbitrary (random) non-zero values of the
parameters.

A subset of the equations can be identities, but otherwise Σ is assumed to be positive
definite and unrestricted. When identities are present, the model to be estimated is
written as:

AX′ =

(
A1

A2

)
X′ =

(
U′

0

)
(17.3)

where A1X
′ = U′ is the subset of n1 stochastic equations and A2X

′ = 0 is the
subset of n2 identities with n1 +n2 = n. PcGive requires specification of the variables
involved in the identities, but will derive the coefficients A2.

17.1 Model estimation

Let φ denote the vector of unrestricted elements of vec(A′1): φ = Avu
1 . Then ` (φ) is

to be minimized as an unrestricted function of the elements of φ. On convergence, we

232
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have the maximum likelihood estimator (MLE) of φ:

φ̂ = argmaxφ∈Φ ` (φ) (17.4)

and so have the MLE of A1; as all other elements of A2 are known, we have the MLE of
A. If convergence does not occur, reset the parameter values, and use a looser (larger)
convergence criterion to obtain output.

The estimated variance of ut is:

Σ̃ =
Â1X

′XÂ′1
T − c

, (17.5)

which is (n1 × n1). There is a degrees-of-freedom correction c, which equals the av-
erage number of parameters per equation (rounded towards 0); this would be k for the
system.

From A, we can derive the MLE of the restricted reduced form:

Π̂ = −B̂−1Ĉ (17.6)

and hence the estimated variances of the elements of φ̂ :

V
[̃
φ̂
]

=
{(

Σ̃−1 ⊗ Q̂W′WQ̂′
)u}−1

(17.7)

where, before inversion, we choose the rows and columns of the right-hand side corre-
sponding to unrestricted elements of A1 only, and Q′ = (Π′ : I).

The covariance matrix of the restricted reduced form residuals is obtained by writ-
ing:

B−1 =

(
B11 B12

B21 B22

)
, (17.8)

where B11 is (n1 × n1). Then:

Ω =

(
B11

B21

)
Σ
(
B11′ : B21′) , (17.9)

with:
Ω̃11 = B̂11Σ̃B̂

11′
(17.10)

corresponding to the stochastic equations. The estimated variance matrix of the re-
stricted reduced form coefficients is:

V
˜[
vecΠ̂′

]
= ĴV

[̃
φ̂
]
Ĵ′ where J = −

(
B−1 ⊗ (Π′ : I)

)u
. (17.11)

17.2 Model output
Model estimation follows the successful estimation of the unrestricted reduced form.
The sample period and number of forecasts carry over from the system.

The following information is needed to estimate a model:



234 Chapter 17 Simultaneous Equations Model

1. The model formulation.
2. The method of estimation:

Full information maximum likelihood (FIML);
Three stage least squares (3SLS);
Two stage least squares (2SLS);
Single equation OLS (1SLS);
Constrained FIML (CFIML)

is available when selecting constrained simultaneous equations model.
3. The number of observations to be used to initialize the recursive estimation (FIML

and CFIML).
4. For CFIML: the code specifying the parameter constraints.

All model estimation methods in PcGive are derived from the estimator-generating
equation (EGE), see Chapter 13. We require the reduced form to be a congruent data
model, for which the structural specification is a more parsimonious representation.

The model output coincides to a large extent with the system output. In the follow-
ing we only note some differences:
1. Identities

Gives the coefficients of the n2 identity equations, together with the R2 of each
equation, which should be 1 (values ≥ .99 are accepted).

2. Structural coefficients and standard errors, φ̂ and
√

(V[̃φ̂])ii, given for all n1 equa-
tions.

3. t-value and t-probability
The t-probabilities are based on a Student t-distribution with T − c degrees of free-
dom. The correction c is defined below equation (17.5).

4. Equation standard error (σ)
The square root of the structural residual variance for each equation:√

Σ̃ii for i = 1, . . . , n1. (17.12)

5. Likelihood
The log-likelihood value is (including the constant Kc):

̂̀= Kc −
T

2
log
∣∣∣Σ̃∣∣∣+ T log

∣∣∣|B̂|∣∣∣ = −Tn
2

(1 + log 2π)− T

2
log
∣∣∣Ω̂11

∣∣∣ . (17.13)

Reported are ̂̀, −T/2 log |Ω̂11|, |Ω̂11| and the sample size T .
6. LR test of over-identifying restrictions

This tests whether the model is a valid reduction of the system.
7. *Reduced form estimates, consisting of:

(a) Reduced form coefficients;
(b) Reduced form coefficient standard errors;
(c) Reduced form equation standard errors.

8. *Heteroscedastic-consistent standard errors
HCSE for short; computed for FIML only, but not for unrestricted variables. These
provide consistent estimates of the regression coefficients’ standard errors even if



Chapter 17 Simultaneous Equations Model 235

the residuals are heteroscedastic in an unknown way. Large differences between the
HCSE and SE are indicative of the presence of heteroscedasticity, in which case the
HCSE provides the more useful measure of the standard errors (see White, 1980).
They are computed as: Q−1IQ−1, Q = V[φ̂], I =

∑T
t=1 qtq

′
t, the outer product

of the gradients.

17.3 Graphic analysis
Graphic analysis focuses on graphical inspection of individual restricted reduced form
equations. Let yt, ŷt denote respectively the actual (that is, observed) values and the
fitted values of the selected equation, with RRF residuals v̂t = yt − ŷt, t = 1, . . . , T . If
H observations are used for forecasting, then ŷT+1, . . . , ŷT+H are the 1-step forecasts.

Except for substituting the (restricted) reduced form residuals, graphic analysis fol-
lows the unrestricted system, see §16.2.

17.4 Recursive graphics
When recursive FIML or CFIML is selected, theφ and Σ matrices are estimated at each
t (k ≤M ≤ t ≤ T ) whereM is user selected. For each t, the RRF can be derived from
this.

The recursive graphics options follow §15.6, with the addition of the tests for over-
identifying restrictions.

Let ̂̀t be the log-likelihood of the URF, and ̂̀0,t the log-likelihood of the RRF. The
tests for over-identifying restrictions, 2(̂̀t − ̂̀0,t), can be graphed with a line graphing
the critical value from the χ2(s) distribution (s is the number of restrictions) at a chosen
significance level.

17.5 Dynamic analysis, forecasting and simulation
These proceed as for the system, but based on the restricted reduced form. Graphs are
available for identity equations.

Impulse response analysis maps the dynamics of the endogenous variables through
the restricted reduced form. The initial values i1,j for the jth set of graphs can be
chosen as follows:
1. unity

i1,j = −B−1ej .
2. standard error

i1,j = −B−1ej σ̃jj ,
where σ̃jj is the jth diagonal element of Σ̃.

3. orthogonalized

i1,j = −B−1

(
pj
0

)
,
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where pj is the jth column of the Choleski decomposition of Σ̃, and it is padded
with zeros for identity equations. As in the system, the outcome depends on the
ordering of the variables.

4. custum
i1,j = −B−1vj ,
where vj is specified by the user.

17.6 Model testing
The vector error autocorrelation test partials lagged structural residuals out from the
original regressors, and re-estimates the model. All other tests take the residuals from
the RRF, and operate as for the system.

Note, however, that application of single-equation autocorrelation and het-
eroscedasticity tests in a model will lead to all reduced-form variables being used
in the auxiliary regression. If the model is an invalid reduction of the system, this
may cause the tests to be significant. Equally, valid reduction combined with small
amounts of system residual autocorrelation could induce significant single-equation
model autocorrelation. The usual difficulty of interpreting significant test outcomes is
prominent here.

A similar feature operates for the vector heteroscedasticity tests, where all reduced-
form variables (but not those classified as unrestricted) are used in the auxiliary regres-
sion.
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Appendix A1

Algebra and Batch for Multiple
Equation Modelling

PcGive is mostly menu-driven for ease of use. To add flexibility, certain functions can
be accessed through entering commands. The syntax of these commands is described
in this chapter.

Algebra is described in the OxMetrics manuals. Algebra commands are executed in
OxMetrics, via the Calculator, the Algebra editor, or as part of a batch run.

A1.1 General restrictions

Restrictions have to be entered when testing for parameter restrictions and for imposing
parameter constraints for estimation. The syntax is similar to that of algebra, albeit
more simple.

Restrictions code may consist of the following components: (1) Comment, (2) Con-
stants, (3) Arithmetic operators. These are all identical to algebra. In addition there
are:

(4) Parameter references
Parameters are referenced by an ampersand followed by the parameter number.
Counting starts at 0, so, for example, &2 is the third parameter of the model. What
this parameter is depends on your model. Make sure that when you enter restric-
tions through the batch language, you use the right order for the coefficients. In
case of system estimation, PcGive will reorder your model so that the endogenous
variables come first.
Consider, for example, the following unconstrained model:

CONSt = β0CONS 1t + β1INCt + β2INC 1t + β3INFLATt + β4 + ut.

Then &0 indicates the coefficient on CONS 1, etc.

Table A1.1 lists the precedence of the operators available in restrictions code, with
the highest precedence at the top of the table.

239
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Table A1.1 Restrictions operator precedence

Symbol Description Associativity
& Parameter reference
- Unary minus Right to left
+ Unary plus
^ Power Left to right
* Multiply Left to right
/ Divide
+ Add Left to right
- Subtract

A1.1.1 Restrictions for testing

Restrictions for testing are entered in the format: f(θ) = 0;. The following restrictions
test the significance of the long-run parameters in the unconstrained model given above:

(&1 + &2) / (1 - &0) = 0;
&3 / (1 - &0) = 0;

A1.1.2 Restrictions for estimation

PcGive allows estimation of two types of non-linear models: FIML with parameter
constraints (CFIML), and restrictions on a cointegrated VAR. Examples were given in
the tutorial chapters.

Parameter constraints for estimation are written in the format: θ∗ = g(θ);. First
consider an example which restricts parameter 0 as a function of three other parameters,
creating a model which is non-linear in the parameters:

&0 = -(&1 - &2) * &3;
&4 = 0;

Tests for general restrictions on the α and β matrices from the cointegration analy-
sis can be expressed directly in the elements of α and β′. Consider a system with three
variables and cointegrating rank of 2. Then the elements are labelled as follows:

α =

 &0 &1

&2 &3

&4 &5

 , β =

(
&6 &7 &8

&9 &10 &11

)
.

To test the necessary conditions for weak exogeneity, for example, set:
&1 = 0; &2 = 0; &4 = 0;

Starting values may be supplied as follows:
&1 = 0; &2 = 0; &4 = 0;
start = 1 -1 1 -1 2 4 3 5 6;

A value is listed for each unrestricted parameter, so &0 starts with the value 1, &3 with
-1, etc. here the starting values were picked randomly. Of course, it is only useful to
specify starting values if these are better than the default values.
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A1.2 PcGive batch language

Table A1.2 Batch language syntax summary

adftest("var", lag, deterministic=1, summary=1);
algebra { . . .}
appenddata("filename", "group");
appresults("filename");
arorder(ar1, ar2);
autometrics(pvalue, "outlier"="none", prelag=1);
autometrics set("option", value);
break;

chdir("path");
command("command line");
cointcommon { . . .}
cointknown { . . .}
constraints { . . .}
createinterventions { . . .}
database(year1, period1, year2, period2, frequency);
derived { . . .}
dynamics;

estimate("method"=OLS, year1=-1, period1=0, year2=-1, period2=0, forc=0, init=0);
exit;

forecast(nforc, hstep=0, setype=1, levels=0, robust=0, hegdehog=0, gap=0);
loadalgebra("filename");
loadbatch("filename");
loadcommand("filename");
loaddata("filename");
model { . . .}
module("name");
nonlinear { . . .}
option("option", argument);
output("option");
package("PcGive", "package");
print("text");
println("text");
progress;

rank(rank);
savedata("filename");
saveresults("filename");
setdraw("option", i1=0, i2=0, i3=0, i4=0, i5=0);
store("name", "rename"="");
system { . . .}
test("test", lag1=0, lag2=0);
testlinres { . . .}
testgenres { . . .}
testsummary;

usedata("databasename");
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PcGive allows models to be formulated, estimated and evaluated through batch
commands. Such commands are entered in OxMetrics. Certain commands are inter-
cepted by OxMetrics, such as those for loading and saving data, as well as blocks of
algebra code. The remaining commands are then passed on to the active module, which
is PcGive in this case. This section gives an alphabetical list of the PcGive batch lan-
guage statements. There are two types of batch commands: function calls (with or
without arguments) terminated by a semicolon, and commands, which are followed by
statements between curly brackets.

Anything between /* and */ is considered comment. Note that this comment can-
not be nested. Everything following // up to the end of the line is also comment.

OxMetrics allows you to save the current model as a batch file, and to rerun saved
batch files. If a model has been created interactively, it can be saved as a batch file for
further editing or easy recall in a later session. This is also the most convenient way to
create a batch file.

If an error occurs during processing, the batch run will be aborted and control re-
turned to OxMetrics. A warning or out of memory message will have to be accepted by
the user (press Enter), upon which the batch run will resume.

In the following list, function arguments are indicated by words, whereas the ar-
eas where statement blocks are expected are indicated by . . . . Examples follow the
list of descriptions. For terms in double quotes, the desired term must be substituted
and provided together with the quotes. A command summary is given in Table A1.2.
For completeness, the Table A1.2 also contains the commands which are handled by
OxMetrics. Consult the OxMetrics book for more information on those commands.
adftest("var", lag, deterministic=1, summary=1);

The var argument specifies the variable for the ADF test, lag is the lag length to be
used. The det argument indicates the choice of deterministic variables:

0 no deterministic variables,
1 constant,
2 constant and trend,
3 constant and seasonals,
4 constant, trend and seasonals.

Finally, the summary argument indicates whether a summary table is printed (1) or
full output (0).

arorder(ar1, ar2);
Specifies the starting and ending order for RALS estimation. Note that the estima-
tion sample must allow for the specified choice.

autometrics(pvalue, "outlier"="none", prelag=1);
Indicates that Autometrics should be run at significance level pvalue. All options
are set to their default values. The optional second argument specifies the outlier
choice, and is one of
"none" nothing added;
"large" adds an impulse dummy for large outliers;
"IIS" (or "dummy") adds an impulse dummy for every observation: impulse indi-
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cator saturation (IIS);
"SIS" or adds a step dummy (or level shift: one up to the date used in the variable

name) for every observation: step indicator saturation (SIS);
"IIS+SIS" impulse and step saturation;
"DIIS" adds a differenced impulse dummy for every observation (one, minus one,

rest zero);
"DIIS+IIS" differences and impulse saturation.

The third argument specifies whether pre-search lag reduction should be run or not
(1 or 0).

autometrics set("option", value);
See Volume I.

cointcommon { . . .}
Sets the constraints for cointegrated VAR – use rank first to set the rank p. Two
matrices are specified, first A then H. A is the matrix of restrictions on α, namely
α = Aθ. H is the matrix of known β, to test β = [H : φ]. The A and H are
specified in the same way as a matrix in a matrix file: first the dimensions are given,
then the contents of the matrix. Note that 0 0 indicates a matrix of dimension 0× 0,
that is, absence of the matrix. This can be used to have either α or β unrestricted.
This command must appear before estimate.

cointknown { . . .}
Sets the constraints for cointegrated VAR – use rank first to set the rank p. A and
H are matrices of restrictions on α and β for cointegration tests: α = Aθ and/or
β = Hφ. The matrices are specified as in cointcommon.
This command must appear before estimate.

constraints { . . .}
Sets the constraints for cointegrated VAR (use rank first to set the rank p) or for
constrained simultaneous equations (CFIML) estimation. This command must ap-
pear before estimate.

createinterventions { . . .}
This PcGive batch function creates interventions in the current OxMetrics database.
The argument inside the curly braces is a comma-separated list of names inside
double quotes. The names uses the same format as Autometrics, e.g.

createinterventions {"I:1980(3)","S1:2009(8)","DI:1990(3)"}

derived { . . .}
Specify Algebra code for derived variables to be used in forecasting.

dynamics;

Does part of the dynamic analysis: the static long-run solution and the lag structure
analysis.

estimate("method"=OLS, year1=-1, period1=0, year2=-1, period2=0, forc=0,
init=0);
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Estimate a system. The presence of default arguments implies that the shortest ver-
sion is just: estimate(), which estimates by OLS using the maximum possible
sample, and no forecasts. Similarly, a call to estimate("OLS", 1950, 1) corre-
sponds to estimate("OLS", 1950, 1, -1, 0, 0, 0).
The method argument is one of:

OLS-CS ordinary least squares (cross-section regression),
IVE-CS instrumental variables estimation (cross-section regression),
OLS ordinary least squares,
IVE instrumental variables estimation,
RALS autoregressive least squares (also see arorder),
NLS non-linear least squares (non-linear modelling),
ML maximum likelihood (non-linear modelling),
COINT cointegrated VAR,
FIML full information ML (simultaneous equations modelling),
3SLS three-stage LS (simultaneous equations modelling),
2SLS two-stage LS (simultaneous equations modelling),
1SLS single equation OLS (simultaneous equations modelling),
CFIML constrained FIML (constrained simultaneous equations modelling).

year1(period1) – year2(period2) is the estimation sample. Setting year1 to −1 will
result in the earliest possible year1(period1), setting year2 to −1 will result in the
latest possible year2(period2).
forc is the number of observations to withhold from the estimation sample for fore-
casting.
init is the number of observations to use for initialization of recursive estimation
(not if method is RALS); no recursive estimation is performed if init = 0.

forecast(nforc, hstep=0, setype=1, levels=0, robust=0, hegdehog=0, gap=0);
Prints nforc dynamic forecasts (when hstep is zero) or hstep forecasts. The third
argument is the standard error type: 0 to not compute; 1 for error variance only (the
default); 2 to include parameter uncertainty. For example, forecast(8) produces
eight dynamic forecasts with error-variance based standard errors; forecast(8,4)
produces the 4-step forecasts (note that the first three will coincide with 1,2,3-step
respectively). Use the store command next to store the forecasts if necessary.
Set the levels argument to one to also produce levels forecasts; and set the robust
argument to one to include robust forecasts. The hegdehog argument can be used
to produce hedgehog graphs (forecasting ahead from each point in the estimation
sample). Finally gap waits the specified number of observations after the end of the
estimation sample to start forecasting.

model { . . .}
Specify the model. There must be an equation for each endogenous and identity
endogenous variable specified in the system statement. An example of an equation
is: CONS=CONS 1,INC;. Note that PcGive reorders the equations of the model into
the order they had in the system specification. Right-hand-side variables are not
reordered.
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module("PcGive");

Starts the PcGive module. If PcGive is already running, this batch command is not
required.

nonlinear { . . .}
Formulates a single-equation non-linear model.

option("option", argument);
The first set relates to maximization:

option argument value
maxit maximum number of iterations default: 1000,
print print every # iteration 0: do not print,
compact compact or extended output 0 for off, 1 on,
strong strong convergence tolerance default: 0.005,
weak set weak convergence tolerance default: 0.0001,

The second set of options adds further output automatically:

option argument value
equation add equation format 0 for off, 1 on,
infcrit report information criteria 0 for off, 1 on.
instability report instability tests 0 for off, 1 on,
HCSE Heteroscedasticity-consistent SEs 0 for off, 1 on,
r2seasonals report R2 about seasonals 0 for off, 1 on,

The final option is for recursive estimation of cointegrated VARs:

option argument value
shortrun re-estimate shortrun 1: re-estimate, 0: fixed.

output("option");
Prints further output:

option
correlation print correlation matrix of variables,
covariance print covariance matrix of coefficients,
equation print the model equation format,
forecasts print the static forecasts,
HCSE Heteroscedasticity-consistent standard errors
infcrit report information criteria,
instability report instability tests,
latex print the model in latex format,
r2seasonals report R2 about seasonals,
reducedform print the reduced form,
sigpar significant digits for parameters (second argument),
sigse significant digits for standard errors (second argument).

package("PcGive", "package");
Use this command to select the correct component (package) from PcGive:
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package
"Cross-section"

"Multiple-equation"

"Non-linear"

"Single-equation"

The package arguments can be shortened to 5 letters. All models in this book require
package("PcGive", "Multiple-equation").

progress;

Reports the modelling progress.

rank(rank);
Sets the rank p of the long-run matrix for cointegrated VAR analysis. This command
must appear before constraints and estimate.

store("name", "rename"="");
Use this command to store residuals, etc. into the database, the default name is
used. Note that if the variable already exists, it is overwritten without warning. The
name must be one of:
residuals residuals
fitted fitted values
structres structural residuals (model only)
res1step 1-step residual (after recursive estimation)
rss RSS (after recursive estimation)
stdinn stand. innovations (after single eqn recursive estimation)
eqse equation standard errors (recursive estimation)
loglik log-likelihood (after recursive estimation)
coieval eigenvalues (after recursive cointegration analysis)

The optional second argument replaces the default name. For example a sin-
gle equation model, store("residuals") stores the residuals under the name
Residual; store("residuals", "xyz") stores them under the name xyz. For
a multiple equation models, say INC and CONS, the names are VINC, VCONS in the
firstcase, and xyz1, xyz2 in the second.

system { Y=. . . ; Z=. . . ; U=. . . ; A=. . . ; }
Specify the system, consisting of the following components:
Y endogenous variables;
A additional instruments (optional; single-equation modelling only);
I identity endogenous variables (optional; multiple-equation modelling only);

Z non-modelled variables;
U unrestricted variables (optional).

The variables listed are separated by commas, their base names (that is, name ex-
cluding lag length) must be in the database. If the variable names are not a valid
token, the name must be enclosed in double quotes.
The following special variables are recognized: Constant, Trend, Seasonal and
CSeasonal.
Note that when IVE/RIVE are used PcGive reorders the model as follows: the en-
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dogenous variables first and the additional instruments last. This reordering is rele-
vant when specifying restrictions.
Note that PcGive reorders a multiple-equation system as follows: first the endoge-
nous variables and their lags: endogenous variables, identity endogenous variables,
first lag of these (variables in the same order), second lag, etc. then each exoge-
nous variable with its lags. For example, with y, c endogenous, i identity and w, z
exogenous:

yt ct it yt−1 ct−1 it−1 yt−2 ct−2 wt wt−1 zt zt−1

This reordering is relevant when specifying restrictions.

test("test", lag1=0, lag2=0);
Performs a specific test using the specified lag lengths.

"ar" test for autocorrelated errors from lag1 to lag2;
"arch" ARCH test up to order lag1;
"comfac" test for common factor;
"encompassing" tests the two most recent models for encompassing;
"hetero" heteroscedasticity test (squares);
"heterox" heteroscedasticity test (squares and cross products);
"I1" I(1) cointegration test for VAR estimated in levels;
"I2" I(2) cointegration test for VAR estimated in levels;
"instability" instability tests;
"normal" normality test;
"rescor" residual correlogram up to lag lag1;
"reset" Reset test using powers up to lag1.

testgenres { . . .}
Used to test for general restrictions: specify the restrictions between { }, conform-
ing to §A1.1.

testlinres { . . .}
Test for linear restrictions. The content is the matrix dimensions followed by the
(R : r) matrix.

testres { . . .}
Test for exclusion restrictions. The content lists the variables to be tested for ex-
clusion, separated by a comma (remember that variable names that are not proper
tokens must be enclosed in double quotes).

testsummary;

Do the test summary.

We finish with an annotated example using most commands.

chdir("#home"); // change to OxMetrics directory
loaddata("data.in7"); // Load the tutorial data set.
chdir("#batch"); // change to back to batch file dir.

module("PcGive"); // activate PcGive
package("PcGive", "Multi");// activate the PcGive package
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usedata("data.in7"); // use data.in7 for modelling
algebra
{ // Create SAVINGSL in database.

SAVINGSL = lag(INC,1) - lag(CONS, 1);
}
system
{

Y = CONS, INC, INFLAT; // Three endogenous variables;
I = SAVINGSL; // one identity endogenous variable;
Z = CONS_1, CONS_2, // the non-endogenous variables; the

INC_1,INC_2, // lagged variables need not (better:
INFLAT_1, INFLAT_2;// should not) exist in the database.

U = Constant; // the constant enters unrestricted.
}
estimate("OLS", 1953, 3, 1992, 3, 8);

// Estimate the system by OLS over 1953(2)-
// 1992(3), withhold 8 forecasts,

rank(2); // Rank of cointegrating space.
constraints // Cointegration restrictions, expressed in
{ // terms of loadings (a 3 x 2 matrix) and

// eigenvectors (in rows, a 2 x 3 matrix).
// Elements 0-5 are the loadings.

&6 = -&7;
&9 = -&10;

}
estimate("COINT", 1953, 3, 1992, 3, 8);

rank(2); // Rank of cointegrating space.
constraints
{

&0 = 0;
&1 = 0;

&6 = 1; // Restrictions on ECMs;
&7 = -1; // elements 6-8 are coefficients of 1st ECM
&8 = 6; // elements 9-11 of second ECM.

}
estimate("COINT", 1953, 3, 1992, 3, 8);

estimate("OLS");
testsummary; // Do the test summary.
testgenres // Test for parameter restrictions.
{ // Restrictions are on the INFLAT equation:

&12 = 0; // coefficient of CONS_1
&13 = 0; // coefficient of CONS_2
&14 - &15 = 0; // coefficient of INC_1 - coeff. of INC_2.

}
model // Specify the equations in the model,
{ // including the identity.

CONS = INC, SAVINGSL, INFLAT_1;
INC = INC_1, INC_2, CONS;
INFLAT = INFLAT_1, INFLAT_2;
SAVINGSL = INC_1, CONS_1;

}
estimate("FIML"); // Estimate the model by FIML using default sample
dynamics; // Do dynamic analysis.
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constraints // Impose constraints for constrained
{ // estimation.

&4 = 0; // Delete INC_2 from INC equation.
}
estimate("CFIML"); // Estimate the constrained model by CFIML;

// no observations required for
// initialization.

progress; // Report the modelling progress.



Appendix A2

Numerical Changes From Previous
Versions

From version 12 to 13

• The degrees of freedom computation of some tests has changed:

PcGive ≤ 12 PcGive ≥ 13

ARCH test F(s, T − k − 2s) F(s, T − 2s)

Heteroscedasticity test F(s, T − s− 1− k) F(s, T − s− 1)

• Additional changes to the Heteroscedasticity test:
– Observations that have a residual that is (almost) zero are removed, see
§11.9.1.5.

– When there are four or more equations, the vector Heteroscedasticity test is
based on the transformed residuals and omitting the cross-product. This keeps
the number of equations down to n (see §11.9.2.4).

– Unrestricted/fixed variables are now included in test (previously they were never
used in forming the squares or cross-products).

Changes between PcFiml 9.3 and PcGive 10

Essentially all results are unchanged, except that CFIML with unrestricted parameters
now reports identical standard errors as when the same variables are entered restrictedly.
PcFiml 9.3 would also not use the correct three seasonals when the database starts in
Q2/Q4 (which does not affect the likelihood).
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Changes between PcFiml version 8 and 9
The major change is the adoption of the QR decomposition with partial pivoting to com-
pute OLS and IV estimates. There are also some minor improvements in accuracy, the
following tests are the most sensitive to such changes: encompassing, heteroscedastic-
ity and RESET. The heteroscedasticity tests could also differ in the number of variables
removed owing to singularity. To summarize:
• QR decomposition in all regressions;
• analytical differentiation of restrictions;
• singular value based cointegration analysis;
• standard errors in (restricted) cointegration analysis take all parameters into ac-

count;
• new algorithms for restricted cointegration analysis;
• slightly improved error recovery in BFGS;
• reset every 50 observations in RLS and better handling of singular subsamples;
• recursive FIML now done backward.
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