		Sign restrictions	

A primer on Structural VARs

Claudia Foroni Norges Bank

10 November 2014

C. Foroni

Structural VARs

э

Norges Bank

・ロン ・四 と ・ ヨ と ・ ヨ と

Reduced-form VAR ●0000			Sign restrictions 0000	
Defeator	L	2		

Refresh: what is a VAR?

• VAR(p):

$$y_t = v + B_1 y_{t-1} + \dots + B_p y_{t-p} + u_t, \tag{1}$$

where

$$y_{t} = (y_{1t} \dots y_{Kt})'$$

$$B_{i} = K \times K \text{ coefficient matrices}$$

$$v_{t} = (v_{1} \dots v_{K})' \text{ vector of intercepts}$$

$$u_{t} = (u_{1t} \dots u_{Kt})' \text{ white noise}$$

$$E(u_{t}) = 0, E(u_{t}u_{t}') = \Sigma_{u}, E(u_{t}u_{s}') = 0, \forall s \neq t$$

C. Foroni

Norges Bank

Reduced-form VAR 0●000		Sign restrictions 0000	
Example			

Example: VAR(1) with three variables: GDP growth (y_t) , inflation (π_t) , interest rate (r_t)

$$\begin{pmatrix} y_t \\ \pi_t \\ r_t \end{pmatrix} = \begin{pmatrix} v_y \\ v_\pi \\ v_r \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{13} & b_{23} & b_{33} \end{pmatrix} \begin{pmatrix} y_{t-1} \\ \pi_{t-1} \\ r_{t-1} \end{pmatrix} + \begin{pmatrix} u_{yt} \\ u_{\pi t} \\ u_{rt} \end{pmatrix}$$
(2)

Structural VARs

Norges Bank

3

・ロン ・回 と ・ ヨン ・ ヨン

Reduced-form VAR 00●00			Sign restrictions 0000	
Lice of V/AF	2			

So far...

- Describe and summarize macroeconomic time series.
- Compute forecasts.

From Now...

- Understand how variables interact.
- Understand the effect of a shock over time on the different variables.
- Understand the contribution of a shock to the behaviour of the different variables.

-

Norges Bank

・ロト ・同ト ・ヨト ・ヨト

Reduced-form VAR	Structural VARs	Identification	Choleski	Sign restrictions	Structural Analysis
000●0	000	0000	00000		0000

Reduced-form VAR

$$y_t = By_{t-1} + u_t, \qquad (3)$$

$$u_t \sim N(0, \Sigma_u)$$
 (4)

イロト 不同 トイヨト イヨト

- Estimation: OLS.
- The constant is **not** the mean nor the long-run equilibrium value of the variable.
- The correlation of the residuals reflects the contemporaneous relation between the variables.

Norges Bank

Reduced-form VAR: interpretation

- Reduced-form VARs do not tell us anything about the structure of the economy.
- We cannot interpret the reduced-form error terms (*u_t*) as structural shocks.
- In order to perform policy analysis we want to have:
 - Orthogonal shocks...
 - 2 ...with economic meaning.
- We need a structural representation.

Norges Bank

イロト イポト イヨト イヨト

	Structural VARs ●00		Sign restrictions 0000	
Structural	VAR			

Ideally we want to know

$$Ay_{t} = By_{t-1} + e_{t}, \quad e_{t} \sim N(0, I)$$

$$(5)$$

where the ε_t are serially uncorrelated and independent of each other.

3

・ロン ・回と ・ヨン ・ヨン

 Reduced-form VAR
 Structural VARs
 Identification
 Choleski
 Sign restrictions
 Structural Analysis

 00000
 0●0
 0000
 0000
 0000
 0000

Estimation of structural VARs

- We cannot cannot estimate the structural form with OLS because it violates one important assumption: the regressors are correlated with the error term.
- The A matrix is problematic, since it includes all the contemporaneous relation among the endogenous variables.

Norges Bank

イロト 不同 トイヨト イヨト

How to solve the estimation issue

• Premultiply the SVAR in eq. (5) by A^{-1} :

$$A^{-1}Ay_{t} = A^{-1}By_{t-1} + A^{-1}e_{t}, \quad e_{t} \sim N(0, I) \quad (6)$$

$$\Longrightarrow$$
$$y_{t} = Fy_{t-1} + u_{t}, \quad u_{t} \sim N(0, \Sigma_{u}) \quad (7)$$

• The VAR in eq. (7) is the usual one we are used to estimate: the reduced-form VAR!

C. Foroni

Structural VARs

3

Norges Bank

・ロト ・同ト ・ヨト ・ヨト

	Identification	Sign restrictions	
	0000		

From the reduced-form back to the structural form

From

$$y_t = F y_{t-1} + u_t, \quad u_t \sim N(0, \Sigma_u)$$
(8)

Back to

$$Ay_{t} = By_{t-1} + e_{t}, \quad e_{t} \sim N(0, I).$$

$$(9)$$

• We know that:

$$F = A^{-1}B, \qquad (10)$$

$$u_t = A^{-1}e_t, (11)$$

$$\Sigma_u = A^{-1} I A^{-1'} = A^{-1} A^{-1'}.$$
 (12)

・ロン ・回 と ・ヨン ・ ヨン

Norges Bank

э

	Identification 0●00	Sign restrictions 0000	

Identification of A and B

- If we know $A^{-1} \Longrightarrow B = AF$.
- If we know $A^{-1} \Longrightarrow e_t = Au_t$.
- Identification: how to pin down A^{-1} .

Norges Bank

イロト イロト イヨト イヨト 二日

Identification problem

- We have 9 unknowns (the elements of A) but only 6 equations (because the variance-covariance matrix is symmetric)
- The system is not identified!

Norges Bank

3

イロト 不同 トイヨト イヨト

		ldentification 000●	Sign restrictions	
Identificati	on scheme	5		

- Zero short-run restrictions (also known as Choleski identification, recursive identification)
- Sign restrictions

and not covered in this primer...

- Zero long-run restrictions (also known as Blanchard-Quah)
- Theory based restrictions
- Via heteroskedasticity

Norges Bank

Zero short-run restrictions (Choleski identification)

• Assume A (or equivalently A^{-1}) to be lower triangular:

$$Ay_t = By_{t-1} + e_t \tag{14}$$

$$y_t = A^{-1}By_{t-1} + A^{-1}e_t$$
(15)
$$y_t = \widetilde{B}y_{t-1} + \widetilde{A}e_t$$
(16)

with

$$\widetilde{A} = \begin{pmatrix} \widetilde{a}_{11} & 0 & 0\\ \widetilde{a}_{21} & \widetilde{a}_{22} & 0\\ \widetilde{a}_{13} & \widetilde{a}_{23} & \widetilde{a}_{33} \end{pmatrix}$$
(17)

・ロト ・同ト ・ヨト ・ヨト

3

C. Foroni

Zero short-run restrictions (Choleski identification)

In our example:

$$\begin{pmatrix} y_t \\ \pi_t \\ r_t \end{pmatrix} = \begin{pmatrix} \widetilde{b}_{11} & \widetilde{b}_{12} & \widetilde{b}_{13} \\ \widetilde{b}_{21} & \widetilde{b}_{22} & \widetilde{b}_{23} \\ \widetilde{b}_{13} & \widetilde{b}_{23} & \widetilde{b}_{33} \end{pmatrix} \begin{pmatrix} y_{t-1} \\ \pi_{t-1} \\ r_{t-1} \end{pmatrix} + \begin{pmatrix} \widetilde{a}_{11} & 0 & 0 \\ \widetilde{a}_{21} & \widetilde{a}_{22} & 0 \\ \widetilde{a}_{13} & \widetilde{a}_{23} & \widetilde{a}_{33} \end{pmatrix} \begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{\pi t} \\ \varepsilon_{rt} \end{pmatrix}$$
(18)

- Remember: identification problem, we had 6 equations and 9 unknowns.
- Now: we set three elements of A equal to 0 => 6 equations and 6 unknowns: identification!

C. Foroni

Norges Bank

3

・ロト ・同ト ・ヨト ・ヨト

Zero short-run restrictions (Choleski identification)

• Choleski decomposition:

$$\Sigma_u = P'P \tag{19}$$

with P' lower triangular.

Since we have .

$$\Sigma_u = \mathcal{A}^{-1} \mathcal{A}^{-1\prime} \tag{20}$$

with A^{-1} lower triangular

• Then $P' = A^{-1} \Longrightarrow$ Choleski allows identification!

C. Foroni

Structural VARs

Norges Bank

イロト 不得 トイヨト イヨト ヨー うらつ

Choleski identification: interpretation

- Choleski identification is also called **recursive** identification. Why?
- Let's rewrite the VAR in eq. (18) one by one:

$$y_t = \dots + \widetilde{a}_{11}\varepsilon_{yt} \tag{21}$$

$$\pi_t = \dots + \widetilde{a}_{21}\varepsilon_{yt} + \widetilde{a}_{22}\varepsilon_{\pi t}$$
(22)

$$r_t = \dots + \widetilde{a}_{31}\varepsilon_{yt} + \widetilde{a}_{32}\varepsilon_{\pi t} + \widetilde{a}_{33}\varepsilon_{rt}$$
(23)

Norges Bank

э

Choleski identification: interpretation

- Let's look at the shocks:
 - ε_{yt} affects contemporaneously all the variables.
 - $\varepsilon_{\pi t}$ affects contemporaneously π_t and r_t , but not y_t .
 - ε_{rt} affects contemporaneously only r_t , but not y_t and π_t .
- The order of the variables matters!
 - The variable placed on top is the most exogenous (it is affected only by a shock to itself).
 - Each variable contemporaneously affects all the variables ordered afterwards, but it is affected with a delay by them.

Norges Bank

			Sign restrictions ●000	
Sign restrie	ctions			

• Remember Choleski:

$$\Sigma_u = P'P, \qquad (24)$$

where P is lower triangular.

- This decomposition is **not unique**.
- Take an orthonormal matrix, i.e. any matrix S such that:

$$S'S = I, (25)$$

Then we can write

$$\Sigma_{u} = P'P = P'IP = P'S'SP = \mathcal{P}'\mathcal{P}.$$
 (26)

• \mathcal{P} is generally not lower triangular anymore.

Structural VARs

C Foroni

Norges Bank

			Sign restrictions 0●00	
Sign restric	ctions			

- We can draw as many S as we want \Longrightarrow we can have as many $\mathcal P$ as we want.
- Question: is P plausible?
- We want to check whether the impulse responses implied by \mathcal{P} satisfy a set of sign restrictions, typically theory-driven.

Norges Bank

イロト イポト イヨト イヨト 一日

Reduced-form VARStructural VARsIdentificationCholeskiSign restrictionsStructural Analysis000000000000000000000000000

Sign restrictions: a very intuitive example

- How is a monetary policy shock affecting output? (Simplified version of Uhlig (JME, 2005)).
- A contractionary monetary policy should (conventional wisdom and theory):
 - Raise the federal fund rate,
 - 2 Lower prices.
- What happens to output? Since it is the question we want to answer, we leave output unrestricted, i.e. we do not make any assumption on it!
- We keep only the matrices which generate the responses to a monetary policy shock coherent with 1. and 2.

Norges Bank

イロン 不同 とくほう イヨン

Reduced-form VARStructural VARsIdentificationCholeskiSign restrictionsStructural Analysis000000000000000000000000000

Steps to implement sign restrictions

- **()** Estimate the resuced-form VAR and obtain F and Σ_u .
- **2** Compute $P' = chol(\Sigma_u)$.
- Oraw a random orthonormal matrix S.
- Compute $A^{-1} = \mathcal{P} = P'S'$.
- Compute the impulse responses associated with A^{-1} .
- Are the sign restrictions satisfied?
 - If yes, store the impulse response.
 - If no, discard the impulse response.
- Repeat 3-6 until you obtain N replications.
- Report the mean or median impulse response (and its confidence interval).

Norges Bank

-

Impulse response functions

- The impulse response function traces the effect of a one-time shock to one of the structural errors on the current and future values of all the endogenous variables.
- This is possible only when the errors are uncorrelated \implies structural form!

Norges Bank

イロン 不同 とくほう イヨン

- Remember previous classes on VAR...
- The impulse responses are derived from the MA representation of the VAR.
- Rewrite the VAR(p) in canonical form (i.e. as VAR(1)), as

$$y_t = F y_{t-1} + A^{-1} e_t (27)$$

$$IRF(0) = A^{-1} = P'$$
(28)

$$IRF(1) = FA^{-1}$$
(29)

$$IPF(0) = F^{2}A^{-1}$$
(20)

$$IRF(2) = F^2 A^{-1}$$
 (30)

イロト イポト イヨト イヨト

Norges Bank

C. Foroni

Structural VARs

Variance decomposition

- The variance decomposition separates the variation in a endogenous variable into the component shocks of the VAR.
- It tells what portion of the variance of the forecast error in predicting y_{i,T+h} is due to the structural shock e_j.
- It provides information about the relative importance of each innovation in affecting the variables.

Norges Bank

Historical decomposition

- The historical decomposition tells what portion of the deviation of $y_{i,t}$ from its unconditional mean is due to the shock e_i .
- The structural shocks push the variables away from their equilibrium values.

Norges Bank

э

イロン 不同 とくほう イヨン