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Introduction I
So far we have considered:

I Stationary VAR, (“no unit roots”)
I Standard inference

I Non-stationary VAR (“all unit-roots”)
I Danger of spurious relationships
I Need Dickey-Fuller distribution to test the null hypothesis of
unit-root for a single time series

We next consider cointegration, the case of “some, but not only
unit-roots” in the VAR.

I In such systems, there exist one or more linear combinations
of I (1) variables that are I (0)– they are called cointegration
relationships.
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Introduction II
I We may see already that cointegration is the “flip of the coin”
of spurious regression: If we have two dependent I (1)
variables, they are cointegrated.

I We can also guess the correct distrubtion to use for testing
the null hypothesis of no cointegration is going to be of the
Dickey-Fuller type:

Why: If we reject Yt ∼ I (1) against Yt ∼ I (0) using critical
values from DF-distributions, we have shown that Yt is
“cointegrated with itself!”
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Introduction III
I In these two lectures we sketch the theory of cointegration
more fully:

I The cointegrated VAR: VARs with some, but not all unit-roots
I Testing the null-hypothesis of no cointegration

I The cointegrating regression
I The conditional ECM
I VAR methods, testing hypotheses about multiple
cointegrating relationships

I Estimating the cointegrated VAR.
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Introduction IV
I Ci- relationships correspond to equilibrium relationships from
economic theory.

I Finding no evidence for cointegration should lead us to
question whether equilibrium is rightfully such a central
concept in macroeconomics.

I Finding too many (spurious) ci-relationships may lead us to
being too optimistic about the economy’s ability to regulate
itself.

I References:
I HN: Ch. 17.
I DM: Ch. 14.
I BN(2104): Kap. 11.
I The posted paper by Ericsson and MacKinnon.
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The VAR with one unstable and one stable root I

Consider the bi-variate first order VAR

yt = Φyt−1 + εt (1)

where yt = (Yt ,Xt ), Φ is a 2× 2 matrix with coeffi cients and εt
is a vector with Gaussian disturbances.
The characteristic equation for Φ:

|Φ− zI| = 0,

Our interest is the case with one unit-root and one stationary root:

z1 = 1, and z2 = λ, |λ| < 1. (2)

implying that both Xt and Yt are I (1). Why?
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The VAR with one unstable and one stable root II

Φ has full rank, equal to 2. It can be diagonalized in terms of its
eigenvalues and the corresponding eigenvectors:

Φ = P
[
1 0
0 λ

]
Q (3)

P has the eigenvectors as columns:

P =
[

α β
γ δ

]
(4)
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Cointegrated VAR– ECM implication I
Using the above assumptions and diagonalization (1) can be
written as: [

Wt

−ECt

]
=

[
1 0
0 λ

] [
Wt−1
−ECt−1

]
+ ηt , (5)

ηt contains linear combinations of the original VAR disturbances.
ECt and Wt are given by:

Wt = δYt − βXt (6)

ECt = −γYt + αXt . (7)

I Wt ∼ I (1),is a stochastic trend (Random-Walk)
I ECt ∼ I (0),a stationary variable
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Cointegrated VAR– ECM implication II

I We say that there is cointegration between Xt and Yt , since
ECt is a stationary variable, and it is a linear combination of
Xt and Yt .

I −γ and α are the cointegrating parameters in this example.
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The Common Trends representation I
The Common Trends representation for Yt and Xt is:

Yt = αWt − βECt (8)

Xt = γWt − δECt . (9)

I Xt and Y have a common stochastic trend, namely Wt .
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The Common Trends representation II

Two consequences for forecasts

1. Forecasts for XT+h|T and YT+h|T become dominated by the
common stochastic trend

2. Cointegration is maintained in the forecasts, so
ECT+h|T = −γXT+h|T + αYT+h|T = 0 for large h.
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The ECM representation of the cointegrated VAR I
As before, can re-parameterize the VAR (1) as

∆yt = Πyt−1 + εt (10)

with
Π = (Φ− I) (11)

Next, define two (2 × 1) parameter vectors α and β in such a way
that the product αβ′ gives Π:

Π=αβ′ (12)

In our example, it can be shown (compare BN 2014 Kap 11)

Π=

[
(1− λ)β
(1− λ)δ

]
︸ ︷︷ ︸

α

[
γ −α

]︸ ︷︷ ︸
β′
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The ECM representation of the cointegrated VAR II

and then (10) can be expressed as:[
∆Yt
∆Xt

]
= αβ′

[
Yt−1
Xt−1

]
+ εt , (13)

I α is known as the (matrix) of equilibrium correction
coeffi cients (aka adjustment coeffi cients, or loadings),

α =

[
(1− λ)β
(1− λ)δ

]
(14)

I β is the matrix of long-run cointegration coeffi cients
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The ECM representation of the cointegrated VAR III

β =

[
γ
−α

]
(15)

In this formulation we see that

I rank(Π) = 0, reduced rank and no cointegration. Both
eigenvalues are zero.

I rank(Π) = 1, reduced rank and cointegration. One
eigenvalue is different from zero.

I rank(Π) = 2, full rank, both eigenvalues are different from
zero and the VAR (1) is stationary.

Cointegration and Granger causality
Since λ < 1 is equivalent with cointegration, we see from (14) that
cointegration also implies Granger-causality in at least one
direction: (1− λ)β 6= 0 and/or (1− λ)β 6= 0.
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The ECM representation of the cointegrated VAR IV

Cointegration and weak exogeneity

I Assume δ = 0, from (14). This implies[
∆Yt
∆Xt

]
= (1− λ)

[
β
0

]
[γYt−1 − αXt−1] + εt[

∆Yt
∆Xt

]
=

[
(1− λ)β[γYt−1 − αXt−1] + εy ,t

εx ,t

]
I The marginal model contains no information about the
cointegration parameters (γ,−α)′. Yt is Weakly Exogenous
(WE) for the cointegration parameters β′ = (γ,−α)′.

I So how can be test for WE of Xt with respect to β ?
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Generalization of ECM

VAR(p) – > ECM general case I
If yt is n× 1 with I (1) variables. The VAR is:

yt = Φ(L)yt−1 + εt

where εt is multivariate Gaussian and

Φ(L) =
p

∑
i=0

Φi+1Li (16)

In analogy to the scaler case, the matrix lag-polynomial can be
written as

Φ(L) = Φ(1) + ∆Φ∗(L)

where the Φ∗i matrices

Φ∗(L) = Φ∗1 +Φ∗2L+ . . .+Φ∗p−1L
p−1
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Generalization of ECM

VAR(p) – > ECM general case II
are linear transformations of Φi (i = 1, . . . , p). Substitution yields

yt = Φ∗(L)∆yt−1 +Φ(1)yt−1 + εt

∆yt = Φ∗(L)∆yt−1 +Π(1)yt−1 + εt (17)

where Π(1) ≡ Φ(1)− IN = 0 in the case of no cointegration but

Π(1) = αβ′ (18)

in the case of r cointegrating-vectors.

I βn×r contains the CI-vectors as columns, while αn×r shows
the strength of equilibrium correction in each of the equations
for ∆Y1t ,∆Y2t , . . . ,∆Ynt . In general rank(β) = r and
rank(Π) = r < n.
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Generalization of ECM

VAR(p) – > ECM general case III

I If β is known, the system

∆yt = Φ∗(L)∆yt−1 + α[β′y]t−1 + εt (19)

contains only I (0) variables and conventional asymptotic
inference applies.

I Moreover: If β is regarded as known, after first estimating β ,
conventional asymptotic inference also applies.

I (19) is then a stationary VAR, called the VAR-ECM or the
cointegrated VAR.

I This system can be identified and modelled with the concepts
that we have developed for the stationary case.
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The role of the intercept and trend

Restricted and unrestricted constant term I

I Usually we include separate Constants in each row of the VAR.
I We call them unrestricted constant terms. In the unit-root the
implication is that each Yjt contains a deterministic trend
(think of a Random Walk with drift)

I However if the constants are restricted to be in the ECt−1
variables, there are no drifts and therefore no trend in the
levels variables. We don’t give the precise argument here.

I We mention it here because it reminds us that, in the same
way as with DF-test, the role of deterministic terms is
important when there are unit-roots.

I It also matters for the construction of the tests we use (again,
the DF test is a parallel).
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Open systems

Conditional cointegrated ECM I
Assume that α21 = 0, i.e. Y2t is weakly exogenous for β.
With Gaussian disturbances εt = N(0,Ω), where Ω has elements
ωij ,we can derive the conditional model for ∆Y1t :

∆Y1t = ω21ω
−1
22︸ ︷︷ ︸

b

∆Y2t + α11β′
[
Y1t−1
Y2t−1

]
+ ε1t −ω21ω

−1
22 ε2t︸ ︷︷ ︸

ut

(20)

the single equation ECM we have discussed before.
(20) is an example of an open system, since xt−1 is determined
outside the model.
If we write it as

∆Y1t = b∆Y2t + α11β11Y1t−1 + α11β12Y2t−1 + ut

we see that Π=α11β11 6= 0, i.e., the Π “matrix”has full rank.
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Open systems

Conditional cointegrated ECM II
I Open system are often relevant. Ideally after first testing

α21 = 0. But not always that the research purpose requires
this: Can be interested in modelling the interaction between
for example wages and prices conditional on productivity.

I The common I (1)-trend is now the non-modelled but
observable variable Y2t−1.

I Care must be taken: The relevant distribution for testing
rank(Π) = 0 is (as we shall see) different from the
distribution that applies for the closed system.

I Generalization: If the open system contain n1 endogenous
I (1) variables and n2 non-modelled I (1) variables.
Cointegration is consistent with:

0 < rank(Π) ≤ n1
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Identification I

I As we have seen, if n = 2, cointegration implies rank(Π) = 1

I There is one cointegration vector

(β11,β12)
′

which is uniquely identified after normalization. For example
with β11 = −1 the ECM variable becomes

ECM1t = −Y1t + β12Y2t ∼ I (0)

I When n > 2, we can have rank(Π) > 1, and in these cases
the cointegrating vectors are not identified.
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Identification II

I Assume that ˝ is known (in practice, consistently estimated),
and β is a n× r cointegrating vector:

Π = αβ′

However for a r × r non-singular matrix Θ:

Π = αΘΘ−1β′ = αΘβ′Θ

showing that β′Θ is also a cointegrating vector.

This problem is equivalent to the identification problem in
simultaneous equation models!
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Identification III
I Assume rank(Π) = 2 for a n = 3 VAR

−Y1t + β12Y2t + β13Y3t = ECM1t

β21Y1t − Y2t + β13Y3t = ECM2t

I By simply viewing these as a pair of simultaneous equations,
we see that they are not identified on the order-condition.

I Exact identification requires for example 1 linear restrictions
on each of the equations.

I For example β13 = 0 and β21 + β13 = 0 will result in exact
identification

I Identification = theory !!!

I Restrictions of the loading matrix can also help identification
(then we impose hypotheses about causation)
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Identification IV

I A very useful estimator of Π is the Maximum-Likelihood
estimator (OLS on each equation in the VAR). A natural
test-statistic for any overidentifying restrictions is the LR test.

I The identification issue applies equally for open systems.
Again, in direct analogy to the simultaneous equation model.
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Estimating a single cointegrating vector

The cointegrating regression I

When rank(Π) = 1, the cointegration vector is unique (subject
only to normalization).
Without loss of generality we set n = 1 and write yt = (Yt ,X ) as
in a usual regression.
The cointegration parameter β can be estimated by OLS on

Yt = βXt + ut (21)

where ut ∼ I (0) by assumption.

(β̂− β) =
∑T
t=1 Xtut

∑T
t=1 X

2
t
. (22)
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Estimating a single cointegrating vector

The cointegrating regression II
Since Xt ∼ I (1), we are in a the same situation as with the first
order AR case with autoregressive parameter equal to one (Lecture
9)
In direct analogy, we need to multiply (β̂− β) by T in order to
obtain a non-degenerate asymptotic distribution:

T (β̂− β) =

1
T

∑T
t=1 Xtut

1
T 2

∑T
t=1 X

2
t

, (23)

=⇒ (β̂− β) converges to zero at rate T , instead of
√
T as in the

stationary case.

I This result is called the Engle-Granger super-consistency
theorem.
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Estimating a single cointegrating vector

The cointegrating regression III

I Remember: This is based on r = 1 so the cointegration
vector is unique if it exists.
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Estimating a single cointegrating vector

The distribution of the Engle-Granger (levels) estimator I

I Even with simple DGPs the E-G estimator is not normally
distributed.

I The same applies to the t−value based on β̂: It does not have
a normal distribution
=⇒ Inference “in” the cointegration regression is generally
impractical (because standard inference in not valid)

I This drawback is even more severe in DGPs with higher order
dynamics, because the disturbance of the cointegrating
equation is autocorrelated also in the case of cointegration.

29 / 53



Granger’s representation theorem for cointegrated series Identification Estimation and testing

Estimating a single cointegrating vector

Modified Engle-Granger estimator I

I Phillips and Hansen fully modified estimator:
Subtract an estimate of the finite sample bias from β̂ (i.e.
keep the cointegration regression simple).
The modified estimator has an asymptotic normal distribution,
which allows inference on β.

I Saikonnen’s estimator,
Is based on

Yt = βXt + γ1∆Xt+1 + γ2∆Xt−1 + ut

or higher order lead/lags that “make”ut white-noise, see DM
p 630.
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Estimating a single cointegrating vector

ECM estimator I

The ECM represents a way of avoiding second order bias due to
dynamic mis-specification.
This is because, under the assumption of cointegration, the ECM is
implied (the representation theorem)
With n = 2, p = 1 and weak exogeneity of Xt (= Y2t) with
respect to the cointegration parameter we have seen that the
cointegrated VAR can be re-written as a conditional model and a
marginal model

∆Yt = b∆Xt + φ︸︷︷︸
α11β11

Yt−1 + γ︸︷︷︸
α11β12

Xt−1 + εt (24)

∆Xt = εxt (25)
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Estimating a single cointegrating vector

ECM estimator II

where b is the regression coeffi cient, and εt and εxt are
uncorrelated normal variables (by regression).

∆Yt = b∆Xt + φ(Yt−1 +
γ

φ
Xt−1) + εt

= b∆X + φ(Yt−1 +
β12
β11

Xt−1) + εt

Normalization on yt−1 by setting β11 = −1, and defining β12 = β,
for comparison with E-G estimator, gives

∆Yt = b∆Xt + φ(Yt−1 − βXt−1) + εt
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Estimating a single cointegrating vector

ECM estimator III
The ECM estimator β̂ECM , is obtained from OLS on (24)

β̂ECM = − γ̂

φ̂
(26)

β̂ECM is consistent if both γ̂ and φ̂ are consistent.
OLS (by construction) chooses the γ̂ and φ̂ that give the best
predictor yt−1 − β̂ECM xt−1 for ∆yt .
As T grows towards infinity, the true parameters γ, φ and β will
therefore be found.
This is an example of canonical correlation, known from
multivariate statistics.
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Estimating a single cointegrating vector

ECM estimator IV
Therefore, by direct reasoning:

γ̂ −→
T→∞

γ, φ̂ −→
T→∞

φ and β̂ECM −→
T→∞

β (27)

In fact:

I β̂ECM is super-consistent
I β̂ECM has better small sample properties than the E-G levels
estimator, since it is based on a well specified econometric
model (avoids the second-order bias problem).

Inference:

I The distributions of γ̂ and φ̂ (under cointegration) can be
shown to be so called “mixed normal” for large T .

I Their variances are stochastic variables rather than parameters.
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Estimating a single cointegrating vector

ECM estimator V
I However, the OLS based t-values of γ̂ and φ̂ are
asymptotically N(0, 1).

I β̂ECM is also “mixed normal”, but{
γ̂

φ̂
− β

}
/
√
Var(β̂ECM ) −→

T−→∞
N(0, 1) (28)

where, despite the change in notation, it is clear that
Var(β̂ECM ) can be found by using the delta-method.

I The generalization to n− 1 explanatory variables, intercept
and dummies is also unproblematic.

I Remember:The effi ciency of the ECM estimator depends on
the assumed weak exogeneity of Xt .
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Testing r=0 against r=1

Engle-Granger test

I The easiest approach is to use an ADF regression to the test
the null-hypothesis of a unit-root in the residuals ût from the
cointegrating regression (21).

I The motivation for the ∆ût−j terms is as before: to whiten
the residuals of the ADF regression

I The DF critical values are shifted to the left as deterministic
terms, and/or more I (1) variables in the regression are added.
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Testing r=0 against r=1

The ECM test

I As we have seen, r = 0 corresponds to φ = 0 in the ECM
model in (24):

∆Yt = b∆Xt + φYt−1 + γXt−1 + εt

I It also comes as no surprise that the t-value tφ have typical
DF-like distributions under H0 : φ = 0.

I See DN and/or Ericsson and MacKinnon (2002) for critical
values.
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Testing r=0 against r=1

Why use ECM test instead of the Engle-Granger test? I
The size of the test (the probability of type 1 error) is more or less
the same for the two tests.
However, the power of the ECM test is generally larger than for
the E-G test.
If tECMφ is the ECM test based on (24), it can be shown that

tECMφ
∼= σe

σε

tEGτ , (29)

where tEG is the E-G test using

∆ût = τût−1 + et (30)

The “t-values”, and therefore the power, will be equal when
σe = σε .
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Testing r=0 against r=1

Why use ECM test instead of the Engle-Granger test? II
We can say something about when this will happen: Start with the
ECM and bring it on ADL form:

Yt = bXt + (1+ φ)Yt−1 + (γ− b)Xt−1 + εt

(1− (1+ φ)L)Yt = (b+ (γ− b)L)Xt + εt

Assume next that the following restriction holds:

(b+ (γ− b)L)
(1− (1+ φ)L)

= β (31)

(the is a Common Factor in the lag polynomial) so that

b = β

(γ− b) = −β(1+ φ)
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Testing r=0 against r=1

Why use ECM test instead of the Engle-Granger test? III
Yt = βXt + (1+ φ)Yt−1 − β(1+ φ)Xt−1 + εt (32)

∆Yt − β∆Xt = φ(Yt−1 − βXt−1) + εt

If we replace β by β̂, we have
The ECM model (24) implies the Dickey-Fuller regression

∆Yt − β̂∆Xt︸ ︷︷ ︸
∆ût

= φ(yt−1 − β̂Xt−1)︸ ︷︷ ︸
ût−1

+ εt (33)

when the Common factor restriction in (31) is true.

I If the Common factor restriction is invalid, the E-G test is
based on a mis-specified model.

I As a consequence σe > σε , and there is a loss of power
relative to ECM test.
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The Johansen method

Testing cointegrating rank I
For the vector yt consisting of n× 1 variables, we have the
Gaussian VAR(p):

yt = Φ(L)yt−1 + εt (34)

and use the re-parameterized equation:

∆yt = Φ∗(L)∆yt−1 +Πyt−1 + εt (35)

We write the levels coeffi cient matrix Π as the product of two
matrices αn×r and β′r×n where r ≡ rank(Π) :

Π = αβ′ (36)

We are interested in both the cointegrating case

0 < rank(Π) < n
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The Johansen method

Testing cointegrating rank II

and the case with no cointegration

rank(Π) = 0

I rank(Π) is given by the number of non-zero eigenvalues of Π.
But can we find the number of eigenvalues that are
significantly different from zero?

I Fortunately, this problem has a solution. An eigenvalue of Π

is a special kind of squared correlation coeffi cient known as a
canonical correlation in multivariate statistics.

I This method has become known as the Johansen approach.
It is likelihood based, see HN § 17.3.2
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The Johansen method

Intuition I

I For concreteness, consider n = 3 so r can be 0,1 or 2
I r = 0 corresponds to Π = 0 in the context of cointegration:
I From the representation theorem; with two unit-roots

Π=Φ− I = P
[
1 0
0 1

]
P−1 − I = 0.

I r = 1 corresponds to α3×1 6= 0 for a single cointegration
vector β′1×3.

I For this to make sense, β′1×3yt−1 must be a I (0) and it must
be a significant predictor of ∆yt .
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The Johansen method

Intuition II
I The strength of the relationship can be estimated by the
highest squared canonical correlation coeffi cient, call it
ρ̂21,between ∆yt and all the possible the linear combinations of
the variables in yt−1.

I If ρ̂21 > 0 is statistically significant, we reject that r = 0.

I ρ̂21 is the same as the highest eigenvalue of Π̂, and β̂
′
1×3 is the

corresponding eigenvector.
I If r = 0 is rejected we can,continue, and test r = 1 against
r = 2.

I If the second largest canonical correlation coeffi cient ρ̂22 is also
significantly different from zero, we conclude that the number
of cointegrating vectors is two. β̂

′
2×3 is the corresponding

eigenvector
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The Johansen method

Intuition III

I It can be shown that, for the Gaussian VAR, β̂
′
1×3 and β̂

′
2×3

are ML estimates.
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The Johansen method

Trace-test and max-eigenvalue test I

I We order the canonical correlations from largest to smallest
and construct the so called trace test:

Trace-test = −T
3

∑
i=r+1

ln(1− ρ̂2i ), r = 0, 1, 2 (37)

I If ρ̂21 is close to zero, then clearly Trace-test will be close to
zero, and we we will not reject the H0 of r = 0 against r ≥ 1.

I and so on for H0 of r = 1 against r ≥ 2
I Of course: to make this a formal testing procedure, we need
the critical values from the distribution of the Trace-test for
the sequence of null-hypotheses.
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The Johansen method

Trace-test and max-eigenvalue test II

I The distributions are non-standard, but at least the main
cases are tabulated in PcGive.

I A closely related test is called the max-eigenvalue test,(but
the trace test is today judged most reliable)

I If there is a single cointegrating vector and there are n− 1
weakly-exogenous variables, the Johansen method reduces to
the testing and estimation based on a single ECM equation
(and OLS estimation as above)
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The Johansen method

Constant and other deterministic trends I

I It matters a great deal whether the constant is restricted to
be in the cointegrating space or not.

I The advise for data with visible drift in levels:
I include an deterministic trend as restricted together with an
unrestricted constant.

I After rank determination, can test significance of the restricted
trend with standard inference

I Shift in levels
I Include restricted step dummy and a free impulse dummy.

I Exogenous I(1) variables, see table and program by
MacKinnon, Haug and Michelis (1999).
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I(0) variables in the VAR?
I A misunderstanding that sometimes occurs is that “there can
be no stationary variables in he cointegrating relationships”.
Consider for example:

−Y1t + β12Y2t + β13Y3t + β14Y4t = ecm1t (38)

β21Y1t − Y2t + β23Y3t + β24Y4t = ecm2t (39)

If Y1 is the log of real-wages, Y2 productivity, Y3 relative
import prices, and Y4 the rate of unemployment, then the first
relationship may be a bargaining based wage and the second a
mark-up equation.

I Y4t ∼ I (0), most sensibly, but we want to estimate and test
the theory β14 = 0.

I Hence: specify the VAR with Y4t included.
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From I(1) to I(0)
I When the rank has been determined, we are back in the
stationary-case.

I The distribution of the identified cointegration coeffi cients are
“mixed normal” so that conventional asymptotic inference can
be performed on this β̂.

I The determination of rank allows us to move from the I (1)
VAR, to the cointegrated VAR that contains only I (0)
variables

I Another name for this I (0) model is the vector equilibrium
correction model, VECM.

I The VECM can be analyzed further, using the tools of the
stationary VAR !

I Hence, cointegration analysis is an important step in the
analysis, but just one step.
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Cointegration: Summary of estimation and testing I

I Depends on how much we know about

Π(1) ≡ Φ(1)− IN

apriori.
I A “typology” is (simplifying notation: Π(1) = Π):

1. rank(Π) is 1
Estimating a unique cointegrating vector by means of:
The cointegration regression
The ECM estimator
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Cointegration: Summary of estimation and testing II

2. rank(Π) is 0 or 1
Test rank(Π) = 0 against rank(Π) = 1,by
Engle-Granger test
ECM test

3. Test and ML estimation based on VAR
VAR based Johansen-test for rank(Π) (other than 0 or 1)
ML estimation of β for the case of’rank(Π) ≥ 2 No
assumptions about weak exogeneity of variables with respect
to β.
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Some important additional references

Johansen, S. (1995), Likelihood-Based Inference in Cointegrated
Vector Auto-Regressive Models, Oxford University Press
Juselius, K (2004) The Cointegrated VAR Model, Methodology
and Applications, Oxford University Press
MacKinnon, J., A. A. Haug and L. Michelis (1999) Numerical
Distributions Functions of Likelihood Ratio Tests for Cointegration,
with programs.
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