ECON 4160, Spring term 2015. Lecture $10+11$ Co-integration

Ragnar Nymoen

Department of Economics

26 October 2014

Introduction I

So far we have considered:

- \triangleright Stationary VAR, ("no unit roots")
	- \blacktriangleright Standard inference
- \triangleright Non-stationary VAR ("all unit-roots")
	- \triangleright Danger of spurious relationships
	- \triangleright Need Dickey-Fuller distribution to test the null hypothesis of unit-root for a single time series

We next consider *cointegration*, the case of "some, but not only unit-roots" in the VAR.

 \blacktriangleright In such systems, there exist one or more linear combinations of $I(1)$ variables that are $I(0)$ —they are called *cointegration* relationships.

Introduction II

- \triangleright We may see already that cointegration is the "flip of the coin" of spurious regression: If we have two **dependent** $I(1)$ variables, they are cointegrated.
- \triangleright We can also guess the correct distrubtion to use for testing the null hypothesis of no cointegration is going to be of the Dickey-Fuller type:

Why: If we reject $Y_t \sim I(1)$ against $Y_t \sim I(0)$ using critical values from DF-distributions, we have shown that $\,Y_t$ is "cointegrated with itself!"

Introduction III

- \blacktriangleright In these two lectures we sketch the theory of cointegration more fully:
	- \triangleright The cointegrated VAR: VARs with some, but not all unit-roots
	- \triangleright Testing the null-hypothesis of no cointegration
		- \blacktriangleright The cointegrating regression
		- \blacktriangleright The conditional ECM
		- \triangleright VAR methods, testing hypotheses about multiple cointegrating relationships
	- \blacktriangleright Estimating the cointegrated VAR.

Introduction IV

- \triangleright Ci- relationships correspond to equilibrium relationships from economic theory.
	- \triangleright Finding no evidence for cointegration should lead us to question whether equilibrium is rightfully such a central concept in macroeconomics.
	- \triangleright Finding too many (spurious) ci-relationships may lead us to being too optimistic about the economy's ability to regulate itself.

\blacktriangleright References:

- \blacktriangleright HN· Ch. 17.
- \triangleright DM: Ch. 14.
- \triangleright BN(2104): Kap. 11.
- \triangleright The posted paper by Ericsson and MacKinnon.

The VAR with one unstable and one stable root I

Consider the bi-variate first order VAR

$$
\mathbf{y}_t = \mathbf{\Phi} \mathbf{y}_{t-1} + \varepsilon_t \tag{1}
$$

where $\mathbf{y}_t = (Y_t, X_t)$, $\mathbf{\Phi}$ is a 2×2 matrix with coefficients and ε_t is a vector with Gaussian disturbances. The characteristic equation for **Φ**:

$$
|\mathbf{\Phi} - z\mathbf{I}| = 0,
$$

Our interest is the case with one unit-root and one stationary root:

$$
z_1 = 1, \text{ and } z_2 = \lambda, |\lambda| < 1. \tag{2}
$$

implying that both X_t and Y_t are $I(1)$. Why?

The VAR with one unstable and one stable root II

Φ has full rank, equal to 2. It can be diagonalized in terms of its eigenvalues and the corresponding eigenvectors:

$$
\Phi = \mathsf{P} \left[\begin{array}{cc} 1 & 0 \\ 0 & \lambda \end{array} \right] \mathsf{Q} \tag{3}
$$

P has the eigenvectors as columns:

$$
\mathbf{P} = \left[\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right] \tag{4}
$$

Cointegrated VAR—ECM implication I

Using the above assumptions and diagonalization [\(1\)](#page-5-1) can be written as:

$$
\left[\begin{array}{c} W_t \\ -EC_t \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & \lambda \end{array}\right] \left[\begin{array}{c} W_{t-1} \\ -EC_{t-1} \end{array}\right] + \eta_t, \tag{5}
$$

 $\pmb{\eta}_t$ contains linear combinations of the original VAR disturbances. EC_t and W_t are given by:

$$
W_t = \delta Y_t - \beta X_t \tag{6}
$$

$$
EC_t = -\gamma Y_t + \alpha X_t. \tag{7}
$$

- $W_t \sim I(1)$, is a stochastic trend (Random-Walk)
- \blacktriangleright $EC_t \sim I(0)$, a stationary variable

Cointegrated VAR—ECM implication II

- \blacktriangleright We say that there is **cointegration** between X_t and Y_t , since EC_t is a stationary variable, and it is a linear combination of X_t and Y_t .
- $\blacktriangleright -\gamma$ and α are the **cointegrating parameters** in this example.

The Common Trends representation I

The *Common Trends* representation for Y_t and X_t is:

$$
Y_t = \alpha W_t - \beta E C_t \tag{8}
$$

$$
X_t = \gamma W_t - \delta E C_t. \tag{9}
$$

 \blacktriangleright X_t and Y have a common stochastic trend, namely $W_t.$

The Common Trends representation II

Two consequences for forecasts

- 1. Forecasts for $X_{T+h|T}$ and $Y_{T+h|T}$ become dominated by the common stochastic trend
- 2. Cointegration is maintained in the forecasts, so $EC_{T+h|T} = -\gamma X_{T+h|T} + \alpha Y_{T+h|T} = 0$ for large h.

The ECM representation of the cointegrated VAR I As before, can re-parameterize the VAR [\(1\)](#page-5-1) as

$$
\Delta \mathbf{y}_t = \mathbf{\Pi} \mathbf{y}_{t-1} + \varepsilon_t \tag{10}
$$

with

$$
\Pi = (\Phi - I) \tag{11}
$$

Next, define two (2×1) parameter vectors α and β in such a way that the product *αβ*⁰ gives **Π**:

$$
\Pi = \alpha \beta' \tag{12}
$$

In our example, it can be shown (compare BN 2014 Kap 11)

$$
\Pi = \underbrace{\left[\begin{array}{c} (1-\lambda)\beta \\ (1-\lambda)\delta \end{array} \right]}_{\alpha} \underbrace{\left[\begin{array}{c} \gamma \\ \gamma \end{array} - \alpha \right]}
$$

The ECM representation of the cointegrated VAR II

and then [\(10\)](#page-11-0) can be expressed as:

$$
\left[\begin{array}{c} \Delta Y_t \\ \Delta X_t \end{array}\right] = \alpha \beta' \left[\begin{array}{c} Y_{t-1} \\ X_{t-1} \end{array}\right] + \varepsilon_t, \tag{13}
$$

 \triangleright α is known as the (matrix) of **equilibrium correction** coefficients (aka adjustment coefficients, or loadings),

$$
\boldsymbol{\alpha} = \left[\begin{array}{c} (1 - \lambda)\beta \\ (1 - \lambda)\delta \end{array} \right] \tag{14}
$$

 \triangleright β is the matrix of long-run cointegration coefficients

The ECM representation of the cointegrated VAR III

$$
\beta = \left[\begin{array}{c} \gamma \\ -\alpha \end{array} \right] \tag{15}
$$

In this formulation we see that

- **Fight** rank(Π) = 0, reduced rank and no cointegration. Both eigenvalues are zero.
- \blacktriangleright rank(Π) = 1, reduced rank and cointegration. One eigenvalue is different from zero.
- **Figure 1** rank(Π) = 2, full rank, both eigenvalues are different from zero and the VAR [\(1\)](#page-5-1) is stationary.

Cointegration and Granger causality

Since $\lambda < 1$ is equivalent with cointegration, we see from [\(14\)](#page-12-0) that cointegration also implies Granger-causality in at least one direction: $(1 - \lambda)\beta \neq 0$ and/or $(1 - \lambda)\beta \neq 0$.

The ECM representation of the cointegrated VAR IV

Cointegration and weak exogeneity

Assume $\delta = 0$, from [\(14\)](#page-12-0). This implies

$$
\begin{bmatrix}\n\Delta Y_t \\
\Delta X_t\n\end{bmatrix} = (1 - \lambda) \begin{bmatrix}\n\beta \\
0\n\end{bmatrix} [\gamma Y_{t-1} - \alpha X_{t-1}] + \varepsilon_t
$$
\n
$$
\begin{bmatrix}\n\Delta Y_t \\
\Delta X_t\n\end{bmatrix} = \begin{bmatrix}\n(1 - \lambda)\beta[\gamma Y_{t-1} - \alpha X_{t-1}] + \varepsilon_{y,t} \\
\varepsilon_{x,t}\n\end{bmatrix}
$$

- \blacktriangleright The marginal model contains no information about the cointegration parameters $(\gamma, -\alpha)'$. Y_t is Weakly Exogenous (WE) for the cointegration parameters $\beta' = (\gamma, -\alpha)'$.
- \triangleright So how can be test for WE of X_t with respect to β?

Generalization of ECM

$VAR(p) \longrightarrow ECM$ general case I If y_t is $n \times 1$ with $I(1)$ variables. The VAR is:

$$
\mathbf{y}_t = \mathbf{\Phi}(L)\mathbf{y}_{t-1} + \boldsymbol{\varepsilon}_t
$$

where ε_t is multivariate Gaussian and

$$
\mathbf{\Phi}(L) = \sum_{i=0}^{P} \mathbf{\Phi}_{i+1} L^{i}
$$
 (16)

In analogy to the scaler case, the matrix lag-polynomial can be written as

$$
\mathbf{\Phi}(L) = \mathbf{\Phi}(1) + \Delta \mathbf{\Phi}^*(L)
$$

where the $\boldsymbol{\Phi}_i^*$ matrices

$$
\mathbf{\Phi}^*(L)=\mathbf{\Phi}_1^*+\mathbf{\Phi}_2^*L+\ldots+\mathbf{\Phi}_{p-1}^*L^{p-1}
$$

$VAR(p) \longrightarrow ECM$ general case II

are linear transformations of Φ_i ($i = 1, ..., p$). Substitution yields

$$
\mathbf{y}_t = \mathbf{\Phi}^*(L)\Delta \mathbf{y}_{t-1} + \mathbf{\Phi}(1)\mathbf{y}_{t-1} + \varepsilon_t
$$

\n
$$
\Delta \mathbf{y}_t = \mathbf{\Phi}^*(L)\Delta \mathbf{y}_{t-1} + \Pi(1)\mathbf{y}_{t-1} + \varepsilon_t
$$
\n(17)

where $\Pi(1) \equiv \Phi(1) - I_N = 0$ in the case of no cointegration but

$$
\Pi(1) = \alpha \beta' \tag{18}
$$

in the case of r cointegrating-vectors.

I $β_{n\times r}$ contains the CI-vectors as columns, while $α_{n\times r}$ shows the strength of equilibrium correction in each of the equations for ΔY_{1t} , $\Delta Y_{2t},\ldots,\Delta Y_{nt}.$ In general rank $(\boldsymbol{\beta})=r$ and rank $(\Pi) = r < n$.

 $VAR(p) \longrightarrow ECM$ general case III

If β is known, the system

$$
\Delta \mathbf{y}_t = \mathbf{\Phi}^*(L) \Delta \mathbf{y}_{t-1} + \alpha [\boldsymbol{\beta}' \mathbf{y}]_{t-1} + \varepsilon_t \tag{19}
$$

contains only $I(0)$ variables and conventional asymptotic inference applies.

- \triangleright Moreover: If β is regarded as known, *after first estimating* β , conventional asymptotic inference also applies.
- \triangleright [\(19\)](#page-17-0) is then a stationary VAR, called the VAR-ECM or the cointegrated VAR.
- \triangleright This system can be identified and modelled with the concepts that we have developed for the stationary case.

Restricted and unrestricted constant term I

- \triangleright Usually we include separate Constants in each row of the VAR.
- \triangleright We call them unrestricted constant terms. In the unit-root the implication is that each Y_{it} contains a deterministic trend (think of a Random Walk with drift)
- \blacktriangleright However if the constants are *restricted* to be in the EC_{t-1} variables, there are no drifts and therefore no trend in the levels variables. We don't give the precise argument here.
- \triangleright We mention it here because it reminds us that, in the same way as with DF-test, the role of deterministic terms is important when there are unit-roots.
- It also matters for the construction of the tests we use (again, the DF test is a parallel).

Conditional cointegrated ECM I

Assume that $\alpha_{21}=0$, i.e. Y_{2t} is weakly exogenous for $\pmb{\beta}.$ With Gaussian disturbances $\varepsilon_t = N(0, \boldsymbol{\Omega})$, where $\boldsymbol{\Omega}$ has elements $\omega_{\textit{ij}}$,we can derive the conditional model for ΔY_{1t} :

$$
\Delta Y_{1t} = \underbrace{\omega_{21}\omega_{22}^{-1}}_{b}\Delta Y_{2t} + \alpha_{11}\beta'\left[\begin{array}{c} Y_{1t-1} \\ Y_{2t-1} \end{array}\right] + \underbrace{\varepsilon_{1t} - \omega_{21}\omega_{22}^{-1}\varepsilon_{2t}}_{u_t} (20)
$$

the single equation ECM we have discussed before. [\(20\)](#page-19-0) is an example of an open system, since x_{t-1} is determined outside the model.

If we write it as

$$
\Delta Y_{1t} = b\Delta Y_{2t} + \alpha_{11}\beta_{11}Y_{1t-1} + \alpha_{11}\beta_{12}Y_{2t-1} + u_t
$$

we see that $\Pi = \alpha_{11}\beta_{11} \neq 0$, i.e., the Π "matrix" has full rank.

Conditional cointegrated ECM II

- ▶ Open system are often relevant. Ideally after first testing $\alpha_{21} = 0$. But not always that the research purpose requires this: Can be interested in modelling the interaction between for example wages and prices conditional on productivity.
- \blacktriangleright The common $I(1)$ -trend is now the non-modelled but observable variable Y_{2t-1} .
- \triangleright Care must be taken: The relevant distribution for testing rank(Π) = 0 is (as we shall see) different from the distribution that applies for the closed system.
- Generalization: If the open system contain n_1 endogenous $I(1)$ variables and n_2 non-modelled $I(1)$ variables. Cointegration is consistent with:

$$
0 < rank(\Pi) \leq n_1
$$

Identification I

- **As** we have seen, if $n = 2$, cointegration implies $rank(\Pi) = 1$
	- \blacktriangleright There is one cointegration vector

(*β*11,*β*12) 0

which is uniquely identified after normalization. For example with $\beta_{11} = -1$ the ECM variable becomes

$$
ECM_{1t} = -Y_{1t} + \beta_{12}Y_{2t} \sim I(0)
$$

 \triangleright When $n > 2$, we can have rank(Π) > 1, and in these cases the cointegrating vectors are not identified.

Identification II

Assume that $"$ is known (in practice, consistently estimated), and β is a $n \times r$ cointegrating vector:

 $\Pi = \alpha \beta'$

However for a *r* \times *r* non-singular matrix **Θ**:

$$
\Pi=\alpha\Theta\Theta^{-1}\beta'=\alpha_{\Theta}\beta'_{\Theta}
$$

showing that β_{Θ}' is also a cointegrating vector.

This problem is equivalent to the identification problem in simultaneous equation models!

Identification III

$$
\blacktriangleright \text{ Assume } rank(\Pi) = 2 \text{ for a } n = 3 \text{ VAR}
$$

$$
-Y_{1t} + \beta_{12}Y_{2t} + \beta_{13}Y_{3t} = ECM_{1t}
$$

$$
\beta_{21}Y_{1t} - Y_{2t} + \beta_{13}Y_{3t} = ECM_{2t}
$$

- \triangleright By simply viewing these as a pair of simultaneous equations, we see that they are not identified on the order-condition.
- \triangleright Exact identification requires for example 1 linear restrictions on each of the equations.
	- \blacktriangleright For example $β_{13} = 0$ and $β_{21} + β_{13} = 0$ will result in exact identification
	- \blacktriangleright Identification = theory !!!
- \triangleright Restrictions of the loading matrix can also help identification (then we impose hypotheses about causation)

Identification IV

- **►** A very useful estimator of Π is the Maximum-Likelihood estimator (OLS on each equation in the VAR). A natural test-statistic for any overidentifying restrictions is the LR test.
- \blacktriangleright The identification issue applies equally for open systems. Again, in direct analogy to the simultaneous equation model.

The cointegrating regression I

When $rank(\Pi) = 1$, the cointegration vector is unique (subject only to normalization).

Without loss of generality we set $n=1$ and write $\boldsymbol{\mathsf{y}}_t=(\mathcal{Y}_t,\boldsymbol{X})$ as in a usual regression.

The cointegration parameter *β* can be estimated by OLS on

$$
Y_t = \beta X_t + u_t \tag{21}
$$

where $u_t \sim I(0)$ by assumption.

$$
(\hat{\beta} - \beta) = \frac{\sum_{t=1}^{T} X_t u_t}{\sum_{t=1}^{T} X_t^2}.
$$
 (22)

The cointegrating regression II

Since $X_t \sim I(1)$, we are in a the same situation as with the first order AR case with autoregressive parameter equal to one (Lecture 9)

In direct analogy, we need to multiply $(\hat{\beta} - \beta)$ by T in order to obtain a non-degenerate asymptotic distribution:

$$
T(\hat{\beta} - \beta) = \frac{\frac{1}{T} \sum_{t=1}^{T} X_t u_t}{\frac{1}{T^2} \sum_{t=1}^{T} X_t^2},
$$
 (23)

 \Longrightarrow $(\hat{\beta} - \beta)$ converges to zero at rate ${\cal T}$, instead of $\sqrt{\cal T}$ as in the stationary case.

In This result is called the Engle-Granger super-consistency theorem.

Estimating a single cointegrating vector

The cointegrating regression III

Remember: This is based on $r = 1$ so the cointegration vector is unique if it exists.

Estimating a single cointegrating vector

The distribution of the Engle-Granger (levels) estimator I

- \triangleright Even with simple DGPs the E-G estimator is not normally distributed.
- $▶$ The same applies to the t -value based on $\hat{\beta}$: It does *not* have a normal distribution

 \implies Inference "in" the cointegration regression is generally impractical (because standard inference in not valid)

 \triangleright This drawback is even more severe in DGPs with higher order dynamics, because the disturbance of the cointegrating equation is autocorrelated also in the case of cointegration.

Modified Engle-Granger estimator I

- \blacktriangleright Phillips and Hansen fully modified estimator: Subtract an estimate of the finite sample bias from $\hat{\beta}$ (i.e. keep the cointegration regression simple). The modified estimator has an asymptotic normal distribution, which allows inference on *β*.
- \blacktriangleright Saikonnen's estimator. Is based on

$$
Y_t = \beta X_t + \gamma_1 \Delta X_{t+1} + \gamma_2 \Delta X_{t-1} + u_t
$$

or higher order lead/lags that "make" u_t white-noise, see DM p 630.

ECM estimator I

The ECM represents a way of avoiding second order bias due to dynamic mis-specification.

This is because, under the assumption of cointegration, the ECM is implied (the representation theorem)

With $n = 2$, $p = 1$ and weak exogeneity of X_t (= Y_{2t}) with respect to the cointegration parameter we have seen that the cointegrated VAR can be re-written as a conditional model and a marginal model

$$
\Delta Y_t = b\Delta X_t + \underbrace{\phi}_{\alpha_{11}\beta_{11}} Y_{t-1} + \underbrace{\gamma}_{\alpha_{11}\beta_{12}} X_{t-1} + \epsilon_t \tag{24}
$$
\n
$$
\Delta X_t = \epsilon_{xt} \tag{25}
$$

ECM estimator II

where b is the regression coefficient, and ε_t and ε_{xt} are uncorrelated normal variables (by regression).

$$
\Delta Y_t = b\Delta X_t + \phi(Y_{t-1} + \frac{\gamma}{\phi}X_{t-1}) + \epsilon_t
$$

$$
= b\Delta X + \phi(Y_{t-1} + \frac{\beta_{12}}{\beta_{11}}X_{t-1}) + \epsilon_t
$$

Normalization on y_{t-1} by setting $\beta_{11} = -1$, and defining $\beta_{12} = \beta$, for comparison with E-G estimator, gives

$$
\Delta Y_t = b\Delta X_t + \phi(Y_{t-1} - \beta X_{t-1}) + \epsilon_t
$$

Estimating a single cointegrating vector

ECM estimator III

The ECM estimator $\hat{\beta}^{ECM}$, is obtained from OLS on [\(24\)](#page-30-0)

$$
\hat{\beta}^{ECM} = -\frac{\hat{\gamma}}{\hat{\phi}} \tag{26}
$$

β^{ECM} is consistent if both $\hat{\gamma}$ and $\hat{\phi}$ are consistent. OLS (by construction) chooses the *γ*ˆ and *φ*ˆ that give the best predictor $y_{t-1} - \hat{\beta}^{ECM} x_{t-1}$ for Δy_t . As T grows towards infinity, the true parameters γ , ϕ and β will

therefore be found.

This is an example of canonical correlation, known from multivariate statistics.

ECM estimator IV

Therefore, by direct reasoning:

$$
\widehat{\gamma} \xrightarrow[T \to \infty]{} \gamma, \widehat{\phi} \xrightarrow[T \to \infty]{} \phi \text{ and } \widehat{\beta}^{ECM} \xrightarrow[T \to \infty]{} \beta \tag{27}
$$

In fact:

- $\rightarrow \hat{\beta}^{ECM}$ is super-consistent
- \triangleright $\hat{\beta}^{ECM}$ has better small sample properties than the E-G levels estimator, since it is based on a well specified econometric model (avoids the second-order bias problem).

Inference:

- **►** The distributions of $\widehat{\gamma}$ and $\widehat{\phi}$ (under cointegration) can be shown to be so called "mixed normal" for large T .
	- \blacktriangleright Their variances are stochastic variables rather than parameters.

ECM estimator V

- **I** However, the OLS based t-values of $\widehat{\gamma}$ and $\widehat{\phi}$ are asymptotically $N(0, 1)$.
- \triangleright $\hat{\beta}^{ECM}$ is also "mixed normal", but

$$
\left\{\frac{\widehat{\gamma}}{\widehat{\phi}} - \beta\right\} / \sqrt{Var(\widehat{\beta}^{ECM})} \underset{T \longrightarrow \infty}{\longrightarrow} N(0, 1) \tag{28}
$$

where, despite the change in notation, it is clear that Var($\hat{\beta}^{ECM}$) can be found by using the delta-method.

- \blacktriangleright The generalization to $n-1$ explanatory variables, intercept and dummies is also unproblematic.
- \triangleright Remember: The efficiency of the ECM estimator depends on the assumed weak exogeneity of X_t .

Engle-Granger test

- \triangleright The easiest approach is to use an ADF regression to the test the null-hypothesis of a unit-root in the residuals \hat{u}_t from the cointegrating regression [\(21\)](#page-25-1).
- **►** The motivation for the $\Delta \hat{u}_{t-i}$ terms is as before: to whiten the residuals of the ADF regression
- \triangleright The DF critical values are shifted to the left as deterministic terms, and/or more $I(1)$ variables in the regression are added.

The ECM test

 \blacktriangleright As we have seen, $r = 0$ corresponds to $\phi = 0$ in the ECM model in [\(24\)](#page-30-0):

$$
\Delta Y_t = b\Delta X_t + \phi Y_{t-1} + \gamma X_{t-1} + \epsilon_t
$$

- It also comes as no surprise that the t-value t_{ϕ} have typical DF-like distributions under H_0 : $\phi = 0$.
- \triangleright See DN and/or Ericsson and MacKinnon (2002) for critical values.

Testing $r=0$ against $r=1$

Why use ECM test instead of the Engle-Granger test? I

The size of the test (the probability of type 1 error) is more or less the same for the two tests.

However, the power of the ECM test is generally larger than for the E-G test.

If t_ϕ^{ECM} is the ECM test based on [\(24\)](#page-30-0), it can be shown that

$$
t_{\phi}^{ECM} \cong \frac{\sigma_e}{\sigma_{\epsilon}} t_{\tau}^{E^G},\tag{29}
$$

where $t^{\varepsilon G}$ is the E-G test using

$$
\Delta \hat{u}_t = \tau \hat{u}_{t-1} + e_t \tag{30}
$$

The "t-values", and therefore the power, will be equal when $\sigma_e = \sigma_e$.

Why use ECM test instead of the Engle-Granger test? II

We can say something about when this will happen: Start with the ECM and bring it on ADL form:

$$
Y_t = bX_t + (1+\phi)Y_{t-1} + (\gamma - b)X_{t-1} + \epsilon_t
$$

$$
(1 - (1+\phi)L)Y_t = (b+(\gamma - b)L)X_t + \epsilon_t
$$

Assume next that the following restriction holds:

$$
\frac{(b+(\gamma-b)L)}{(1-(1+\phi)L)} = \beta \tag{31}
$$

(the is a Common Factor in the lag polynomial) so that

$$
b = \beta
$$

$$
(\gamma - b) = -\beta(1 + \phi)
$$

Testing $r=0$ against $r=1$

Why use ECM test instead of the Engle-Granger test? III $Y_t = \beta X_t + (1 + \phi) Y_{t-1} - \beta (1 + \phi) X_{t-1} + \epsilon_t$ (32) $\Delta Y_t - \beta \Delta X_t = \phi(Y_{t-1} - \beta X_{t-1}) + \epsilon_t$

If we replace *β* by *β*ˆ, we have The ECM model [\(24\)](#page-30-0) implies the Dickey-Fuller regression

$$
\underbrace{\Delta Y_t - \hat{\beta}\Delta X_t}_{\Delta \hat{u}_t} = \phi \underbrace{(y_{t-1} - \hat{\beta}X_{t-1})}_{\hat{u}_{t-1}} + \epsilon_t \tag{33}
$$

when the Common factor restriction in [\(31\)](#page-38-0) is true.

- If the Common factor restriction is invalid, the $E-G$ test is based on a mis-specified model.
- \blacktriangleright As a consequence $\sigma_e > \sigma_e$, and there is a loss of power relative to ECM test.

Testing cointegrating rank I

For the vector \mathbf{y}_t consisting of $n \times 1$ variables, we have the Gaussian $VAR(p)$:

$$
\mathbf{y}_t = \mathbf{\Phi}(L)\mathbf{y}_{t-1} + \varepsilon_t \tag{34}
$$

and use the re-parameterized equation:

$$
\Delta \mathbf{y}_t = \mathbf{\Phi}^*(L) \Delta \mathbf{y}_{t-1} + \mathbf{\Pi} \mathbf{y}_{t-1} + \varepsilon_t \tag{35}
$$

We write the levels coefficient matrix Π as the product of two matrices $\boldsymbol{\alpha}_{n\times r}$ and $\boldsymbol{\beta}'_{r\times n}$ where $r\equiv rank(\boldsymbol{\Pi}):$

$$
\Pi = \alpha \beta' \tag{36}
$$

We are interested in both the cointegrating case

 $0 <$ rank $(\mathbf{\Pi}) < n$

Testing cointegrating rank II

and the case with no cointegration

 $rank(\Pi) = 0$

- **F** rank(Π) is given by the number of non-zero eigenvalues of Π . But can we find the number of eigenvalues that are significantly different from zero?
- **►** Fortunately, this problem has a solution. An eigenvalue of **Π** is a special kind of squared correlation coefficient known as a canonical correlation in multivariate statistics.
- \blacktriangleright This method has become known as the **Johansen approach**. It is likelihood based, see HN § 17.3.2

Intuition I

- For concreteness, consider $n = 3$ so r can be 0.1 or 2
- \blacktriangleright $r = 0$ corresponds to $\Pi = 0$ in the context of cointegration:
- \blacktriangleright From the representation theorem; with two unit-roots

$$
\Pi = \Phi - I = P \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] P^{-1} - I = 0.
$$

- \blacktriangleright *r* = 1 corresponds to $\alpha_{3\times1}\neq$ 0 for a single cointegration vector $\beta'_{1\times 3}$.
- \blacktriangleright For this to make sense, $\beta'_{1\times 3}$ **y**_{t−1} must be a $I(0)$ and it must be a significant predictor of $\Delta \mathbf{y}_{t}$.

Intuition II

- \blacktriangleright The strength of the relationship can be estimated by the highest squared canonical correlation coefficient, call it $\hat{\rho}_1^2$,between $\Delta{\mathbf{y}}_t$ and all the possible the linear combinations of the variables in \mathbf{y}_{t-1} .
- \blacktriangleright If $\hat{\rho}_1^2 > 0$ is statistically significant, we reject that $r = 0$.
- $\hat{\rho}_1^2$ is the same as the highest eigenvalue of $\mathbf{\hat{\Pi}}$, and $\hat{\beta}'_{1\times3}$ is the corresponding eigenvector.
- If $r = 0$ is rejected we can, continue, and test $r = 1$ against $r = 2$.
- If the second largest canonical correlation coefficient $\hat{\rho}_2^2$ is also significantly different from zero, we conclude that the number of cointegrating vectors is two. $\hat{\beta}'_{2\times 3}$ is the corresponding eigenvector

The Johansen method

► It can be shown that, for the Gaussian VAR, $\hat{\beta}'_{1\times3}$ and $\hat{\beta}'_{2\times3}$ are ML estimates.

Trace-test and max-eigenvalue test I

 \triangleright We order the canonical correlations from largest to smallest and construct the so called trace test:

Trace-test =
$$
-T \sum_{i=r+1}^{3} \ln(1-\hat{\rho}_i^2)
$$
, $r = 0, 1, 2$ (37)

- If $\hat{\rho}_1^2$ is close to zero, then clearly *Trace-test* will be close to zero, and we we will not reject the H_0 of $r = 0$ against $r \ge 1$.
- and so on for H_0 of $r=1$ against $r\geq 2$
- \triangleright Of course: to make this a formal testing procedure, we need the critical values from the distribution of the Trace-test for the sequence of null-hypotheses.

Trace-test and max-eigenvalue test II

- \blacktriangleright The distributions are non-standard, but at least the main cases are tabulated in PcGive.
- \triangleright A closely related test is called the *max-eigenvalue* test, (but the trace test is today judged most reliable)
- If there is a single cointegrating vector and there are $n 1$ weakly-exogenous variables, the Johansen method reduces to the testing and estimation based on a single ECM equation (and OLS estimation as above)

Constant and other deterministic trends I

- It matters a great deal whether the constant is restricted to be in the cointegrating space or not.
- \blacktriangleright The advise for data with visible drift in levels:
	- \triangleright include an deterministic trend as *restricted* together with an unrestricted constant.
	- \triangleright After rank determination, can test significance of the restricted trend with standard inference
- \blacktriangleright Shift in levels
	- Include restricted step dummy and a free impulse dummy.
- Exogenous $I(1)$ variables, see table and program by MacKinnon, Haug and Michelis (1999).

I(0) variables in the VAR?

 \triangleright A misunderstanding that sometimes occurs is that "there can be no stationary variables in he cointegrating relationships". Consider for example:

$$
-Y_{1t} + \beta_{12}Y_{2t} + \beta_{13}Y_{3t} + \beta_{14}Y_{4t} = ecm_{1t} \qquad (38)
$$

$$
\beta_{21} Y_{1t} - Y_{2t} + \beta_{23} Y_{3t} + \beta_{24} Y_{4t} = e cm_{2t} \qquad (39)
$$

If Y_1 is the log of real-wages, Y_2 productivity, Y_3 relative import prices, and Y_4 the rate of unemployment, then the first relationship may be a bargaining based wage and the second a mark-up equation.

- $Y_{4t} \sim I(0)$, most sensibly, but we want to estimate and test the theory $\beta_{14} = 0$.
- Hence: specify the VAR with Y_{4t} included.

From $I(1)$ to $I(0)$

۰

- \triangleright When the rank has been determined, we are back in the stationary-case.
- \blacktriangleright The distribution of the identified cointegration coefficients are "mixed normal" so that conventional asymptotic inference can be performed on this *β***ˆ** .
- \blacktriangleright The determination of rank allows us to move from the $I(1)$ VAR, to the cointegrated VAR that contains only $I(0)$ variables
- Another name for this $I(0)$ model is the vector equilibrium correction model, VECM.
- \blacktriangleright The VECM can be analyzed further, using the tools of the stationary VAR !
- \blacktriangleright Hence, cointegration analysis is an important step in the analysis, but just one step.

Cointegration: Summary of estimation and testing I

 \triangleright Depends on how much we know about

$$
\Pi(1) \equiv \Phi(1) - I_N
$$

apriori.

- **A** "typology" is (simplifying notation: $\Pi(1) = \Pi$):
- 1. $rank(\Pi)$ is 1

Estimating a unique cointegrating vector by means of:

The cointegration regression

The ECM estimator

Summary: Knowing and testing cointegration rank

Cointegration: Summary of estimation and testing II

- 2. $rank(\Pi)$ is 0 or 1 Test rank $(\Pi) = 0$ against rank $(\Pi) = 1$, by Engle-Granger test ECM test
- 3. Test and ML estimation based on VAR VAR based Johansen-test for rank(**Π**) (other than 0 or 1) ML estimation of *β* for the case of' $rank(Π)$ > 2 No assumptions about weak exogeneity of variables with respect to *β*.

Summary: Knowing and testing cointegration rank

Some important additional references

Johansen, S. (1995), Likelihood-Based Inference in Cointegrated Vector Auto-Regressive Models, Oxford University Press Juselius, K (2004) The Cointegrated VAR Model, Methodology and Applications, Oxford University Press MacKinnon, J., A. A. Haug and L. Michelis (1999) Numerical Distributions Functions of Likelihood Ratio Tests for Cointegration, with programs.