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References to Lecture 3

I HN Ch 10,11,12

I DM 13.1-13.2

I (BN2011: kap 10, HN2014: kap 6.1-6.2;7.1-7.2 )
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Exogeneity I

I So far, our regression models (for cross section data) have
been specified by a set of assumptions about the conditional
distribution function of Y given k regressors.

I As noted, there is nothing “invalid” or “inferior” about a
conditional distribution function! It is just as valid as a
simultaneous distribution function or a marginal pdf.

I Importantly, in practical modelling, it is often easier to be
formulate (realistic) assumptions about the conditional
distribution of Y given X ,than to specify the simultaneous
probability density function (pdf) of all the (k + 1) random
variables in our project.
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Exogeneity II

I If the parameters of the condition model (the expectation
function E (Y | X)) and the conditional variance function
Var(Y | X)) are relevant for our research purpose (formally
the parameters of interest), then we can work happily with
regression models and the maximum likelihood estimation
(MLE)n and inference methods (following the first 9 chapters
in HN )

I At least up to a point.

I That point is when we ask the following question: “Do we
loose information about the parameters of interest by only
estimating the conditional for Y given X, and not also the
marginal model for X?”
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Exogeneity III

I If we answer “no, we do not loose useful information” we have
the case of exogeneity of the explanatory variables. If the
answer is “yes” we concede that there is a loss of information,
and that X is not exogenous.

I In Chapter 10 in HN there is a precise definition of exogeneity
with reference to models of cross section data. We will use
that as reference when we get to dynamic models.
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Exogeneity defined I

I Heuristically, a variable Xi is strongly exogenous with respect
to the parameters of interest if they can be efficiently
estimated without taking into account the marginal
distribution (marginal model) of Xi . (I continue to use X for
regressor even though HN change to Z at this point).

I Without loss of generality, we can make the idea precise by
considering variable pairs (Yi , Xi ) i = 1, 2, ..., n that satisfy
the IID assumption.

I Let ψ (“psi”) denote the parameters of the conditional pdf
fψ(y | x) and let λ denote the parameters of the marginal pdf
fλ(x).
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Exogeneity defined II
I By definition:

fψ,λ(y , x) = fψ(y | x)fλ(x) (1)

I But it not always true that the MLE that we obtain for ψ by
maximizing the conditional likelihood function, is identical to
the MLE of ψ that we get from maximization of the joint
likelihood function based on fψ,λ(y , x).

I When the conditional MLE of ψ is equal to the unconditional
MLE of ψ, X is exogenous.

I This is the same as observing equality between the maximum
of the simultaneous likelihood function, and the product of
two separately maximized likelihoods: The conditional for Y
given X and the marginal for X . See HN page 141 for
notation.
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Exogeneity defined III

I A sufficient condition for exogeneity, is that both ψ and λ can
take all values within their respective parameter spaces.

I There are no cross restrictions that link ψ to λ, (like ψ to λ).
I Both ψ to λ are “free-to-vary”.
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Inference in the presence of exogeneity

I For the cross section models that we have reviewed, the
correctness of the model specification and exogeneity goes
hand in hand.

I Otherwise the BLUE theorem for regression models would not
have been true!

I When we get to dynamic regression model, we will see that
this aspect of exogeneity does not necessarily apply (although
it can)
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I Use for example Ch 10.2 in HN to solve Question A in
Seminar exercise 2 to formulate the normal (also called
gaussian) regression model:

Yi = β1 + β2Xi + ε i (2)

Xi = µx + εxi (3)

with
ψ = (β1, β2, σ2), λ = (µx , σ2

xx )

where σ2 = Var(Yi | Xi ), µx = E (X ), σ2
xx = Var(Xi ) and

where ε i and εxi and bivariate normal and independent (and
uncorrelated).

I In the model (2)-(3) Xi is strongly exogenous since the
marginal and conditional parameters in ψ and λ are allowed
so vary freely.

I See HN § 10.3.1. for a more detailed argument.
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Empirical models I

I Ch 11 in HN: “Empirical models and modelling”

I The chapter discusses the implications of “the fact of life”
that the Data Generating Process (DGP) is in practice
unknown to us as econometricians.

I First of all: Estimated econometric models are empirical
models which have properties that depend on the observed
data.

I For example: If the variance of the Y is clearly
heteroskedastic, the model residuals will become manifestly
heteroskedastic unless we account for that variation in
variance in the model. If we fail in our empirical modelling,
estimation and testing based on the assumptions of the IID
regression model may not be reliable.
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Empirical models II

I Ch 11.3 is an interesting discussion of four different
interpretations of linear single equation models:

1. Regression, meaning conditional expectations.
Although the conditional expectation function exists under
weak assumptions about the joint pdf, it can only be derived
as a linear function in a few special cases (the normal, as given
above, is the best known, as).
Hence the specification of the functional form is an important
modelling task.

2. Linear least squares approximation
3. Contingent plan

A plan which is implemented by an economic agent after
observing the outcome of the conditioning variable.
Contingent plan models can therefore be estimated at least
consistently by OLS
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Empirical models III

4. Behavioural model (could have used “expectations model”)
In this case, the agents’ plan depends on expectations, X e

i ,
about the variable Xi . OLS estimation can give biased
estimates to the parameters of this type of model. It depends
on how expectations are formed.
For the past 25 years the most popular of this type is the
Rational Expectations model, and we therefore return to it
under the Lucas-critique of OLS estimated time series models
later.

Note that our Lecture note 1 introduced the point about linear
econometric equation being subject to interpretation. It can be
regression equation. But not always.
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Congruence and Encompassing (ch 11.4 and 11.5) I

I From the premise that the true DGP is complex and unknown
to us, at least two implications follow

I It is non-trivial to match the theoretical framework to the
observations. An empirical model that achieves that aim is
called a congruent model. Mis-specification testing is
necessary to test for congruency.

I it follows that there can exist two or more competing models
of the same variable.

I Encompassing has been developed as a concept and research
ideal to tackle that kind of situation.

I Encompassing means literary: “putting a fence around”.
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Congruence and Encompassing (ch 11.4 and 11.5) II

I In econometrics, this entails that if there is an existing
(incumbent) empirical model A of the variable Y and you
build a new model B, then your model MB should explain the
results and properties of MA:MB E MA.

I Parsimonious encompassing (explaining more by less) gives
the most value-added to you model.

I There is a handful of formal tests of encompassing. The
simplest is to form the union model of MA and MB and then
use the LR test (in Chi-square or F-test form ) to test the two
sets of restrictions.
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Congruence and Encompassing (ch 11.4 and 11.5) III

I Simple regression example:

MA : Yi = β1 + β2Xi + εAi

MB : Yi = γ1 + γ2Zi + εBi

then the nesting-model (M0 ) is simply

M0 : Yi = λ1 + λ2Xi + λ3Zi + ε0i

16 / 40



Exogeneity Empirical models Introducing time series The AR(1) model Second order dynamics

Time series I

I We define a time series Yt as the realization of a stochastic
process {Yt ; t ε T}. In any period t the variable Yt can take
a number of values consistent with the the sample space.
(Norwegian: “utfallsrom”).

I A stochastic process has therefore a random distribution for
each Yt . It is consistent with this definition that T can be
{0,±1,±2, . . .}, {1, 2, 3, . . .}, [0, ∞} or (−∞, ∞).

I When there is no room for misunderstanding, we follow
convention and use the term time series both for a data series,
and for the process of which it is a realization.

I We will begin by examining the autoregressvie model of order
one: AR(1), the simplest dynamic process with properties that
carry over to more general/complicated models.
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Time series II

I Time series variables are often heavily correlated, so the
independency assumption of cross section data needs to be
replaced by something else.

I What we use s the assumption of conditional independence,
where the conditioning is on the history of the time series.

I We make this idea clearer by explaining the concept of
Markov process
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Markov proceses I

I The population correlation of Yt and Yt−2 given Yt−1 is zero
if

f (yt , yt−2 | yt−1) = f (yt | yt−1) · f (yt−2 | yt−1) (4)

which is called conditional independence (cf. §7.3 in HN)

I An important implication is that the conditional distribution
of Yt given (Yt−1, Yt−2) does not depend on Yt−2:
Start with the general decomposition

f (yt , yt−2 | yt−1)︸ ︷︷ ︸
joint pdf

= f (yt | yt−2, yt−1)︸ ︷︷ ︸
cond pdf

· f (yt−2 | yt−1)︸ ︷︷ ︸
marg pdf

(5)
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Markov proceses II

and equate the right hand sides of (4) and (5):

f (yt | yt−2, yt−1)f (yt−2 | yt−1) = f (yt | yt−1) · f (yt−2 | yt−1)

⇓
f (yt | yt−2, yt−1) = f (yt | yt−1) (6)

I If the more general property holds that the conditional density
of Yt given the entire past of Yt−1, Yt−2,. . . , depends only on
Yt−1 the time series is a said to be a first order Markov
process.
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The autoregressive model of order 1, AR(1) I

The statistical model is:

1. Conditional independence:

(Yt | Y0,Y1, . . . ,Yt−1)
D
= (Yt | Yt−1);

2. Conditional distribution: Yt
D
= N(φ0 + φ1Yt−1, σ2);

3. Parameter space: γ0, γ1,σ2 ∈ R2 ×R+

The model equation is

Yt = φ0 + φ1Yt−1 + εt , for t = 1, . . . ,T (7)
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The autoregressive model of order 1, AR(1) II

I εt are called innovations: Conditionally on past vales of Yt ,
the time series variables ε1,ε2, . . . , εT are independent, and
the IID conditional distributions are:

εt
D
= N(0, σ2

ε ) ∀ t (8)

I Another name is a gaussian white-noise process. And a slightly
weaker assumption is that εt is white-noise (E (εt) = 0,
Var(εt) = σ2

ε ∀ t, Cov(εt , εt−j ) = 0, j = 1, 2, . . .).

I Y0 is called the initial condition. For simplicity we will treat it
as a fixed parameter (treating it as a random variable only
complicates the formalities, does not matter much with even a
moderate sample size).
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The autoregressive model of order 1, AR(1) III

I For reasons that will become clear we will restrict the
parameter φ1 in the following way:

−1 < φ1 < 1 (9)

I The case of φ1 = 1 we will later get to know as the Random
Walk Model (with drift if φ1 6= 0).

,
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The Autoregressive Likelihood I

Step 1: Factorization of the joint pdf (general, no assumptions
used):

f (yT ,. . . ,y1 | y0) = f (yT | yT−1,. . . ,y1, y0)f (yT−1,. . . ,y1 | y0)
= f (yT | yT−1,. . . ,y1, y0)f (yT−1 | yT−2,. . . ,y1, y0)f (yT−2,. . . ,y1 | y0)

...

= ∏T
t=1f (yt | yt−1,. . . ,y1, y0) (10)

Step 2: Use the Markov-property assumption of the model:

f (yT ,. . . ,y1 | y0) = ∏T
t=1f (yt | yt−1) (11)
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The Autoregressive Likelihood II

Step 3: Apply the normality assumption of the model to
f (yt | yt−1) to obtain the log likelihood function

l(φ0, φ1, σ2) = −T

2
(ln(2π/σ2

ε ))−
T

∑
t=1

[Yt − φ0 − φ1Yt−1]2

2σ2
ε

.

(12)
which is the conditional log likelihood function given Y0.
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ML estimation I

I By direct inspection of (12) we see the MLEs for φ1 and φ0

are the least squares estimators:

φ̂1 =
∑T

t=1 Yt(Yt−1 − Ȳ(−))

∑T
s=1(Ys−1 − Ȳ(−))2

(13)

where Ȳ(−) = T−1 ∑T
t=1 Yt−1 and

φ̂0 = Ȳ − φ̂1Ȳ(−) (14)

with Ȳ = T−1 ∑T
t=1 Yt .
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ML estimation II
I Furthermore

σ̂2
ε = T−1

T

∑
t=1

ε̂2t = T−1
T

∑
t=1

[Yt − φ̂0 − φ̂1Yt−1︸ ︷︷ ︸
ε̂t

]2 (15)

I We focus on the MLE of φ1.
DIY exercise: 3.1 Write φ̂1as “true parameter plus bias” in
the usual way:

φ̂1 = φ1 +
∑T

t=1 εt(Yt−1 − Ȳ(−))

∑T
s=1(Ys−1 − Ȳ(−))2

(16)

I But we cannot prove unbiasedness (E (φ̂1 − φ1) = 0) by using
the law of iterated expectations any longer.
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ML estimation III

I The conditioning variable in the model, Yt−1, is not
“independent enough”.

I In fact, it seems plausible that there is going to be a finite
sample bias: φ̂1 − φ1 > 0 for a given T .

I But how large is the bias? And, can we claim consistency?
How will t-ratios be affected?

I In order to answer these questions we use Monte Carlo in
Computer Class.

I And, we will go a little bit into the solution to the difference
equation (7) and some generalizations.
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Solution of AR(1) I

DIY exercise: 3.2. Use repeated substitution (backward) in

Yt = φ0 + φ1Yt−1 + εt , (17)

to obtain

Yt = φ0

t−1
∑
i=0

φi
1 + φt

1Y0 +
t−1
∑
i=0

φi
2εt−i (18)

DIY exercise: 3.3. Prove that (18) is a solution by inserting the
solution expressions for Yt and Yt−1 in (17) and show that you get
an identity.

I The solution is a function of t, the whole sequence εt ,εt−1,. . .
ε1 and the initial condition Y0.
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Solution of AR(1) II

I The mathematical solution does not require εt
D
= N0, σ2

ε ) or
any other specific distributional assumption for εt . But the
statistical properties of Yt given by the solution will depend
on distributional assumptions..

Note also that the solution (18) does not depend on the
assumption |φ1| < 1. But φ1 is nevertheless essential both for the
nature of the solution, as stable, unstable or explosive, and for the
statistical properties of the solution. Here be briefly look at the
importance of φ1 for the stability of Yt ∼AR(1).

30 / 40



Exogeneity Empirical models Introducing time series The AR(1) model Second order dynamics

Expectation I

I From (18) and (8)

E (Yt | Y0) = φ0

t−1
∑
i=0

φi
1 + φt

1Y0 (19)

I To find the unconditional expectation E (Yt) we apply t → ∞.

I Now see why −1 < φ1 < 1 is essential, because only then
does t → ∞ give

E (Yt | Y0) →
t→∞

E (Yt) =
φ0

1− φ1
=: µY (20)

since the geometric progression ∑t−1
i=0 φi

1 =
t→∞

1
1−φ1

and

φt
1 =
t→∞

0.
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Expectation II

I Memo: (19) can be written as

E (Yt | Y0) =
φ0(1− φt

1)

(1− φ1)
+ φt

1Y0

by using the formulae for the first t elements a geometric
progression.
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Variance, autocovariance and autocorrelation (acf) I

I The variance of Yt

Var(Yt | Y0) =
t−1
∑
i=0

φ2i
1 σ2

ε (21)

Var(Yt) =
σ2

ε

1− φ2
1

(22)

which also requires: −1 < φ1 < 1.
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Variance, autocovariance and autocorrelation (acf) II

I The first autocovariance is defined as

Cov(Yt ,Yt−1) =: E [(Yt − µ)(Yt−1 − µ)] (23)

Show (as DIY Exercise 3.4) that

Yt = φ0 + φ1Yt−1 + εt ,

can be re-parameterized as

Yt − µ = φ1(Yt−1 − µ) + εt iff − 1 < φ1 < 1 (24)

But then

(Yt − µ)(Yt−1 − µ) = φ1(Yt−1 − µ)2 + εt(Yt−1 − µ)
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Variance, autocovariance and autocorrelation (acf) III
and taking expectations on both sides gives:

Cov(Yt ,Yt−1) = E
[
(φ1(Yt−1 − µ)2

]
= φ1Var(Yt)

Hence, when −1 < φ1 < 1 holds, the covariance between Yt

and Yt−1 does not depend on time itself.

I For Yt and Yt−2 we obtain

Cov(Yt ,Yt−2) = φ2
1Var(Yt)

also independent of t. It is the time difference between Yt

and Yt−2 that matters.

I And generally (still assuming −1 < φ1 < 1)

Cov(Yt ,Yt−j ) = φj
1Var(Yt) , j = 1, 2, . . .
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Variance, autocovariance and autocorrelation (acf) IV

I The theoretical autocorrelation function (ACF) is defined as
:

ζj ,t =:
Cov(Yt ,Yt−j )

Var(Yt)
, (25)

I For the case of AR(1) with −1 < φ1 < 1, the ACF is only a
function of j :

ζj = φj
1 for j = 1, 2, ... (26)
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Second order dynamics AR(2) I

I By a generalization of the above theory,autoregressive models
with higher order dynamics can be defined

I For example the AR(2) process with gaussion (normal
disturbances)

Yt = φ0 + φ1Yt−1 + φ2Yt−2 + εt (27)

εt
D
= N(0, σ2

ε ) ∀ t (28)

I We can guess that the magnitude of the parameters φ1 and
φ2 are important for the solution for Yt in this more general
model

I That turns out to be true, and we will present the theory in
the next lecture.
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Second order dynamics AR(2) II

I But now, we can use the computer to study the solution of
the homogenous equation corresponding to (27)

Y h
t = φ1Y

h
t−1 + φ2Y

h
t−2 (29)

as well as the full solution of the non-homogenous difference
equation (27).

I From mathematics we have that the solution of (29) depends
on the roots of the associated characteristic polynomial

λ2 − φ1λ− φ2 = 0 (30)

where λ denotes a root.
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Second order dynamics AR(2) III

I Memo: For AR(1) the characteristic polynomial is (“real
root”)

λ− φ1 = 0

which gives a single root which is a real number

I For AR(2) there can be to two real roots, or two roots that
are complex numbers.

I The complex roots have the same real part (the norm) and is
therefore called a complex pair.
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AR(2) example I

φ0 = 0, φ1 = 1.6, φ2 = −0.9:

Yt = 1.6Yt−1 − 0.9Yt−2 + εt , (31)

I In this case the two roots are a complex numbers. The norm
(modulus) of the two roots is 0.94868. This number is
comparable to the absolute value (magnitude) of a real root.

I Show graph of homogenous solution,
and the particular (full) solution when εt ∼ IID(0, 1) in class
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