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Marked equilibrium examples

Structural form and reduced form I

I Consider the following two equations for simultaneous
equilibrium in a single marked (partial equilibrium)

Qt = β11 + β12Pt + εdt (demand) (1)

Qt = β21 + β22Pt + εst (supply) (2)

I εdt and εst are white-noise processes, e.g., (εdt ,
εst )′ ∼ IN(0,Σ).

I In this lecture we will not require from the outset that Σ is
diagonal: We want to study identification both without
imposing any restrictions of the covariance matrix Σ, and with
such restrictions (typically that Σ is diagonal).
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Marked equilibrium examples

Structural form and reduced form II
I In matrix notation, the model is(

1 −β12
1 −β22

)(
Qt
Pt

)
=

β11 + εdt
β21 + εst

I Since the market is always in equilibrium, we observe not (1)
and (2), but a sequence of equilibrium variables
{. . . , (Qt−1,Pt−1),(Qt ,Pt ) , (Qt+1,Pt+1) , . . .} from the
reduced-form of the simultaneous equations model(

Qt
Pt

)
=

(
1 −β12
1 −β22

)−1 (
β11 + εdt
β21 + εst

)
(3)

Since (
1 −β12
1 −β22

)−1
=

(
− β22

β12−β22

β12
β12−β22

− 1
β12−β22

1
β12−β22

)
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Marked equilibrium examples

Structural form and reduced form III

the Reduced Form (RF) becomes:

Qt =
β12β21 − β11β22

β12 − β22
+

β12εst − β22εdt
β12 − β22

(4)

Pt =
β21 − β11
β12 − β22

+
εst − εdt
β12 − β22

(5)

I The identification issue: From the RF (4)-(5), can we
obtain consistent estimators of the parameters of the
simultaneous equation model (1)-(2)?

I REMARK: We discuss identification as a logical property of
the theoretical model, as in HN and BN. This corresponds to
the term “Asymptotic Identification” (page 529) used by DM.
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Marked equilibrium examples

Under-identification I

I Given our assumptions, OLS estimators of the RF parameters
in (4) and (5) will be MLEs that are consistent estimators.

I Let us therefore assume a perfect sample that gives us
knowledge of the plim-values of the OLS estimators of E (Qt )
and E (Pt). Denote these plim-values by γQ0 and γP0

γQ0 =
β12β21 − β11β22

β12 − β22
(6)

γP0 =
β21 − β11
β12 − β22

(7)

I Two equations in two known RF parameters, γQ0 and γP0,
and four unknown structural parameters.
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Marked equilibrium examples

Under-identification II

I Cannot determine β11, β12, β21 and β22 from (6) and (7)
even if we have perfect knowledge of the reduced form
parameters γQ0 and γP0

I The parameters of (1) and/or (2) cannot be identified.

I Therefore, neither of the equations in the SEM are identified.
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Marked equilibrium examples

Partial identification by imposing restrictions I

I Let us assume completely inelastic supply, β22 = 0. The SEM
is now

Qt = β11 + β12Pt + εdt (demand) (8)

Qt = β21 + εst (supply) (9)

and keep (εdt , εst )′ ∼ IN(0,Σ) as before.
I RF for this case:

γQ0 =
β12β21

β12
= β21 (10)

γP0 =
β21 − β11

β12
(11)
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Marked equilibrium examples

Partial identification by imposing restrictions II

I Assume again that γQ0 and γP0 are known (the same perfect
sample assumption as above).

I The structural parameter β21 is found (determined) from (10),
hence the supply equation (9) is identified

I In (11) we still have “two unknowns”and only one equation:
The demand equation (8) is not identified

I This is an example of partial identification (i.e. of one
equation namely (9) in a SEM.
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Marked equilibrium examples

Full identification by imposing restrictions I

I In addition to β22 = 0 we assume that Σ is diagonal:

Σ=

(
σ2d ε 0
0 σ2s ε

)
I Does this lead to (more) identification?
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Marked equilibrium examples

Full identification by imposing restrictions II

I To find the answer, write down all the first and second order
parameters (moments) from the reduced form

E (Qt ) ≡ γQ0 = β21 (12)

E (Pt ) ≡ γP0 =
β21 − β11

β12
(13)

Var(Qt ) =
β212σ

2
s ε

β212
(14)

Var(Pt ) =
σ2s ε − σ2d ε

β212
(15)

Cov(Qt ,Pt ) =
β12σ

2
s ε

β212
(16)
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Marked equilibrium examples

Full identification by imposing restrictions III

I We now have a determined equation system for the RF
parameters and the structural form parameters: 5 independent
equations in the five unknown structural parameters: β11,
β12, β21, σ

2
s ε and σ2d ε.

I Both equations are therefore identified, we call this
exact-identification also called just-identification.
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Marked equilibrium examples

Interpreting the example of identification by restrictions:
recursive structure I

I The restrictions β21 = 0 (inelastic supply) together with
diagonal Σ makes the structure become recursive:

I In expectation, supply is fixed from period to period, and there
is no indirect correlation between εst and εdt via Σ

I Using our new concepts, Qt is strictly exogenous in a
regression between Pt and Qt , and the plim of the OLS
estimated regression coeffi cient is

Cov(Qt ,Pt )
Var(Qt )

=

β12σ2s ε
β212

β212σ2s ε
β212

=

σ2s ε
β12

σ2s ε
=

1
β12
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Marked equilibrium examples

Interpreting the example of identification by restrictions:
recursive structure II

I Hence, the slope parameter β
′
11 of the inverted demand

function
Pt = β′11 + β

′
12Qt + ε′st

is consistently estimated by OLS, and a consistent estimator
of β12 is the reciprocal of that OLS estimator β̂

′
12.

I It is also MLE, given the normal/gaussian properties of the
disturbances.
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Marked equilibrium examples

Summing up the first example I

I Identification is a logical property of the structural (theory)
model. It is not a property of the sample.

I Consistent estimation of the RF parameters is necessary for
identification of structural parameters.

I Restriction on one or more of the structural parameters (β22
above), may lead to at least partial identification

I Restriction on the covariance matrix of the structural
disturbances (σsd = 0, above) can also increase the degree of
identification.

I Next: Motivate an easy-to-use method of checking
identification without considering any restrictions on the Σ
matrix for the disturbances
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Marked equilibrium examples

Summing up the first example II

I This is the method of the Order- and Rank-conditions

I Before presenting the general result, we will develop our
understanding in steps.
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Marked equilibrium examples

Another partially identified structure I

I Before we restricted (1) and (2), call it Structure 1, none of
the structural parameters were identified. We can make it
more concrete by writing it as

Structure 1

Qt = 15− Pt + εdt

Qt = −0.2+ 0.5Pt + εst

Look at a picture of what a scatter plot from this structure
could look like.

I Intuitively, the lack of identification is due to the fact that
there is no independent variation in the supply schedule that
can help “trace out” the demand curve, and vice versa for the
supply curve.
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Marked equilibrium examples

Another partially identified structure II

I When we discuss identification, it can be use an
“identification table”

Q 1 P
Demand equation 1 β11 β12
Supply equation 1 β21 β22

I We regard the constant term as a variable, denoted by the
“1” in the table.

I In the detailed Structure 1 β11 = 15, β22 = 0.5 and so on.
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Marked equilibrium examples

Another partially identified structure III

I Now consider a second structure:

Structure 2

Qt = 15− Pt + 1.5Xdt + εdt

Qt = −0.2+ 0.5Pt + εst

where Xdt is an observable variable, so the identification table
is

Q 1 P Xd
Demand equation 1 β11 β12 β13
Supply equation 1 β21 β22 0

where the exclusion Xd from the supply equation is market by
the “0”.
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Marked equilibrium examples

Another partially identified structure IV

I Intuition: the supply equation is now identified, because the
demand equation shifts due to changes in Xd , and the supply
is unaffected by the Xd shifts

I More formally: We cannot obtain an observational equivalent
supply-equation by taking a linear combination of the two
relationships in Structure 2 (expect by giving zero weight to
the demand equation).

I However, such a linear relationship is observational equivalent
to the Demand equation which therefore is not identified in
Structure 2.
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Marked equilibrium examples

What about?

Structure 3

Qt = 15− Pt + εdt

Qt = −0.2+ 0.5Pt + 2Xst + εst

Q 1 P Xs
Demand equation 1 β11 β12 0
Supply equation 1 β21 β22 β23
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Marked equilibrium examples

Finally the case of "exact identification" I

Structure 4

Qt = 15− Pt + 1.5Xdt + εdt

Qt = −0.2+ 0.5Pt + 2Xst + εst

Q 1 P Xd Xs
Demand equation 1 β11 β12 β13 0
Supply equation 1 β21 β22 0 β24

I No linear combination can “give back” the original two
structural equations, hence both are identified
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Rank and order conditions

The order and rank conditions for exact identification
I The following identification rule suggests itself: In a SEM with
N equations and therefore N endogenous variables, any
structural equation is identified if that equation excludes
N − 1 variables. The excluded variables can be endogenous or
exogenous.

I This is called the order condition.
I An equivalent formulation of the order condition is that
equation number i is identified if

(K −Ki )
excluded exogenous

= Ni − 1
included endogenous minus one

I In fact the order condition is only necessary. The necessary
and suffi cient condition says that the excluded variables in the
equation under inspection must have coeffi cients that are
different from zero in the other equations in the SEM.

I This is the rank condition for identification
I Good econometric software checks this condition
automatically. We has a meeting when we worked with
Seminar 3!
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Rank and order conditions

Overidentification

I We typically distinguish between just (or exact) identification
and overidentification.

I Overidentification means that we can derive, from the RF
parameters, more than one solution for the structural
parameters.

I Hence the RF form in this case has more information than we
need in order to estimate the structural parameters
consistently.

I Over-identification is not an obstacle to estimation of the
SEM, as we shall see later, the only problem is how to use the
information to give effi cient estimation (lowest possible
standard errors).
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Rank and order conditions

Order and rank condition, general formulation I
Rank condition
In a SEM with N linear equations, an equation is identified if and
only if at least one non-zero (N − 1)× (N − 1) determinant is
contained in the array of the coeffi cients which those variables
excluded from the equation in question appear in the other
equations of the SEM.
Remarks:

I Recall that the rank of a matrix is the order of the largest
non-zero determinant that it contains.

I If the rank condition is satisfied, the order condition is
automatically satisfied, but not vice versa

I If the order of the non-zero determinant is larger than
(N − 1) the equation is over-identified.
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Rank and order conditions

Order and rank condition, general formulation II

I Identities are often part of SEMs. They are counted among
the N equation of the model. Identities are identified
equations, but the identification of the other structural
equations should be investigated with the identities taken into
account.

I Exclusion restrictions are a special case of linear restrictions
on the parameters and an even more general formulation of
the order condition is:
In a SEM with N linear equations, a necessary condition for
identification of an equation is that there are
(N − 1)× (N − 1) linearly independent restrictions on the
parameters of the equation.
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Rank and order conditions

Order and rank condition, general formulation III

I As noted, in PcGive, identification is always checked prior to
estimation, hence it is asymptotic identification that is
checked by the program.
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Rank and order conditions

Identification of dynamic SEMs

I Predetermined variables count as exogenous variables when
we investigate identification

I This is because identification is about obtaining consistent
estimators of structural parameters, and as we know,
predeterminedness is enough for consistent estimation of RF
parameters, cf. the estimation theory of for VARs!

I Therefore, the order and rank conditions apply to dynamic
simultaneous equations models
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Rank and order conditions

Identification in recursive systems I

I In our first example, we saw that the supply-demand system
could be identified if the structure was recursive

I Recursive generally requires two things:

1. The matrix of contemporaneous coeffi cients must be (upper or
lower) triangular)

2. The Σ matrix must be diagonal

I Note from previous lectures, that this is exactly what we
achieve if we model the system in terms of conditional and
marginal models.

29 / 55



References Identification of SEMs Simultaneity bias IV estimation of a just identified equation GIVE and 2SLS

Rank and order conditions

Identification in recursive systems II

I Suppose that the RF of a dynamic SEM for Yt and Xt is the
stationary VAR with white-noise Gaussian:(

Yt
Xt

)
︸ ︷︷ ︸

yt

=

(
π11 π12
π21 π22

)
︸ ︷︷ ︸

Π

(
Yt−1
Xt−1

)
︸ ︷︷ ︸

yt−1

+

(
εyt
εxt

)
︸ ︷︷ ︸

εt

, (17)

I Cov(εyt ,εxt ) 6= 0 usually. but if we represent the VAR in
terms of a conditional ADL and the second line in the VAR

Yt = φ1Yt−1 + β0Xt + β1Xt−1 + εt (18)

Xt = π21Yt−1 + π22Xt−1 + εxt (19)
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Rank and order conditions

Identification in recursive systems III
we have a model with a recursive structure

Yt − β0Xt = φ1Yt−1 + β1Xt−1 + εt (20)

Xt = π21Yt−1 + π22Xt−1 + εxt (21)

since Cov(εt ,εxt ) = 0 from the construction of the conditional
model

I Because of Cov(εt ,εxt ) = 0 OLS on the marginal model and
ADL separately give consistent estimators of all the
parameters.

I One way to put this, is that, if our parameters of interest are
the parameters of the conditional-marginal equation, then
that model is the structure, and it is identified.
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Notation for a structural equation I

I Without loss of generality, we consider equation # 1 in a SEM
I Apart from the disturbance, adopt the notation in DM page
522:

y1= Z1β11+Y1β21+ε1 (22)

I y1 is n× 1, with observations of the variable that # 1 in the
SEM is normalized on.

I Z1 is n× k11 with observations of the k11 included
predetermined or exogenous variables.

I Y1, n× k12 holds the included endogenous explanatory
variables.
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Notation for a structural equation II

The total number of explanatory variable in the first equation is

k11 + k12 = k1 (23)

For simplicity assume that the structural disturbance is Gaussian
white-noise.

ε1 = IN(0,σ21 Inxn)
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Simultaneity bias of OLS estimators I

By defining the two partitioned matrices:

X1 =
(
Z1 Y1

)
(24)

β1 = ( β11 β21 )
′ (25)

(22) can be written compactly as

y1= X1β1+ε1 (26)
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Simultaneity bias of OLS estimators II

I (26) looks like an ordinary regression, but of course we
know better: Since it is the first structural equation in a
SEM (a system!) we have

plim(
1
n
X′1ε1) 6= 0 (27)

since X1 includes k12 endogenous explanatory variables.
I Hence the OLS estimator β̂1 will be inconsistent by
simultaneous equations bias.

I All the estimators will be affected, not only β̂21.
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Medium-term macro model example
I Medium term macro model of the Keynesian type.

I Ct : private consumption in year t (in constant prices)
I GDPt , TAXt and It are gross domestic product, net taxes and
investments and gov.exp.

I a - e are parameters of the macroeconomic model
I εCt and εTAXt are independent disturbances with classical
properties conditional on It and Ct−1.

Ct = a+ b(GDPt − TAXt ) + cCt−1 + εCt (28)

TAXt = d + eGDPt + εTAXt (29)

GDPt = Ct + It (30)

I Ct , GDPt and TAXt are endogenous, Ct−1 is predetermined.
I Assume that It is strictly exogenous with E (It ) = µI and
Var(It ) = σ2I . For simplicity, we will use

It = µI + εIt (31)

where is independent of εCt and εTAXt , and has classical
properties conditional on It and Ct−1.
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Reduced form
I The reduced form equation for Ct and GDPt

Ct =
a+ bd

(1− b(1− e)) +
b(1− e)

(1− b(1− e)) It +
c

(1− b(1− e))Ct−1

+
εCt − (be)εTAXt
(1− b(1− e))

GDPt =
a+ bd

(1− b(1− e)) +
(1− be)

(1− b(1− e)) It +
c

(1− b(1− e))Ct−1

+
εCt − (be)εTAXt
(1− b(1− e))

I Both Ct and GDPt depend on εCt (and εTAXt).
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Structural parameters I
I Assume now that our parameter of interest is b, the
‘marginal propensity to consume” . For exposition, we use a
simplified and static structural model

Ct = a+ b(GDPt ) + εCt (32)

GDPt = Ct + It (33)

It = µI + εIt (34)

I Assumptions about structural disturbances:

E (εCt | It ) = 0, Var(εCt | It ) = σ2C (35)

E (εIt ) = 0, Var(εCt ) = σ2I (36)

Kov(εCt , εIt ) = 0 (37)

I In this model, the OLS estimator of b is inconsistent.
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OLS estimator in the macro model example
We know that the OLS estimator is

b̂ =
∑T
t=1(GDPt − GDP)Ct

∑T
t=1

(
GDPt − GDP

)2 = b+ ∑T
t=1 GDPt (εCt − ε̄C )

∑T
t=1

(
GDPt − GDP

)2
To assess the probability limit of the bias term we use the reduced
form:

GDPt =
a+ µI
1− b +

εCt
1− b +

εIt
1− b , for 0 < b < 1

Ct =
(a+ bµI )

1− b +
εCt
1− b +

b
1− b εIt

which together with the assumptions give the properties of the two
random variables GDPt and Ct
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Simultaneous equations bias in macro example

plim(b̂− b) = plim ∑T
t=1 GDPt (εCt − ε̄C )

∑T
t=1

(
GDPt − GDP

)2
plim(b̂− b) = plim

∑T
t=1

(
a+µI
1−b +

εCt
1−b +

εIt
1−b

)
(εCt − ε̄C )

∑T
t=1

(
εCt−ε̄C
1−b + εIt−ε̄I

1−b
)2

From the assumptions of the model:

plim(b̂− b) = σ2C
σ2C + σ2I

> 0 (38)

I OLS is overestimating the structural parameter b in the model
given by (32)-(37)

I Trygve Haavelmo: The statistical implications of system of
simultaneous equations, Econometrica (1943)

I Inconsistency of OLS is true for all simultaneous equations
models: Market supply and demand equations for example, as
illustrated by Monte Carlo simulation in Computer Class 4.
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Instrumental variables matrix I

I Since (22) is assumed to be exactly identified, it is logically
consistent to assume that the SEM defines a matrix W1 with
the properties

plim(
1
n
W′1X1) = SW ′

1X1
(invertible) (39)

plim(
1
n
W′1ε1) = 0 (independence) (40)

plim(
1
n
W′1W1) = SW ′

1W1
(positive definite) (41)

I Since (39) requires invertiability, the number of columns in
W1 must k1.
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Instrumental variables matrix II
I The k11 predetermined variables included in eq # 1 are of
course in W1. In addition we need k12 instrumental variables
for the included endogenous explanatory variables in eq # 1.

I The k12 instrumental variables must be “taken from” the
predetermined variables in the SEM that are excluded from
the first equation.

I But if structural equation # 1 is just-identified, the number
of excluded predetermined variables is exactly equal to the
number of included endogenous variables in the equation
minus one. Hence we can write W1 as

W1 =
(
Z1 X01

)
(42)

where X01 is n× k11(number of included endogenous variables
minus one).
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Instrumental variables matrix III

I We see that, defined in this way, W1 will satisfy both

I instrument relevance (39), and
I instrument validity in (40)

I In the absence of perfect collinearity among instruments, also
(41).
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The IV estimator I

If we apply the method of moments to the structural equation
y1= X1β1+ε1, but with W1 instead of X1:

W′1
[
y1 −X1 β̂1,IV

]
= 0 (43)

we obtain the IV-estimator

β̂1,IV = (W
′
1X1)

−1W′1y1 (44)

β̂1,IV is clearly a method-of-moments estimator. The only
difference from OLS is that W′1 takes the place of X

′
1 in the IV

“normal equations", or orthogonality conditions, (43).
This means that, by construction, the IV-residuals
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The IV estimator II

ε̂IV,1 = y1 −X1 β̂1,IV (45)

are uncorrelated with (all the instruments in) W1:

W′1 ε̂IV,1 = 0. (46)
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Among the results for the IV-estimator are:

I β̂1,IV is a consistent estimator ,but it is biased in a finite
sample

I Asymptotic inference based on “t-ratios” and Chi-squared
statistics for joint hypotheses are valid

I The estimated standard error of β̂1,IV can be considerably
larger than β̂1,OLS if the instruments are weak, meaning that
they are almost independent from the endogenous variables
that they act as instruments for.
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I DM show in equation (8.17) that the asymptotic covariance
matrix of the vector (β̂1,IV − β1) is

Var(β̂1,IV − β1) = σ21plim(n
−1X

′
1PW1X1)

−1 (47)

where:
PW1 =W1(W′1W1)

−1W1

our old friend the prediction maker.

I Which role does it take here?
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The IV residual maker I

I If we want, we can define the IV-residual maker as

MIV ,1=
[
I−X1(W′1X1)−1W′1

]
(Check that

ε̂IV,1 =MIV ,1y1)

I If MIV ,1 is a proper residual maker, regression of W1 on W1

should result in zero-residuals.
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The IV residual maker II
I Check:

MIV ,1W1 =
[
I−X1(W′1X1)−1W′1

]
W1

Use that
M
′
IV ,1 =MIV ,1

(show for k1 = 2 for example), then

MIV ,1W1 =M
′
IV ,1W1

=
[
I−W1

{
(W′1X1)

−1}′ X′1]W1

=
[
I−W1

{
(W′1X1)

′}−1 X′1]W1

=
[
I−W1

{
X′1W1

}−1 X′1]W1

= 0
49 / 55



References Identification of SEMs Simultaneity bias IV estimation of a just identified equation GIVE and 2SLS

The IV residual maker III

so that the orthogonality condition (43) can be interpreted as:

W
′
1 ε̂IV ,1= (M

′

IV ,1W1)
′y1 = 0 (48)

confirming (46), and showing that the “only”difference
compared to OLS is that the set of instruments used to form
orthogonality conditions (normal equations) has been changed
from “X”to “W”.
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Optimal instruments in the overidentified case I

I In the case of overidentification, W1 is n× l1 where
l1 > k1 = k11 + k12,
=⇒ W′1X1 is no longer quadratic.

I There is more that one moment-matrix (based on W′1X1) that
are quadratic and invertible

I Each one defines a consistent IV-estimator of β1. We call this
over-identification
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Optimal instruments in the overidentified case II

I To solve this “luxury problem”we can define another IV
matrix Ŵ1 that has dimension n× k1:

Ŵ1 =
(
Z1 Ŷ1

)
, (49)

where Ŷ1 is n× k12 and is made up of the best linear
predictors of the k12 endogenous variables included in the first
equation:

Ŷ1 =
(
ŷ2 ŷ3 . . .

)
n×k12 (50)
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Optimal instruments in the overidentified case III

I Where does the optimal predictors come from? Since we are
looking at a single equation in a system-of-equations, they
must come from the reduced form equations for the
endogenous variables:

ŷj =W1π̂j , j = 2, ..., k12 + 1. (51)

where
π̂j = (W′1W1)

−1W′1yj , (52)

are the OLS estimators of the regression coeffi cients in the
conditional expectation function for each included endogenous
variables in the first equation, conditional on the full set of
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Optimal instruments in the overidentified case IV

predetermined variables in the system of equations. We can
write Ŷ1 as:

Ŷ1 =
(
W1(W′1W1)−1W′1y2 . . . W1(W′1W1)−1W′1y(k21+1)

)
,

and more compactly:

Ŷ1 =W1(W′1W1)
−1W′1Y1 = PW1Y1

in terms of the prediction-maker:

PW1 =W1(W′1W1)
−1W′1 (53)
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The GIV-estimator (GIVE) I

I We define the Generalized IV estimator as

β̂1,GIV = (Ŵ
′
1X1)

−1Ŵ′1y1. (54)

with
Ŵ1 =

(
Z1 Ŷ1

)
,

and
Ŷ1 = PW1Y1

I β̂1,GIV is also known as the 2-stage least squares estimator of
β1 in (26) that you have seen in operation in CC #4.
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