E 4160 Autumn term 2015. Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution Ragnar Nymoen

Department of Economics, University of Oslo

14 October 2015

Introduction I

Main references:

- \blacktriangleright HN Ch 16.
- \triangleright DM Ch 14.3 and 14.4
- \triangleright BN201422 Kap 10
- \triangleright See the end of the slide set for additional references (one of them posted on the web side as an important resource when testing for unit-root and later cointegration)

Deterministic trend—trend stationarity I

Let $\{Y_t; t = 1, 2, 3, ... T\}$ define a time series (as before). Y_t follows a pure deterministic trend (DT) if

$$
Y_t = \phi_0 + \delta t + \varepsilon_t, \, \delta \neq 0 \tag{1}
$$

where ε_t is white-noise and Gaussian. Y_t is non-stationary, since

$$
E(Y_t) = \phi_0 + \delta t \tag{2}
$$

even though (in this case) the variance does not depend on time:

$$
Var(Y_t) = \sigma^2 \tag{3}
$$

Deterministic trend—trend stationarity II

 \triangleright In the pure DT model, the non-stationarity issue is resolved by de-trending. The de-trended variable:

$$
Y_t^s = Y_t - \delta t
$$

 $Var(Y_t) = \sigma^2$ and

$$
E(Y_t^s)=\phi_0
$$

- Y_t^s is covariance stationary.
- Since stationarity of Y_t^s is obtained by subtracting the linear trend δt from Y_t in [\(1\)](#page-2-1), Y_t is called a *trend-stationary process*.
- Assume that we are in period T and want a forecast for Y_{T+h} . Assume that ϕ_0 and δ are known to us from history (mainly to simplify notation).

Deterministic trend—trend stationarity III

 \blacktriangleright The forecast is then:

$$
\hat{Y}_{T+h|T} = \phi_0 + \delta(T+h)
$$

 \triangleright Assume (and this is critical) that the parameters ϕ_0 and δ remain constant over the whole forecast period, The forecast error becomes:

$$
Y_{t+h} - \hat{Y}_{T+h} = \varepsilon_{T+j}
$$

with

$$
E[(Y_{t+h}-\hat{Y}_{T+h}) | T] = 0
$$

and variance:

$$
Var(Y_{t+h} - \hat{Y}_{T+h}) | T] = \sigma^2
$$

The conditional variance of the forecast error is the same as the unconditional variance (in the pure DT model).

Estimation and inference in the deterministic trend model I

- \triangleright Since the deterministic trend model can be placed within the stationary time series framework, it represents no new problems of estimation.
- \triangleright Nevertheless, the precise statistical analysis is non-trivial. For example, for [\(1\)](#page-2-1)

$$
Y_t = \phi_0 + \delta t + \varepsilon_t, t = 1, 2, \ldots
$$

and $\varepsilon_t \sim IID$. with $\text{Var}(\varepsilon_t) = \sigma^2$ and $E(\varepsilon_t^4) < \infty$, it has been shown for the OLS estimators $\hat{\phi}_0$ and $\hat{\delta}$:

$$
\left(\begin{array}{c}\nT^{1/2}(\hat{\phi}_0-\phi_0) \\
T^{3/2}(\hat{\delta}-\delta)\n\end{array}\right)\xrightarrow{D} N\left(\begin{array}{cc}0 \\ 0\end{array}, \sigma^2\left(\begin{array}{cc}1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3}\end{array}\right)^{-1}\right)
$$

Estimation and inference in the deterministic trend model II

- ► The speed of convergence of $\hat{\delta}$ is $T^{3/2}$ (sometimes written as $O_p(\mathcal{T}^{-3/2})$, for *order in probability*) while the usual speed of convergence for stationary variables is $\, T^{1/2} \,$
- $\rightarrow \hat{\delta}$ is so-called **super-consistent**,
- \blacktriangleright $Var(\hat{\delta})$ has the same property in this model, meaning that the usual tests statistics have teh usual asymptotic N and χ^2 distributions.

AR model with trend I

A more general DT model:

$$
Y_t = \phi_0 + \phi_1 Y_{t-1} + \delta t + \varepsilon_t, \, |\phi_1| < 1, \, \delta \neq 0 \tag{4}
$$

The solution is (take as an exercise!):

$$
Y_{t} = \phi_{0} \sum_{j=0}^{t} \phi_{1}^{j} - \delta \sum_{j=1}^{t-1} (\phi_{1})^{j} j
$$

+ $\delta \left(\sum_{j=1}^{t} \phi_{1}^{j-1} \right) \cdot t + \phi_{1}^{t} Y_{0} + \sum_{j=0}^{t} \phi_{1}^{j} \varepsilon_{t}$ (5)

If we define

$$
Y_t^s = Y_t - \delta \left(\sum_{j=1}^t \phi_1^{j-1} \right) \cdot t
$$

8 / 35

AR model with trend II

we find that also this de-trended variable is covariance stationary:

$$
E(Y_t^s) = \frac{\phi_0}{(1 - \phi_1)} - \delta \frac{\phi_1}{(1 - \phi_1)^2}
$$

$$
Var(Y_t^s) = \frac{\sigma^2}{(1 - \phi_1^2)}
$$

where the result for $E(Y_t^s)$ makes use of

$$
\delta \sum_{j=1}^{t-1} (\phi_1^j) j \underset{t \to \infty}{\to} \delta \frac{\phi_1}{(1 - \phi_1)^2}
$$

OLS estimation of models with deterministic trend I

- \blacktriangleright We have seen that $Y_t \sim AR(1) + trend$ can be transformed to $Y_t^s \sim AR(1)$.
- \triangleright The OLS estimators of all individual parameters, for example $(\hat{\phi}_0,\, \hat{\phi}_1,\hat{\delta})'$ are consistent at the usual rates of convergence $\left(\sqrt[T]{T}\right)$.
- \blacktriangleright The reason why $\hat{\delta}$ is no longer super-consistent in the $AR(1) + trend$ model, is that $\hat{\delta}$ is a linear combination of moments that converge at different rates.
	- \triangleright In such a situation, the slowest convergence rates dominates, it is \sqrt{T} .

OLS estimation of models with deterministic trend II

- \blacktriangleright The practical implication is that the standard asymptotic distribution theory can be used also for dynamic models that include a DT, as long as the homogenous part of the AR part of the model satisfies the conditions of weak stationarity.
- For the $AR(p) + trend$ or $ARDL(p, p) + trend$ trend the conditional mean and variance of course depends on time, just as in the model without trend: Adds flexibility to pure DT model.

Other important forms of deterministic non-stationarity I

 \triangleright The pure deterministic trend model (DT) can be considered a special case of

$$
Y_t = \phi_0 + \phi_1 Y_{t-1} + \delta D(t) + \varepsilon_t
$$

where $D(t)$ is any deterministic (vector) function of time. It might be:

- \blacktriangleright Seasonal dummies, or
- \triangleright Dummies for structural breaks (induce shifts in intercept and/or ϕ_1 , gradually or as a deterministic shock))
- As long as the model with $D(t)$ can be re-expressed as a model with constant unconditional mean (with reference to the Frisch-Waugh theorem), this type of non-stationarity has no consequence for the statistical analysis of the model.

Stochastic (or local) trend I

$AR(p)$: $Y_t = \phi_0 + \phi(L)Y_{t-1} + \varepsilon_t$ (6) $\phi(L) = \phi_1 L + \phi_2 L^2 + \ldots + \phi_p L^p$.

Re-writing the model in the (now) well known way:

$$
\Delta Y_t = \phi_0 + \phi^{\ddagger}(L) \Delta Y_{t-1} - \underbrace{(1 - \phi(1))}_{=p(1)} Y_{t-1} + \varepsilon_t \qquad (7)
$$

The parameters ϕ^\ddagger_i in

$$
\phi^{\ddagger}(L) = \phi_1^{\ddagger}L + \phi_2^{\ddagger}L^2 + \ldots + \phi_{p-1}^{\ddagger}L^{p-1}
$$
 (8)

are functions of the ϕ_i 's.

Stochastic (or local) trend II

We know from before that $\,Y_t$ is stationary and causal if all roots of

$$
p(\lambda) = \lambda^p - \phi_1 \lambda^{p-1} - \ldots - \phi_p \tag{9}
$$

have modulus less than one. In the case of $\lambda = 1$ (one root is equal to 1),

$$
p(1) = 1 - \phi(1) = 0. \tag{10}
$$

[\(7\)](#page-12-0) becomes

$$
\Delta Y_t = \phi_0 + \sum_{i=1}^{p-1} \phi_i^{\ddagger} \Delta Y_{t-i} + \varepsilon_t.
$$
 (11)

Stochastic (or local) trend III Definition

 Y_t given by [\(6\)](#page-12-1) is integrated of order 1, $Y_t \sim I(1)$, if $p(\lambda) = 0$ has one characteristic root equal to 1.

- \blacktriangleright The stationary case is often referred to as $Y_t \sim I(0)$, "integrated of order zero".
	- ► It follows that if $Y_t \sim I(1)$, then $\Delta Y_t \sim I(0)$.
	- An integrated series Y_t is also called *difference stationary*.
- \triangleright With reference to our earlier discussion of stationarity, we see that this definition (although common) is not general:
	- \blacktriangleright The characteristic polynomial of an $AR(p)$ series can have other unit-roots than the real root 1.
	- In fact, the unit-root defined by (10) corresponds to a unit-root at the "zero frequency" or *"long-run frequency*". In order to make this concept precise, spectral analysis is needed.

Stochastic (or local) trend IV

- In practice, the preclusion of unit-roots at "non-zero" frequencies" means that we abstract from seasonal integration ("summer may become winter") and unit-roots at the business-cycle frequencies (boom may become bust).
- \blacktriangleright The analysis of long-frequency unit-root can be extended to integration of order 2: $Y_t \sim I(2)$ if $\Delta^2 Y_t \sim I(0)$, where $\Delta^2 = (1 - L)^2$.
- In the $I(2)$ case, there must be a unit root in the characteristic polynomial associated with [\(11\)](#page-13-1):

$$
p(\lambda^{\ddagger}) = \lambda^{p-1} - \phi_1^{\ddagger} \lambda^{p-2} - \ldots - \phi_{p-1}^{\ddagger}.
$$

Contrasting $I(0)$ and $I(1)$

Try to show 1-5 for the Random Walk (RW) with drift:

$$
Y_t = \phi_0 + Y_{t-1} + \varepsilon_t, \tag{12}
$$

Spurious regression I

Granger and Newbold (1974) observed that

- 1. Economic time series were typically $I(1)$;
- 2. Econometricians used conventional inference theory to test hypotheses about relationships between $I(1)$ series
- \triangleright G&N used Monte-Carlo analysis to show that 1. and 2. imply that to many "significant relationships are found" in economics
- \triangleright Seemingly significant relationships between independent $I(1)$ -variables were dubbed spurious regressions.

Spurious regression II

To replicate G&N results, we let YA_t and YB_t be generated by the data generating process (DGP):

$$
YA_t = \phi_{A1} YA_{t-1} + \varepsilon_{A,t}
$$

$$
YB_t = \phi_{B1} YB_{t-1} + \varepsilon_{B,t}
$$

where

$$
\left(\begin{array}{c} \varepsilon_{A,t} \\ \varepsilon_{B,t} \end{array}\right) \sim N\left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} \sigma_A^2 & 0 \\ 0 & \sigma_B^2 \end{array}\right)\right).
$$

The DGP is a 1st order VAR. \textit{YA}_t , \textit{YB}_t are independent random walks if $\phi_{A1} = \phi_{B1} = 1$, and stationary if $|\phi_{A1}|$ and $|\phi_{B1}| < 1$. The regression is

$$
YA_t = \alpha + \beta YB_t + e_t
$$

and the hypothesis tested is H_0 : $\beta = 0$.

Spurious regression III

Rejection frequencies for H_0 : $\beta = 0$ in the model $YA_t = \alpha + \beta YB_t + \varepsilon_t$ when ε_t is $I(0)$ (lowest line), and $I(1)$ (highest). 5% nominal level.

Summary of Monte-Carlo of static regression

- \blacktriangleright With stationary variables:
	- \triangleright wrong inference (too high rejection frequencies) because of positive residual autocorrelation
	- \blacktriangleright but $\hat{\beta}$ is consistent
- \blacktriangleright With $I(1)$ variables:
	- rejection frequencies even higher and growing with T
	- **Indication that** $\hat{\beta}$ **is inconsistent under the null of** $\beta = 0$ **.**
	- **►** ... what *is* the distribution of $\hat{\beta}$?

Dynamic regression model I

In retrospect we can ask: Was the G&N analysis a bit of a strawman?

After all , the regression model is obviously mis-specified. And the true DGP is not nested in the model.

To check: use same DGP, but replace static regression by

$$
\Delta Y A_t = \phi_0 + \rho Y A_{t-1} + \beta_0 \Delta Y B_t + \beta_1 Y B_{t-1} + \varepsilon_{At}
$$
 (13)

Under the null hypothesis:

$$
\begin{aligned}&\rho=0\\&\beta_0=\beta_1=0\end{aligned}
$$

and there is no residual autocorrelation, neither under H_0 , nor under H_1 .

Dynamic regression model II

Spurious regression in an ADL model Lines show rejection frequencised for H_0 : $\rho = 0$ (highest), H_0 : $(\beta_0 + \beta_1) = 0$ and H_0 : $\beta_0 = 0$.

- \triangleright The ADL regression model [\(13\)](#page-21-0) performs better than the static regression,
	- \blacktriangleright for example, $t_{\hat\beta_0}$ seems to behave as in the stationary case.
	- \triangleright This does hold true in general, since $β_0$ is a coefficient on a stationary variable.
- ► But inference based on $t_{\hat{\beta}_0}$ and $t_{\hat{\beta}_1}$ continues to over-reject (the size of the test is wrong) also in the dynamic model.
- \triangleright Conclude that the spurious regression problem is fundamental.
- \triangleright We need non-standard inference theory before it can be tackled.
- \triangleright Start with unit-root testing.

The Dickey Fuller(DF) distribution I

We now let the Data Generating Process (DGP) for $Y_t \sim I(1)$ be the simple gaussian Random Walk:

$$
Y_t = Y_{t-1} + \varepsilon_t, \, \varepsilon_t \sim N(0, \sigma^2) \tag{14}
$$

We estimate the model

$$
Y_t = \rho Y_{t-1} + u_t, \qquad (15)
$$

where our choice of OLS estimation is based on an assumption about white-noise disturbances u_t . Since the model can be re-parameterized as

$$
\Delta Y_t = (\rho - 1)Y_{t-1} + u_t
$$

The Dickey Fuller(DF) distribution II

we understand intuitively that the OLS estimator $(\rho - 1)$ is consistent: The stationary (finite variance) series ΔY_t cannot depend on the infinite variance variable Y_{t-1} .

 \blacktriangleright However, consistency alone does not guarantee that

$$
\sqrt{T} \cdot (\hat{\rho} - 1) = \frac{\frac{1}{T} \sum_{t=1}^{T} Y_{t-1} \varepsilon_t}{\frac{1}{T^2} \sum_{t=1}^{T} Y_{t-1}^2}
$$
(16)

has a normal limiting distribution in this case (when indeed $\rho = 1$).In fact, we suspect that the distibution collapses to 0, $\hat{\rho}$ approaches 1 at a rate faster than \sqrt{T} .

The Dickey Fuller(DF) distribution III

 \blacktriangleright To compensate that we change from $\sqrt{\mathcal{T}}$ to $\mathcal{T}.$ It has been shown that

$$
T \cdot (\hat{\rho} - 1) \xrightarrow[T \to \infty]{} \frac{\frac{1}{2}(X - 1)}{\int_0^1 \left[W(r)\right]^2 dr}
$$
 (17)

- In the denominator, $W(r)$ represents a (Standard Brownian Motion) process that defines stochastic variables for any r . For example: $W(1) \sim N(0, 1)$, but when $r < 1$, $W(r)$ is "something different" than the normal distribution.
	- \triangleright But the important thing to note is that the denominator is always positive, meaning that the sign of the bias depens on the numerator.

The Dickey Fuller(DF) distribution IV

- \blacktriangleright The random variable X in the numerator of [\(17\)](#page-26-0) is distributed $\chi^2(1)$, and values close to 0 are therefore quite probable.
- As a result, negative $(\hat{\rho}-1)$ values will be over-represented when the true value of *ρ* is 1.
- \triangleright The distribution in [\(17\)](#page-26-0) is called a Dickey-Fuller (D-F) distribution.

Under the H_0 of $\rho = 1$, also the "t-statistic" from OLS on [\(15\)](#page-24-1) has a Dickey-Fuller distribution, which is of course relevant for practical testing of this H_0 .

$$
t_{DF} \xrightarrow{T \to \infty} \frac{\frac{1}{2}(X-1)}{\sqrt{\int_0^1 \left[W(r)\right]^2 dr}} \tag{18}
$$

The Dickey Fuller(DF) distribution V

- Intuitively, because of the skewness of X, the left-tail 5 $\%$ fractile of this Dickey-Fuller distribution will be more negative than those of the normal.
- \triangleright A very useful, and pedagogical, reference is Ericsson and MacKinnon (2002), which also cover the extension to cointegration (as the title shows)

Dickey-Fuller tables and models I

- \blacktriangleright The critical values of the DF distribution [\(18\)](#page-27-0) have been tabulated by Monte-Carlo simulation.
- \triangleright There is however not a single table, but several, since the DF-distribution depends on whether a constant term, or a trend is included in the estimated model.
- \triangleright See the mentioned paper by Ericsson and MacKinnon (2002).
- \triangleright PcGive uses the relevant critical values, given the specification of the model.
- \triangleright The "rule of thumb" is that Type-I error probability is best controlled by over-representing the deterministic terms, rather than under-representing them.

Dickey-Fuller tables and models II

- If a time plot of Y_t shows long-swings around a constant mean, the Dickey-Fuller regression model that we use for testing should still include a deterministic trend.
- If we reject the unit-root, we can test whether the trend is significant by a standard (t-test) conditional on stationarity.
- \blacktriangleright The cost of this procedure is the Type-II error probability can become large.

Augmented Dickey-Fuller tests I

Let the Data Generating Process (DGP) be the $AR(p)$

$$
Y_t - \sum_{i=1}^p \phi_i Y_{t-i} = \varepsilon_t \tag{19}
$$

with $\varepsilon_t \sim N(0, \sigma^2)$. We have the reparameterization:

$$
\Delta Y_t = \sum_{i=1}^{p-1} \phi_i^{\dagger} \Delta Y_{t-i} - (1 - \phi(1)) Y_{t-1} + \varepsilon_t
$$
 (20)

 $Y_t \sim I(1)$ is implied by $(1 - \phi(1)) \equiv \rho = 0$ But a simple D-F regression will have autocorrelated u_t in the light of this DGP: one or more lag-coefficient $\phi^\ddagger_i \neq 0$ are omitted.

Augmented Dickey-Fuller tests II

The augmented Dickey-Fuller test (ADF), see Ch 17.7, is based on the model

$$
\Delta Y_t = \sum_{i=1}^{k-1} b_i \Delta Y_{t-i} + (\rho - 1) Y_{t-1} + u_t
$$
 (21)

Estimate by OLS, and calculate the t_{DF} form this ADF regression.

- \blacktriangleright The asymptotic distribution is that same as in the first order case (with a simple random walk).
- \blacktriangleright The degree of augmentation can be determined by a specification search. Start with high k and stop when a standard t-test rejects null of $b_{k-1} = 0$

Augmented Dickey-Fuller tests III

- \triangleright The determination of lag length" is an important step in practice since
	- \triangleright Too low k destroys the level of the test (dynamic mis-specification),
	- \triangleright Too high k lead to loss of power (over-parameterization).
- \triangleright The ADF test can be regarded as one way of tackling "unit-root processes" with serial correlation
- \triangleright DM also mentions alternatives to ADF, on page 623.
- \triangleright The are several other tests for unit-roots as well—including tests where the null-hypotheses is stationarity and the alternative is non-stationary.
- \triangleright As one example of the continuing interest in these topics: The book by Patterson (2011) contains a comprehensive review.

References

Ericsson N.R. and J.G. MacKinnon (2002): Distributions of error correction tests for cointegration, Econometrics Journal, 5,285–318 Granger C.W.J and P. Newbold (1974) Spurious Regressions in Econometrics, Journal of Econometrics, 2, 111-120. Hylleberg, S, R. F. Engle, C. W. J. Granger and B. S. Yoo (1990) Seasonal Integration and Cointegration, Journal of Econometrics, 1990, 44, 215-238.

Patterson, K. (2011), Unit Root Tests in Time Series. Volume 1: Key Concepts and Problems, Palgrave MacMillan.