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Introduction |

Main references:

HN Ch 16.
DM Ch 14.3 and 14.4
BN201422 Kap 10

See the end of the slide set for additional references (one of
them posted on the web side as an important resource when
testing for unit-root and later cointegration)
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:

Deterministic trend—trend stationarity |

Let {Y:; t =1,2,3,...T} define a time series (as before).
Y: follows a pure deterministic trend (DT) if

Yt:(,bo—{—(St—i—St,(S;éO (1)

where ¢; is white-noise and Gaussian.
Y} is non-stationary, since

even though (in this case) the variance does not depend on time:

Var(Y:) = o2 (3)
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Deterministic trend—trend stationarity ||

> In the pure DT model, the non-stationarity issue is resolved by
de-trending. The de-trended variable:

YtS = Yt—ét

Var(Y:) = 02 and
E(Y?) = o

» Y7 is covariance stationary.
» Since stationarity of Y7 is obtained by subtracting the linear
trend &t from Yy in (1), Y; is called a trend-stationary process.

» Assume that we are in period T and want a forecast for
YT4+h. Assume that ¢ and J are known to us from history
(mainly to simplify notation).
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Deterministic trend—trend stationarity |lI
» The forecast is then:

VrinT =¢o+0(T + h)

» Assume (and this is critical) that the parameters ¢g and &
remain constant over the whole forecast period, The forecast
error becomes:

Yern — Y7on =714
with
E[(Yexn— Yren) | TI =0
and variance:

Var(Yt+h — \A/T_,_h) | T] = O’2

The conditional variance of the forecast error is the same as
the unconditional variance (in the pure DT model).
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Estimation and inference in the deterministic trend model |

> Since the deterministic trend model can be placed within the
stationary time series framework, it represents no new
problems of estimation.

> Nevertheless, the precise statistical analysis is non-trivial. For
example, for (1)

Yt:¢0+(5t+8t, t=1,2,...

and g; ~ IID. with Var(e;) = 0 and E(e}) < oo, it has been
shown for the OLS estimators ¢ and 5:
))

() =m0

N =t
WM =
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Estimation and inference in the deterministic trend model Il

» The speed of convergence of § is T3/2 (sometimes written as
O, (T—3/2), for order in probability) while the usual speed of
convergence for stationary variables is T1/2

» § is so-called super-consistent,

—

> Var((?) has the same property in this model, meaning that the
usual tests statistics have teh usual asymptotic N and x?
distributions.
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AR model with trend |

A more general DT model:

Ye=o+1Ye1+0t+er, [p1] <1,0#£0 (4)

The solution is (take as an exercise!):
t t—1 )
Ye=go) $1—0) (¢1)J (5)
Jj=0 Jj=1
t . t .
+9 24)/11) St QLYo+ ) die
=1 Jj=0

If we define
t .
Y=Y, -6 qul‘l) ot
—~
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AR model with trend Il

we find that also this de-trended variable is covariance stationary:

sy ¢ $1
A A R (e
0.2
Var(Y?) = —(1 — 57

where the result for E(Y;) makes use of

=1, ¢
L)) o g
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OLS estimation of models with deterministic trend |

» We have seen that Y; ~ AR(1) + trend can be transformed
to Y7 ~ AR(1).

» The OLS estimators of all individual parameters, for example
(¢o, 1,0)" are consistent at the usual rates of convergence
(VT).

» The reason why & is no longer super-consistent in the
AR(1) + trend model, is that § is a linear combination of
moments that converge at different rates.

> In such a situation, the slowest convergence rates dominates, it
isvVT.
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OLS estimation of models with deterministic trend Il

» The practical implication is that the standard asymptotic
distribution theory can be used also for dynamic models that
include a DT, as long as the homogenous part of the AR part
of the model satisfies the conditions of weak stationarity.

» For the AR(p) + trend or ARDL(p, p) + trend the conditional
mean and variance of course depends on time, just as in the
model without trend: Adds flexibility to pure DT model.
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Other important forms of deterministic non-stationarity |

» The pure deterministic trend model (DT) can be considered a
special case of

Y=o+ P1Yi1 +6D(t) +¢;

where D(t) is any deterministic (vector) function of time. It
might be:
> Seasonal dummies, or

» Dummies for structural breaks (induce shifts in intercept
and/or ¢, gradually or as a deterministic shock))

» As long as the model with D(t) can be re-expressed as a
model with constant unconditional mean (with reference to
the Frisch-Waugh theorem), this type of non-stationarity has
no consequence for the statistical analysis of the model.
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Stochastic (or local) trend |

AR(p):
Y =¢o+ ¢(L)Yi1 + &

P(L) = 1L+ pal> + ...+ ¢pLP.

Re-writing the model in the (now) well known way:

AYe = o+ H(L)AY—1 — (1= ¢(1)) Ve + e
———

=p(1)
The parameters gbl_i in
1 _ 4t i,2 T yp-1
P (L) = p7L+ 3L +...+¢p_1L

are functions of the ¢,'s.
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Testing the null of a unit-root

Stochastic (or local) trend Il
We know from before that Y; is stationary and causal if all roots of

p(A) = AP — 1 APt — L — ¢, (9)
have modulus less than one. In the case of A =1 (one root is
equal to 1),

p(1) =1-¢(1) =0, (10)
(7) becomes
p—1

AYy=¢o+ Y ¢pFAY, ;i +e.. (11)

i=1
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Stochastic (or local) trend Il
Definition
Y: given by (6) is integrated of order 1, Y; ~ I(1), if p(A) =0
has one characteristic root equal to 1.

» The stationary case is often referred to as Y; ~ /(0),
“integrated of order zero".

> It follows that if Y; ~ [(1), then AY; ~ [(0).
> An integrated series Y is also called difference stationary.

» With reference to our earlier discussion of stationarity, we see
that this definition (although common) is not general:

» The characteristic polynomial of an AR(p) series can have
other unit-roots than the real root 1.

> In fact, the unit-root defined by (10) corresponds to a
unit-root at the “zero frequency” or “long-run frequency”. In

order to make this concept precise, spectral analysis is needed.
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Stochastic (or local) trend IV

> In practice, the preclusion of unit-roots at “non-zero
frequencies” means that we abstract from seasonal integration
(“summer may become winter”) and unit-roots at the
business-cycle frequencies (boom may become bust).

> The analysis of long-frequency unit-root can be extended to
integration of order 2: Y; ~ [(2) if A%2Y; ~ 1(0), where
A = (1-1L)%

» In the /(2) case, there must be a unit root in the
characteristic polynomial associated with (11):

p(AF) = APt a2 cpfg_l.
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Contrasting 1(0) and 1(1)

I(1) 1(0)
1. E(Yy) depends on Yj constant
2 VarlYy] =00 constant
3 COfr[Yt, Yt—p] ~1 — 0
p—>oo
4 Multipliers Do not “die out” — 0
5a Forecasting Y715 | E(Y7,4 1) depends on Y7 Vh P E(Y:)
5b Forecasting, Y7, | Var of forecast errors — oo — finite
6 Inference Non-standard theory Standard

Try to show 1-5 for the Random Walk (RW) with drift:

Ye=¢o+ Y1+ €, (12)
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Inference with I(1) series

Spurious regression |

Granger and Newbold (1974) observed that

1. Economic time series were typically /(1);

2. Econometricians used conventional inference theory to test
hypotheses about relationships between /(1) series

> G&N used Monte-Carlo analysis to show that 1. and 2. imply
that to many “significant relationships are found” in
economics

> Seemingly significant relationships between independent
/(1) —variables were dubbed spurious regressions.
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Spurious regression |l

To replicate G&N results, we let YA; and YB; be generated by the
data generating process (DGP):

YA: = pa1 YA 1 +é€ar
YB: = ¢p1YB:—1 + et

()= ((5)(F 2))

The DGP is a 1st order VAR. YA;, YB; are independent random
walks if ¢a1 = ¢p1 = 1, and stationary if |pa1| and |pp1]| < 1.
The regression is

where

YAt = 0é+ﬁYBt + e
and the hypothesis tested is Hy: B = 0.
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Spurious regression |l
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YA: = « + BYB; + € when €, is 1(0) (lowest line),

and I(1) (highest). 5% nominal level.
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Summary of Monte-Carlo of static regression

» With stationary variables:

» wrong inference (too high rejection frequencies) because of
positive residual autocorrelation
> but f is consistent

» With /(1) variables:

> rejection frequencies even higher and growing with T
> Indication that f is inconsistent under the null of p = 0.
> ... what is the distribution of 57
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Inference with I(1) series

Testing the null of a unit-root

Dynamic regression model |

In retrospect we can ask: Was the G&N analysis a bit of a
strawman?

After all ,the regression model is obviously mis-specified.
And the true DGP is not nested in the model.

To check: use same DGP, but replace static regression by

AYA: = ¢o + pYAr—1 + BoAYB: + B1YBr -1 + €ar
Under the null hypothesis:

p=0
Bo=p1=0

and there is no residual autocorrelation, neither under Hy, nor

under H;.

(13)
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Dynamic regression model Il
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Spurious regression in an ADL model Lines show
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The ADL regression model (13) performs better than the
static regression,

» for example, ts, seems to behave as in the stationary case.

> This does hold true in general, since Bg is a coefficient on a
stationary variable.

But inference based on tg, and tg, continues to over-reject
(the size of the test is wrong) also in the dynamic model.
Conclude that the spurious regression problem is fundamental.

We need non-standard inference theory before it can be
tackled.

Start with unit-root testing.
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The Dickey Fuller(DF) distribution |

We now let the Data Generating Process (DGP) for Y; ~ [(1) be
the simple gaussian Random Walk:

Yt = Yt_]_ +€t, Er N(0,0'2) (14)
We estimate the model
Yt = th,]_ —+ uy, (15)

where our choice of OLS estimation is based on an assumption
about white-noise disturbances u;.
Since the model can be re-parameterized as

AYt = (p - 1)Yt—1 + us
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The Dickey Fuller(DF) distribution I

—

we understand intuitively that the OLS estimator (p — 1) is
consistent: The stationary (finite variance) series AY; cannot
depend on the infinite variance variable Y;_;.

» However, consistency alone does not guarantee that

1

- Zthl Yi 18t
ﬁ'(ﬁ—l)leT—2 (16)

ﬁ Et=1 Yt—l

has a normal limiting distribution in this case (when indeed
p = 1).In fact, we suspect that the distibution collapses to 0,
since p approaches 1 at a rate faster than v/ T.
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The Dickey Fuller(DF) distribution Il

» To compensate that we change from v/ Tto T. It has been
shown that

1

T-(ﬁ—l)#ﬁ (17)
e, fo [(W(r)]" dr
» In the denominator, W(r) represents a (Standard Brownian
Motion) process that defines stochastic variables for any r.
For example: W(1) ~ N(0,1), but when r <1, W(r) is
“something different” than the normal distribution.
» But the important thing to note is that the denominator is

always positive, meaning that the sign of the bias depens on
the numerator.
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The Dickey Fuller(DF) distribution IV

» The random variable X in the numerator of (17) is distributed
x%(1), and values close to 0 are therefore quite probable.

> As a result, negative (0 — 1) values will be over-represented
when the true value of p is 1.

» The distribution in (17) is called a Dickey-Fuller (D-F)
distribution.

Under the Hp of p = 1, also the “t-statistic” from OLS on (15) has
a Dickey-Fuller distribution, which is of course relevant for
practical testing of this Hy.

(X—-1)

N =

L
tpF —

(18)
T o W () dr

[aey
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The Dickey Fuller(DF) distribution V

» Intuitively, because of the skewness of X, the left-tail 5 %
fractile of this Dickey-Fuller distribution will be more negative
than those of the normal.

> A very useful, and pedagogical, reference is Ericsson and
MacKinnon (2002), which also cover the extension to
cointegration (as the title shows)
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Dickey-Fuller tables and models |

» The critical values of the DF distribution (18) have been
tabulated by Monte-Carlo simulation.

» There is however not a single table, but several, since the
DF-distribution depends on whether a constant term, or a
trend is included in the estimated model.

» See the mentioned paper by Ericsson and MacKinnon (2002).

> PcGive uses the relevant critical values, given the specification
of the model.

> The “rule of thumb" is that Type-| error probability is best
controlled by over-representing the deterministic terms, rather
than under-representing them.
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Dickey-Fuller tables and models Il

> If a time plot of Y; shows long-swings around a constant
mean, the Dickey-Fuller regression model that we use for
testing should still include a deterministic trend.

> If we reject the unit-root, we can test whether the trend is
significant by a standard (t-test) conditional on stationarity.

» The cost of this procedure is the Type-Il error probability can
become large.
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Augmented Dickey-Fuller tests |

Let the Data Generating Process (DGP) be the AR(p)

p
Ye— Y oY i=¢ (19)
i=1
with €; ~ N(0,0?). We have the reparameterization:
p—1
AY; =Y ¢IAY, i —(1—¢(1)Yi1+e: (20)

i=1

Y: ~ 1(1) is implied by (1 —¢(1)) =p =
But a simple D-F regression will have autocorrelated u; in the light
of this DGP: one or more lag-coefficient ¢+ 7 0 are omitted.
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Augmented Dickey-Fuller tests Il
The augmented Dickey-Fuller test (ADF), see Ch 17.7, is based on
the model

k—1
AY; =Y biAYe i +(0—1)Ye1+u; (21)
i=1

Estimate by OLS, and calculate the tpe form this ADF regression.
» The asymptotic distribution is that same as in the first order

case (with a simple random walk).

» The degree of augmentation can be determined by a
specification search. Start with high k and stop when a
standard t-test rejects null of by_1 =0
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Augmented Dickey-Fuller tests IlI

» The determination of lag length" is an important step in
practice since
» Too low k destroys the level of the test (dynamic
mis-specification),
» Too high k lead to loss of power (over-parameterization).

» The ADF test can be regarded as one way of tackling
“unit-root processes” with serial correlation
» DM also mentions alternatives to ADF, on page 623.

> The are several other tests for unit-roots as well—including
tests where the null-hypotheses is stationarity and the
alternative is non-stationary.

> As one example of the continuing interest in these topics: The
book by Patterson (2011) contains a comprehensive review.
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