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Introduction I

Main references:

I HN Ch 16.

I DM Ch 14.3 and 14.4

I BN201422 Kap 10

I See the end of the slide set for additional references (one of
them posted on the web side as an important resource when
testing for unit-root and later cointegration)
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Deterministic trend– trend stationarity I

Let {Yt ; t = 1, 2, 3, ...T} define a time series (as before).
Yt follows a pure deterministic trend (DT) if

Yt = φ0 + δt + εt , δ 6= 0 (1)

where εt is white-noise and Gaussian.
Yt is non-stationary, since

E (Yt ) = φ0 + δt (2)

even though (in this case) the variance does not depend on time:

Var(Yt ) = σ2 (3)
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Deterministic trend– trend stationarity II
I In the pure DT model, the non-stationarity issue is resolved by
de-trending. The de-trended variable:

Y st = Yt − δt

Var(Yt ) = σ2 and
E (Y st ) = φ0

I Y st is covariance stationary.
I Since stationarity of Y st is obtained by subtracting the linear
trend δt from Yt in (1), Yt is called a trend-stationary process.

I Assume that we are in period T and want a forecast for
YT+h. Assume that φ0 and δ are known to us from history
(mainly to simplify notation).
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Deterministic trend– trend stationarity III
I The forecast is then:

ŶT+h|T = φ0 + δ(T + h)

I Assume (and this is critical) that the parameters φ0 and δ
remain constant over the whole forecast period, The forecast
error becomes:

Yt+h − ŶT+h = εT+j

with
E [(Yt+h − ŶT+h) | T ] = 0

and variance:

Var(Yt+h − ŶT+h) | T ] = σ2

The conditional variance of the forecast error is the same as
the unconditional variance (in the pure DT model).
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Estimation and inference in the deterministic trend model I

I Since the deterministic trend model can be placed within the
stationary time series framework, it represents no new
problems of estimation.

I Nevertheless, the precise statistical analysis is non-trivial. For
example, for (1)

Yt = φ0 + δ t + εt , t = 1, 2, . . .

and εt ∼ IID. with Var(εt ) = σ2 and E (ε4t ) < ∞, it has been
shown for the OLS estimators φ̂0 and δ̂:(

T 1/2(φ̂0 − φ0)
T 3/2(δ̂− δ)

)
D→ N

(
0
0
, σ2

(
1 1

2
1
2

1
3

)−1)
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Estimation and inference in the deterministic trend model II

I The speed of convergence of δ̂ is T 3/2 (sometimes written as
Op(T−3/2), for order in probability) while the usual speed of
convergence for stationary variables is T 1/2

I δ̂ is so-called super-consistent,

I V̂ar(δ̂) has the same property in this model, meaning that the
usual tests statistics have teh usual asymptotic N and χ2

distributions.
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AR model with trend I
A more general DT model:

Yt = φ0 + φ1Yt−1 + δt + εt , |φ1| < 1, δ 6= 0 (4)

The solution is (take as an exercise!):

Yt = φ0
t

∑
j=0

φj1 − δ
t−1
∑
j=1
(φ1)

j j (5)

+ δ

(
t

∑
j=1

φj−11

)
· t + φt1Y0 +

t

∑
j=0

φj1εt

If we define

Y st = Yt − δ

(
t

∑
j=1

φj−11

)
· t
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AR model with trend II

we find that also this de-trended variable is covariance stationary:

E (Y st ) =
φ0

(1− φ1)
− δ

φ1
(1− φ1)2

Var(Y st ) =
σ2

(1− φ21)

where the result for E (Y st ) makes use of

δ
t−1
∑
j=1

(
φj1

)
j →
t→∞

δ
φ1

(1− φ1)2
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OLS estimation of models with deterministic trend I

I We have seen that Yt ∼ AR(1) + trend can be transformed
to Y st ∼ AR(1).

I The OLS estimators of all individual parameters, for example
(φ̂0, φ̂1, δ̂)′ are consistent at the usual rates of convergence
(
√
T ).

I The reason why δ̂ is no longer super-consistent in the
AR(1) + trend model, is that δ̂ is a linear combination of
moments that converge at different rates.

I In such a situation, the slowest convergence rates dominates, it
is
√
T .
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OLS estimation of models with deterministic trend II

I The practical implication is that the standard asymptotic
distribution theory can be used also for dynamic models that
include a DT, as long as the homogenous part of the AR part
of the model satisfies the conditions of weak stationarity.

I For the AR(p) + trend or ARDL(p, p) + trend the conditional
mean and variance of course depends on time, just as in the
model without trend: Adds flexibility to pure DT model.
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Other important forms of deterministic non-stationarity I

I The pure deterministic trend model (DT) can be considered a
special case of

Yt = φ0 + φ1Yt−1 + δD(t) + εt

where D(t) is any deterministic (vector) function of time. It
might be:

I Seasonal dummies, or
I Dummies for structural breaks (induce shifts in intercept
and/or φ1, gradually or as a deterministic shock))

I As long as the model with D(t) can be re-expressed as a
model with constant unconditional mean (with reference to
the Frisch-Waugh theorem), this type of non-stationarity has
no consequence for the statistical analysis of the model.
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Stochastic (or local) trend I

AR(p):
Yt = φ0 + φ(L)Yt−1 + εt (6)

φ(L) = φ1L+ φ2L2 + . . .+ φpLp .

Re-writing the model in the (now) well known way:

∆Yt = φ0 + φ‡(L)∆Yt−1 − (1− φ(1))︸ ︷︷ ︸
=p(1)

Yt−1 + εt (7)

The parameters φ‡
i
in

φ‡(L) = φ
‡
1L+ φ

‡
2L
2 + . . .+ φ

‡
p−1L

p−1 (8)

are functions of the φi’s.
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Stochastic (or local) trend II
We know from before that Yt is stationary and causal if all roots of

p(λ) = λp − φ1λ
p−1 − . . .− φp (9)

have modulus less than one. In the case of λ = 1 (one root is
equal to 1),

p(1) = 1− φ(1) = 0. (10)

(7) becomes

∆Yt = φ0 +
p−1
∑
i=1

φ‡
i
∆Yt−i + εt . (11)
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Stochastic (or local) trend III
Definition
Yt given by (6) is integrated of order 1, Yt ∼ I (1), if p(λ) = 0
has one characteristic root equal to 1.

I The stationary case is often referred to as Yt ∼ I (0),
“integrated of order zero”.

I It follows that if Yt ∼ I (1), then ∆Yt ∼ I (0).
I An integrated series Yt is also called difference stationary.

I With reference to our earlier discussion of stationarity, we see
that this definition (although common) is not general:

I The characteristic polynomial of an AR(p) series can have
other unit-roots than the real root 1.

I In fact, the unit-root defined by (10) corresponds to a
unit-root at the “zero frequency”or “long-run frequency”. In
order to make this concept precise, spectral analysis is needed.
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Stochastic (or local) trend IV

I In practice, the preclusion of unit-roots at “non-zero
frequencies”means that we abstract from seasonal integration
(“summer may become winter”) and unit-roots at the
business-cycle frequencies (boom may become bust).

I The analysis of long-frequency unit-root can be extended to
integration of order 2: Yt ∼ I (2) if ∆2Yt ∼ I (0), where
∆2 = (1− L)2.

I In the I (2) case, there must be a unit root in the
characteristic polynomial associated with (11):

p(λ‡) = λp−1 − φ
‡
1λp−2 − . . .− φ

‡
p−1.
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Contrasting I(0) and I(1)

:
I(1) I(0)

1. E (Yt ) depends on Y0 constant
2 Var [Yt ] = ∞ constant
3 Corr [Yt ,Yt−p ] ≈ 1 →

p→∞
0

4 Multipliers Do not “die out” → 0
5a Forecasting YT+h E (YT+h|T ) depends on YT ∀h →

h→∞
E (Yt )

5b Forecasting,YT+h Var of forecast errors → ∞ → finite
6 Inference Non-standard theory Standard
Try to show 1-5 for the Random Walk (RW) with drift:

Yt = φ0 + Yt−1 + εt , (12)
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Spurious regression I

Granger and Newbold (1974) observed that

1. Economic time series were typically I (1);

2. Econometricians used conventional inference theory to test
hypotheses about relationships between I (1) series

I G&N used Monte-Carlo analysis to show that 1. and 2. imply
that to many “significant relationships are found” in
economics

I Seemingly significant relationships between independent
I (1)−variables were dubbed spurious regressions.
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Spurious regression II
To replicate G&N results, we let YAt and YBt be generated by the
data generating process (DGP):

YAt = φA1YAt−1 + εA,t

YBt = φB1YBt−1 + εB ,t

where (
εA,t
εB ,t

)
∼ N

((
0
0

)
,

(
σ2A 0
0 σ2B

))
.

The DGP is a 1st order VAR. YAt , YBt are independent random
walks if φA1 = φB1 = 1, and stationary if |φA1| and |φB1| < 1.
The regression is

YAt = α+ βYBt + et

and the hypothesis tested is H0: β = 0.
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Spurious regression III
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Summary of Monte-Carlo of static regression

I With stationary variables:
I wrong inference (too high rejection frequencies) because of
positive residual autocorrelation

I but β̂ is consistent

I With I(1) variables:
I rejection frequencies even higher and growing with T
I Indication that β̂ is inconsistent under the null of β = 0.
I ... what is the distribution of β̂?
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Dynamic regression model I
In retrospect we can ask: Was the G&N analysis a bit of a
strawman?
After all ,the regression model is obviously mis-specified.
And the true DGP is not nested in the model.
To check: use same DGP, but replace static regression by

∆YAt = φ0 + ρYAt−1 + β0∆YBt + β1YBt−1 + εAt (13)

Under the null hypothesis:

ρ = 0

β0 = β1 = 0

and there is no residual autocorrelation, neither under H0, nor
under H1.
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Dynamic regression model II
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(β0 + β1) = 0 and H0: β0 = 0.
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I The ADL regression model (13) performs better than the
static regression,

I for example, tβ̂0 seems to behave as in the stationary case.
I This does hold true in general, since β0 is a coeffi cient on a
stationary variable.

I But inference based on tβ̂0 and tβ̂1 continues to over-reject
(the size of the test is wrong) also in the dynamic model.

I Conclude that the spurious regression problem is fundamental.
I We need non-standard inference theory before it can be
tackled.

I Start with unit-root testing.
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The Dickey Fuller(DF) distribution I

We now let the Data Generating Process (DGP) for Yt ∼ I (1) be
the simple gaussian Random Walk:

Yt = Yt−1 + εt , εt ∼ N(0, σ2) (14)

We estimate the model

Yt = ρYt−1 + ut , (15)

where our choice of OLS estimation is based on an assumption
about white-noise disturbances ut .
Since the model can be re-parameterized as

∆Yt = (ρ− 1)Yt−1 + ut
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The Dickey Fuller(DF) distribution II

we understand intuitively that the OLS estimator (̂ρ− 1) is
consistent: The stationary (finite variance) series ∆Yt cannot
depend on the infinite variance variable Yt−1.

I However, consistency alone does not guarantee that

√
T · (ρ̂− 1) =

1
T

∑T
t=1 Yt−1εt

1
T 2

∑T
t=1 Y

2
t−1

(16)

has a normal limiting distribution in this case (when indeed
ρ = 1).In fact, we suspect that the distibution collapses to 0,
since ρ̂ approaches 1 at a rate faster than

√
T .
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The Dickey Fuller(DF) distribution III

I To compensate that we change from
√
T to T . It has been

shown that

T · (ρ̂− 1) L−→
T→∞.

1
2
(X − 1)∫ 1

0 [W (r)]
2 dr

(17)

I In the denominator, W (r) represents a (Standard Brownian
Motion) process that defines stochastic variables for any r .
For example: W (1) ∼ N(0, 1), but when r < 1, W (r) is
“something different” than the normal distribution.

I But the important thing to note is that the denominator is
always positive, meaning that the sign of the bias depens on
the numerator.
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The Dickey Fuller(DF) distribution IV
I The random variable X in the numerator of (17) is distributed

χ2(1), and values close to 0 are therefore quite probable.
I As a result, negative (ρ̂− 1) values will be over-represented
when the true value of ρ is 1.

I The distribution in (17) is called a Dickey-Fuller (D-F)
distribution.

Under the H0 of ρ = 1, also the “t-statistic” from OLS on (15) has
a Dickey-Fuller distribution, which is of course relevant for
practical testing of this H0.

tDF
L−→

T→∞.

1
2
(X − 1)√∫ 1

0 [W (r)]
2 dr

(18)
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The Dickey Fuller(DF) distribution V

I Intuitively, because of the skewness of X , the left-tail 5 %
fractile of this Dickey-Fuller distribution will be more negative
than those of the normal.

I A very useful, and pedagogical, reference is Ericsson and
MacKinnon (2002), which also cover the extension to
cointegration (as the title shows)
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Dickey-Fuller tables and models I

I The critical values of the DF distribution (18) have been
tabulated by Monte-Carlo simulation.

I There is however not a single table, but several, since the
DF-distribution depends on whether a constant term, or a
trend is included in the estimated model.

I See the mentioned paper by Ericsson and MacKinnon (2002).
I PcGive uses the relevant critical values, given the specification
of the model.

I The “rule of thumb” is that Type-I error probability is best
controlled by over-representing the deterministic terms, rather
than under-representing them.
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Dickey-Fuller tables and models II

I If a time plot of Yt shows long-swings around a constant
mean, the Dickey-Fuller regression model that we use for
testing should still include a deterministic trend.

I If we reject the unit-root, we can test whether the trend is
significant by a standard (t-test) conditional on stationarity.

I The cost of this procedure is the Type-II error probability can
become large.
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Augmented Dickey-Fuller tests I

Let the Data Generating Process (DGP) be the AR(p)

Yt −
p

∑
i=1

φiYt−i = εt (19)

with εt ∼ N(0, σ2). We have the reparameterization:

∆Yt =
p−1
∑
i=1

φ‡
i
∆Yt−i − (1− φ(1))Yt−1 + εt (20)

Yt ∼ I (1) is implied by (1− φ(1)) ≡ ρ = 0
But a simple D-F regression will have autocorrelated ut in the light
of this DGP: one or more lag-coeffi cient φ‡

i
6= 0 are omitted.
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Augmented Dickey-Fuller tests II
The augmented Dickey-Fuller test (ADF), see Ch 17.7, is based on
the model

∆Yt =
k−1
∑
i=1

bi∆Yt−i + (ρ− 1)Yt−1 + ut (21)

Estimate by OLS, and calculate the tDF form this ADF regression.

I The asymptotic distribution is that same as in the first order
case (with a simple random walk).

I The degree of augmentation can be determined by a
specification search. Start with high k and stop when a
standard t-test rejects null of bk−1 = 0
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Augmented Dickey-Fuller tests III
I The determination of lag length" is an important step in
practice since

I Too low k destroys the level of the test (dynamic
mis-specification),

I Too high k lead to loss of power (over-parameterization).

I The ADF test can be regarded as one way of tackling
“unit-root processes”with serial correlation

I DM also mentions alternatives to ADF, on page 623.
I The are several other tests for unit-roots as well– including
tests where the null-hypotheses is stationarity and the
alternative is non-stationary.

I As one example of the continuing interest in these topics: The
book by Patterson (2011) contains a comprehensive review.
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