E 4160 Autumn term 2015. Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution Ragnar Nymoen

Department of Economics, University of Oslo

14 October 2015

Introduction I

Main references:

- ▶ HN Ch 16.
- DM Ch 14.3 and 14.4
- BN201422 Kap 10
- See the end of the slide set for additional references (one of them posted on the web side as an important resource when testing for unit-root and later cointegration)

Deterministic trend—trend stationarity I

Let $\{Y_t; t = 1, 2, 3, ..., T\}$ define a time series (as before). Y_t follows a pure **deterministic trend** (DT) if

$$Y_t = \phi_0 + \delta t + \varepsilon_t, \ \delta \neq 0 \tag{1}$$

where ε_t is white-noise and Gaussian. Y_t is non-stationary, since

$$E(Y_t) = \phi_0 + \delta t \tag{2}$$

even though (in this case) the variance does not depend on time:

$$Var(Y_t) = \sigma^2 \tag{3}$$

Deterministic trend—trend stationarity II

In the pure DT model, the non-stationarity issue is resolved by de-trending. The de-trended variable:

$$Y_t^s = Y_t - \delta t$$

 $\mathit{Var}(\mathit{Y}_t) = \sigma^2$ and

$$E(Y_t^s) = \phi_0$$

- Y^s_t is covariance stationary.
- Since stationarity of Y^s_t is obtained by subtracting the linear trend δt from Y_t in (1), Y_t is called a *trend-stationary process*.
- Assume that we are in period T and want a forecast for Y_{T+h}. Assume that φ₀ and δ are known to us from history (mainly to simplify notation).

Deterministic trend—trend stationarity III

The forecast is then:

$$\hat{Y}_{T+h|T} = \phi_0 + \delta(T+h)$$

Assume (and this is critical) that the parameters φ₀ and δ remain constant over the whole forecast period, The forecast error becomes:

$$Y_{t+h} - \hat{Y}_{T+h} = \varepsilon_{T+j}$$

with

$$E[(Y_{t+h} - \hat{Y}_{T+h}) \mid T] = 0$$

and variance:

$$Var(Y_{t+h} - \hat{Y}_{T+h}) \mid T] = \sigma^2$$

The conditional variance of the forecast error is the same as the unconditional variance (in the pure DT model).

Estimation and inference in the deterministic trend model I

- Since the deterministic trend model can be placed within the stationary time series framework, it represents no new problems of estimation.
- Nevertheless, the precise statistical analysis is non-trivial. For example, for (1)

$$Y_t = \phi_0 + \delta t + \varepsilon_t, t = 1, 2, \ldots$$

and $\varepsilon_t \sim IID$. with $Var(\varepsilon_t) = \sigma^2$ and $E(\varepsilon_t^4) < \infty$, it has been shown for the OLS estimators $\hat{\phi}_0$ and $\hat{\delta}$:

$$\begin{pmatrix} T^{1/2}(\hat{\phi}_0 - \phi_0) \\ T^{3/2}(\hat{\delta} - \delta) \end{pmatrix} \xrightarrow{D} N \begin{pmatrix} 0 \\ 0 \end{pmatrix} \sigma^2 \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix}^{-1}$$

Estimation and inference in the deterministic trend model II

- ► The speed of convergence of ô is T^{3/2} (sometimes written as O_p(T^{-3/2}), for order in probability) while the usual speed of convergence for stationary variables is T^{1/2}
- $\hat{\delta}$ is so-called **super-consistent**,
- ► $Var(\hat{\delta})$ has the same property in this model, meaning that the usual tests statistics have teh usual asymptotic N and χ^2 distributions.

AR model with trend I

A more general DT model:

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \delta t + \varepsilon_t, \ |\phi_1| < 1, \ \delta \neq 0$$
 (4)

The solution is (take as an exercise!):

$$Y_{t} = \phi_{0} \sum_{j=0}^{t} \phi_{1}^{j} - \delta \sum_{j=1}^{t-1} (\phi_{1})^{j} j$$

$$+ \delta \left(\sum_{j=1}^{t} \phi_{1}^{j-1} \right) \cdot t + \phi_{1}^{t} Y_{0} + \sum_{j=0}^{t} \phi_{1}^{j} \varepsilon_{t}$$
(5)

If we define

$$Y_t^s = Y_t - \delta\left(\sum_{j=1}^t \phi_1^{j-1}\right) \cdot t$$

8 / 35

AR model with trend II

we find that also this de-trended variable is covariance stationary:

$$egin{aligned} & {\cal E}(Y^s_t) = rac{\phi_0}{(1-\phi_1)} - \delta rac{\phi_1}{(1-\phi_1)^2} \ & {\cal V} {\it ar}(Y^s_t) = rac{\sigma^2}{(1-\phi_1^2)} \end{aligned}$$

where the result for $E(Y_t^s)$ makes use of

$$\delta \sum_{j=1}^{t-1} \left(\phi_1^j \right) j \underset{t \to \infty}{\longrightarrow} \delta \frac{\phi_1}{(1-\phi_1)^2}$$

OLS estimation of models with deterministic trend I

- ▶ We have seen that $Y_t \sim AR(1) + trend$ can be transformed to $Y_t^s \sim AR(1)$.
- The OLS estimators of **all** individual parameters, for example $(\hat{\phi}_0, \hat{\phi}_1, \hat{\delta})'$ are consistent at the usual rates of convergence (\sqrt{T}) .
- The reason why $\hat{\delta}$ is no longer super-consistent in the AR(1) + trend model, is that $\hat{\delta}$ is a linear combination of moments that converge at different rates.
 - In such a situation, the slowest convergence rates dominates, it is \sqrt{T} .

OLS estimation of models with deterministic trend II

- The practical implication is that the standard asymptotic distribution theory can be used also for dynamic models that include a DT, as long as the homogenous part of the AR part of the model satisfies the conditions of weak stationarity.
- For the AR(p) + trend or ARDL(p, p) + trend the conditional mean and variance of course depends on time, just as in the model without trend: Adds flexibility to pure DT model.

Other important forms of deterministic non-stationarity I

 The pure deterministic trend model (DT) can be considered a special case of

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \delta D(t) + \varepsilon_t$$

where D(t) is any deterministic (vector) function of time. It might be:

- Seasonal dummies, or
- Dummies for structural breaks (induce shifts in intercept and/or φ₁, gradually or as a deterministic shock))
- As long as the model with D(t) can be re-expressed as a model with constant unconditional mean (with reference to the Frisch-Waugh theorem), this type of non-stationarity has no consequence for the statistical analysis of the model.

Stochastic (or local) trend I

AR(p): $Y_{t} = \phi_{0} + \phi(L)Y_{t-1} + \varepsilon_{t}$ $\phi(L) = \phi_{1}L + \phi_{2}L^{2} + \ldots + \phi_{p}L^{p}.$ (6)

Re-writing the model in the (now) well known way:

$$\Delta Y_t = \phi_0 + \phi^{\ddagger}(L) \Delta Y_{t-1} - \underbrace{(1 - \phi(1))}_{=\rho(1)} Y_{t-1} + \varepsilon_t \tag{7}$$

The parameters ϕ_i^{\ddagger} in

$$\phi^{\ddagger}(L) = \phi_{1}^{\ddagger}L + \phi_{2}^{\ddagger}L^{2} + \ldots + \phi_{p-1}^{\ddagger}L^{p-1}$$
(8)

are functions of the ϕ_i 's.

Stochastic (or local) trend II

We know from before that Y_t is stationary and causal if all roots of

$$p(\lambda) = \lambda^{p} - \phi_{1}\lambda^{p-1} - \ldots - \phi_{p}$$
(9)

have modulus less than one. In the case of $\lambda = 1$ (one root is equal to 1),

$$p(1) = 1 - \phi(1) = 0.$$
 (10)

(7) becomes

$$\Delta Y_t = \phi_0 + \sum_{i=1}^{p-1} \phi_i^{\ddagger} \Delta Y_{t-i} + \varepsilon_t.$$
(11)

Stochastic (or local) trend III Definition

 Y_t given by (6) is integrated of order 1, $Y_t \sim I(1)$, if $p(\lambda) = 0$ has one characteristic root equal to 1.

- The stationary case is often referred to as $Y_t \sim I(0)$, "integrated of order zero".
 - It follows that if $Y_t \sim I(1)$, then $\Delta Y_t \sim I(0)$.
 - An integrated series Y_t is also called *difference stationary*.
- With reference to our earlier discussion of stationarity, we see that this definition (although common) is not general:
 - ► The characteristic polynomial of an AR(p) series can have other unit-roots than the real root 1.
 - In fact, the unit-root defined by (10) corresponds to a unit-root at the "zero frequency" or "long-run frequency". In order to make this concept precise, spectral analysis is needed.

Stochastic (or local) trend IV

- In practice, the preclusion of unit-roots at "non-zero frequencies" means that we abstract from seasonal integration ("summer may become winter") and unit-roots at the business-cycle frequencies (boom may become bust).
- The analysis of long-frequency unit-root can be extended to integration of order 2: Y_t ~ I(2) if Δ²Y_t ~ I(0), where Δ² = (1 − L)².
- In the I(2) case, there must be a unit root in the characteristic polynomial associated with (11):

$$p(\lambda^{\ddagger}) = \lambda^{p-1} - \phi_1^{\ddagger} \lambda^{p-2} - \dots - \phi_{p-1}^{\ddagger}.$$

Contrasting I(0) and I(1)

·		
	l(1)	I(0)
1. $E(Y_t)$	depends on Y_0	constant
2 $Var[Y_t]$	$=\infty$	constant
3 $Corr[Y_t, Y_{t-p}]$	≈ 1	$\xrightarrow[p \to \infty]{} 0$
4 Multipliers	Do not "die out"	$\rightarrow 0$
5a Forecasting Y_{T+h}	$E(Y_{T+h T})$ depends on $Y_T \ \forall h$	$\underset{h\to\infty}{\to} E(Y_t)$
5b Forecasting, Y_{T+h}	$V\!ar$ of forecast errors $ ightarrow\infty$	\rightarrow finite
6 Inference	Non-standard theory	Standard

Try to show 1-5 for the Random Walk (RW) with drift:

$$Y_t = \phi_0 + Y_{t-1} + \varepsilon_t, \tag{12}$$

Spurious regression I

Granger and Newbold (1974) observed that

- 1. Economic time series were typically I(1);
- 2. Econometricians used conventional inference theory to test hypotheses about relationships between I(1) series
- G&N used Monte-Carlo analysis to show that 1. and 2. imply that to many "significant relationships are found" in economics
- Seemingly significant relationships between independent *I*(1)-variables were dubbed **spurious regressions**.

Spurious regression II

To replicate G&N results, we let YA_t and YB_t be generated by the data generating process (DGP):

$$YA_{t} = \phi_{A1} YA_{t-1} + \varepsilon_{A,t}$$
$$YB_{t} = \phi_{B1} YB_{t-1} + \varepsilon_{B,t}$$

where

$$\left(\begin{array}{c} \varepsilon_{A,t} \\ \varepsilon_{B,t} \end{array}\right) \sim N\left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{c} \sigma_A^2 & 0 \\ 0 & \sigma_B^2 \end{array}\right)\right).$$

The DGP is a 1st order VAR. YA_t , YB_t are independent random walks if $\phi_{A1} = \phi_{B1} = 1$, and stationary if $|\phi_{A1}|$ and $|\phi_{B1}| < 1$. The regression is

$$YA_t = \alpha + \beta YB_t + e_t$$

and the hypothesis tested is H_0 : $\beta = 0$.

Spurious regression III

Rejection frequencies for H_0 : $\beta = 0$ in the model $YA_t = \alpha + \beta YB_t + \varepsilon_t$ when ε_t is I(0) (lowest line), and I(1) (highest). 5% nominal level.

Summary of Monte-Carlo of static regression

- With stationary variables:
 - wrong inference (too high rejection frequencies) because of positive residual autocorrelation
 - but $\hat{\beta}$ is consistent
- ▶ With *I*(1) variables:
 - rejection frequencies even higher and growing with T
 - Indication that $\hat{\beta}$ is inconsistent under the null of $\beta = 0$.
 - ... what *is* the distribution of $\hat{\beta}$?

Dynamic regression model I

In retrospect we can ask: Was the G&N analysis a bit of a strawman?

After all ,the regression model is obviously *mis-specified*. And the true DGP is not nested in the model.

To check: use same DGP, but replace static regression by

$$\Delta Y A_t = \phi_0 + \rho Y A_{t-1} + \beta_0 \Delta Y B_t + \beta_1 Y B_{t-1} + \varepsilon_{At}$$
(13)

Under the null hypothesis:

$$ho = 0 \ eta_0 = eta_1 = 0$$

and there is no residual autocorrelation, neither under H_0 , nor under H_1 .

Dynamic regression model II

Spurious regression in an ADL model Lines show rejection frequencised for H_0 : $\rho = 0$ (highest), H_0 : $(\beta_0 + \beta_1) = 0$ and H_0 : $\beta_0 = 0$.

- The ADL regression model (13) performs better than the static regression,
 - for example, $t_{\hat{\beta}_0}$ seems to behave as in the stationary case.
 - This does hold true in general, since β₀ is a coefficient on a stationary variable.
- But inference based on t_{β0} and t_{β1} continues to over-reject (the size of the test is wrong) also in the dynamic model.
- Conclude that the spurious regression problem is fundamental.
- We need non-standard inference theory before it can be tackled.
- Start with unit-root testing.

The Dickey Fuller(DF) distribution I

We now let the Data Generating Process (DGP) for $Y_t \sim I(1)$ be the simple gaussian Random Walk:

$$Y_t = Y_{t-1} + \varepsilon_t, \, \varepsilon_t \sim \mathcal{N}(0, \sigma^2) \tag{14}$$

We estimate the model

$$Y_t = \rho Y_{t-1} + u_t, \tag{15}$$

where our choice of OLS estimation is based on an assumption about white-noise disturbances u_t . Since the model can be re-parameterized as

$$\Delta Y_t = (\rho - 1)Y_{t-1} + u_t$$

The Dickey Fuller(DF) distribution II

we understand intuitively that the OLS estimator $(\rho - 1)$ is consistent: The stationary (finite variance) series ΔY_t cannot depend on the infinite variance variable Y_{t-1} .

However, consistency alone does not guarantee that

$$\sqrt{T} \cdot (\hat{\rho} - 1) = \frac{\frac{1}{T} \sum_{t=1}^{T} Y_{t-1} \varepsilon_t}{\frac{1}{T^2} \sum_{t=1}^{T} Y_{t-1}^2}$$
(16)

has a normal limiting distribution in this case (when indeed $\rho = 1$).In fact, we suspect that the distibution collapses to 0, since $\hat{\rho}$ approaches 1 at a rate faster than \sqrt{T} .

The Dickey Fuller(DF) distribution III

• To compensate that we change from \sqrt{T} to T. It has been shown that

$$T \cdot (\hat{\rho} - 1) \xrightarrow[T \to \infty]{L} \frac{\frac{1}{2}(X - 1)}{\int_0^1 [W(r)]^2 dr}$$
(17)

- ► In the denominator, W(r) represents a (Standard Brownian Motion) process that defines stochastic variables for any r. For example: W(1) ~ N(0, 1), but when r < 1, W(r) is "something different" than the normal distribution.</p>
 - But the important thing to note is that the denominator is always positive, meaning that the sign of the bias depens on the numerator.

The Dickey Fuller(DF) distribution IV

- ▶ As a result, negative $(\hat{\rho} 1)$ values will be over-represented when the true value of ρ is 1.
- The distribution in (17) is called a Dickey-Fuller (D-F) distribution.

Under the H_0 of $\rho = 1$, also the "t-statistic" from OLS on (15) has a Dickey-Fuller distribution, which is of course relevant for practical testing of this H_0 .

$$t_{DF} \xrightarrow[T \to \infty]{L} \frac{\frac{1}{2}(X-1)}{\sqrt{\int_0^1 \left[W(r)\right]^2 dr}}$$
(18)

The Dickey Fuller(DF) distribution V

- Intuitively, because of the skewness of X, the left-tail 5 % fractile of this Dickey-Fuller distribution will be more negative than those of the normal.
- A very useful, and pedagogical, reference is Ericsson and MacKinnon (2002), which also cover the extension to cointegration (as the title shows)

Dickey-Fuller tables and models I

- The critical values of the DF distribution (18) have been tabulated by Monte-Carlo simulation.
- There is however not a single table, but several, since the DF-distribution depends on whether a constant term, or a trend is included in the estimated model.
- See the mentioned paper by Ericsson and MacKinnon (2002).
- PcGive uses the relevant critical values, given the specification of the model.
- The "rule of thumb" is that Type-I error probability is best controlled by over-representing the deterministic terms, rather than under-representing them.

Dickey-Fuller tables and models II

- If a time plot of Y_t shows long-swings around a constant mean, the Dickey-Fuller regression model that we use for testing should still include a deterministic trend.
- If we reject the unit-root, we can test whether the trend is significant by a standard (t-test) conditional on stationarity.
- The cost of this procedure is the Type-II error probability can become large.

Augmented Dickey-Fuller tests I

Let the Data Generating Process (DGP) be the AR(p)

$$Y_t - \sum_{i=1}^p \phi_i Y_{t-i} = \varepsilon_t \tag{19}$$

with $\varepsilon_t \sim N(0, \sigma^2)$. We have the reparameterization:

$$\Delta Y_{t} = \sum_{i=1}^{p-1} \phi_{i}^{\ddagger} \Delta Y_{t-i} - (1 - \phi(1)) Y_{t-1} + \varepsilon_{t}$$
(20)

 $Y_t \sim I(1)$ is implied by $(1 - \phi(1)) \equiv \rho = 0$ But a simple D-F regression will have autocorrelated u_t in the light of this DGP: one or more lag-coefficient $\phi_t^{\ddagger} \neq 0$ are omitted.

Augmented Dickey-Fuller tests II

The augmented Dickey-Fuller test (ADF), see Ch 17.7, is based on the model

$$\Delta Y_t = \sum_{i=1}^{k-1} b_i \Delta Y_{t-i} + (\rho - 1) Y_{t-1} + u_t$$
(21)

Estimate by OLS, and calculate the t_{DF} form this ADF regression.

- The asymptotic distribution is that same as in the first order case (with a simple random walk).
- The degree of augmentation can be determined by a specification search. Start with high k and stop when a standard t-test rejects null of b_{k-1} = 0

Augmented Dickey-Fuller tests III

- The determination of lag length" is an important step in practice since
 - Too low k destroys the level of the test (dynamic mis-specification),
 - ▶ Too high *k* lead to loss of power (over-parameterization).
- The ADF test can be regarded as one way of tackling "unit-root processes" with serial correlation
- DM also mentions alternatives to ADF, on page 623.
- The are several other tests for unit-roots as well—including tests where the null-hypotheses is stationarity and the alternative is non-stationary.
- As one example of the continuing interest in these topics: The book by Patterson (2011) contains a comprehensive review.

References

Ericsson N.R. and J.G. MacKinnon (2002): Distributions of error correction tests for cointegration, *Econometrics Journal*, 5,285—318 Granger C.W.J and P. Newbold (1974) Spurious Regressions in Econometrics, *Journal of Econometrics*, 2, 111-120. Hylleberg, S, R. F. Engle, C. W. J. Granger and B. S. Yoo (1990) Seasonal Integration and Cointegration, *Journal of Econometrics*, 1990, 44, 215-238. Patterson, K. (2011), Unit Root Tests in Time Series. Volume 1:

Key Concepts and Problems, Palgrave MacMillan.