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Lecture note 3

General companion form, and the ADL derived from the VAR.

The companion form of a VAR

In Lecture 5 we saw that the VAR in two variables Xt and Yt, and with first order dynamics, an
VAR(1), is already on so called companion form.

We now demonstrate that also a general VAR in n variables and dynamics of order p can
be expressed as a VAR(1) with a companion matrix that contain all the parameters of the system.

We define yt as the n× 1 vector

yt = [Y1t, Y2t, . . . , Ynt]
′

and write the system with dynamics of degree p as:

yt = φ1yt−1 + φ2yt−2+...+φpyt−p + εt (1)

where φi is a n×n matrix with parameters and εt is a vector of random variables (it can be jointly
normally distributed (Gaussian) or at least stationary). The companion form of this general system
is: 

yt

yt−1
...

yt−p+1


︸ ︷︷ ︸

zt np×1

=


φ1 φ2 · · · φp−1 φp

I 0 0 · · · 0
0 I 0 · · · 0
...

...
...

...
...

0 0 0 I 0


︸ ︷︷ ︸

Fnp×np


yt−1
yt−2

...
yt−p


︸ ︷︷ ︸

np×1
zt−1

+


εt
0
...
0


︸ ︷︷ ︸
εt np×1

(2)

or, written compactly, with the suggested notation:

zt = Fzt−1 + εt, (3)

The vector variable zt has a global asymptotic stable solution and is stationary if all eigenvalues
of F from

|F−λI| = 0 (4)

are less than one in magnitude. The means all real roots must be between −1 and 1, and all
complex roots must have modulus less than one.

The ADL model derived from a Gaussian VAR

The following system is an example of a first order Gaussian VAR in the two time series Xt and
Yt: (

Yt
Xt

)
=

(
π10
π20

)
+

(
π11 π12
π21 π22

)(
Yt−1
Xt−1

)
+

(
εyt
εxt

)
(5)(

εyt
εyt

)
∼ N

(
0,

(
σ2
x σxy

σxy σ2
y

)
| Yt−1, Xt−1

)
. (6)

The conditioning in (6) means that the normal distribution of εt = (εyt, εxt)
′

in the VAR is
conditional on the history of the system up to period t − 1. In Lecture note 4, we generalize the
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argument by starting from the so called Haavelmo distribution, but as said in the lectures and
computer class, it is enough to study the first order case carefully to get the right understanding.

Start by writing (5) as

Yt = µy,t−1 + εyt (7)

Xt = µx,t−1 + εxt (8)

where the conditional expectations µy,t−1 ≡ E(Yt | Yt−1, Xt−1) and µx,t−1 ≡ E(Xt | Yt−1, Xt−1)
are given by

µy,t−1 = π10 + π11Yt−1 + π12Xt−1 (9)

µx,t−1 = π20 + π21Yt−1 + π22Xt−1. (10)

Yt and Xt given by (7), (8) and (6) have a joint normal distribution which is conditional on Xt−1and
Yt−1. It follows from the properties of the normal distribution that the conditional distribution of
Yt given Xt is also normal, with expectation:

E(Yt | Xt, Xt−1, Yt−1) = µy,t−1 − ρxy
σy
σx
µx,t−1 + ρxy

σy
σx
Xt

= π10 −
ωxy

σ2
x

π20 +
ωxy

σ2
x

Xt + (π12 −
ωxy

σ2
x

π22)Xt−1

+ (π11 −
ωxy

σ2
x

π21)Yt−1

where ρxy is the correlation coefficient between εxt and εyt:

ρxy =
σxy√
σ2
x

√
σ2
y

. (11)

We can now define parameters:

φ0 = π10 −
σxy
σ2
x

π20 (12)

φ1 = π11 −
σxy
σ2
x

π21 (13)

β0 =
σxy
σ2
x

(14)

β1 = π12 −
σxy
σ2
x

π22 (15)

and write the conditional expectation as

E(Yt | Xt, Xt−1, Yt−1) = φ0 + φ1Yt−1 + β0Xt + β1Xt−1. (16)

Finally, define the disturbance εt as

εt = Yt − E(Yt | Xt, Xt−1, Yt−1) (17)

and write the conditional model for Yt as

Yt = φ0 + φ1Yt−1 + β0Xt + β1Xt−1 + εt (18)

which is an ADL model. (The same as equation (13.58) in DM, but with the obvious change in
notation (and with p = q = 1)).

Note that, again with reference to the normal distribution, the ADL-disturbance is:

εt = εyt −
σxy
σ2
x

εxt (19)

with variance:
σ2 = σ2

y(1− ρ2xy). (20)
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If you guess that an ADL model with p-lags can be derived form a V AR(p) that condition
on Xt−p−1 and Yt−p−1 you are right! We loose nothing in generality about the status of the ADL
as a conditional model by just looking at the simplest, V AR(1), case. For those interested, we
refer to Lecture note 4.

Exogeneity and pre-determinedness: Remember that the starting point is the joint
distribution of εyt and εxt conditional on Xt−1 and Yt−1, cf (6). Therefore:

E(εt | Xt−1, Yt−1) = 0

so the disturbance of the ADL model is uncorrelated with the conditioning variables of the VAR.
But we have also

E(εt | εxt) = 0 (21)

and since εxt = [Xt − E[Xt | Xt−1, Yt−1] by definition, (21) can alternatively be expressed as:

E(εt | Xt, Xt−1, Yt−1) = 0 (22)

showing that εt is uncorrelated with all the explanatory variables of the model, just like in the
static regression models we have seen before. In sum: Xt, Xt−1,are exogenous variables, exactly in
the sense given by (22).

However
E(εt−j | Xt, Xt−1, Yt−1) 6= 0 for j = 1, 2, . . .

since Yt−1 must depend on εt−1 and earlier disturbances via the solution for Yt obtained by repeated
substitution of lagged Yt in (18):

Yt = φ0 + φ1Yt−1 + β0Xt + β1Xt−1 + εt

= φ0(1 + φ1) +X-terms + εt + φ1εt−1 + ...+ φ21Yt−2

and so on. Hence Yt−1 is a pre-determined variable in (18), not an exogenous variable.
Role of Gaussian VAR assumption: In all important respects, the above remains valid

if (6) is replaced by an IID assumption for the VAR disturbance. The only expectation is the
equations that maps from the parameters of the normal distribution to the parameter of the ADL.
But the parameters of the ADL will still be parameters in a conditional expectation (again, just
as in the static/ordinary regression model case).
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