
RNy, econ4160 autumn 2015

Lecture note 4

Single equation model typology.

This is my notes that supplement the end of Lecture 5, by introducing a single equation model
typology that we also will review during the computer classes.

ADL(1,1)

We loose nothing by considering the case with only a single conditioning explanatory variable
(therefore we can drop the subscripts for variable number):

Yt = φ0 + φ1Yt−1 + β0Xt + β1Xt−1 + εt (1)

where is εt (t = 1, 2, . . . , T ) are a sequence of white-noise disturbances. See HN § 14.3 for a full
statistical specifoication of the ADL model.

Several models that are used in applied econometrics are either special cases (simplifications)
of (1), and one is a re-parameterization. This note only gives the main models in such a typology.

Static model

If the joint hypothesis φ1 = β1 = 0 is true, (1) simplifies to

Yt = φ0 + β0Xt + εt (2)

without affecting the statistical properties of εt. If φ1 = β1 = 0 does not hold, the disturbance of
static regression between Yt and Xt can logically not be independent of the information set Yt−1,
Xt and Xt−1, even if it is uncorrelated with Xt alone (cf first lecture).

Model in differences

If the joint hypothesis φ1 = 1 and β1 = −β0 are true, (1) simplifies to

∆Yt = φ0 + β0∆Xt + εt (3)

where the difference operator ∆ is defined as ∆ = 1 − L. Note that something that resembles a
“non-stationary condition” is now imposed in the form of φ1 = 1. Hence, if (3) is solved for Yt+1,
Yt+2, . . ., with Yt as an initial condition and given forward values of Xt+j and εt+j (typically 0),
Yt+j (j = 1, 2, . . .) will never reach a steady-state. Nevertheless, given that β1 = −β0 also holds in
the DGP it is perfectly legitimate to estimate (3) since the properties of εt are the same as in the
ADL.

Common factor model

(Davidson and MacKinnon has a quite extensive discussion of this model, starting on page
294.)

We start by expressing (1) by the lag-operator:

(1− φ1L)Yt = φ0 + (β0 + β1L)Xt + εt.

and factorizing the two lag-polynomials

(1− φ1L) = φ∗(L)φ∗∗(L)

(β0 + β1L) = β∗(L)β∗∗(L)
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where φ∗(L) = 1, φ∗∗(L) = 1 − φ1L, β∗(L) = β0 and β∗∗(L) = 1 + (β1/β2)L. If the restriction
φ∗∗(L) = β∗∗(L) is true, the two polynomials have a common factor. Written out, it is:

(1− φ1L) = (1 +
β1
β0
L)

or
(β0 + β1L) = (1− φ1L)β0 (4)

In this case a simplification of (1) becomes:

Yt =
1

1− φ1L
φ0 + β0Xt +

1

1− φ1L
εt

or
Yt = η + β0Xt + ut, ut = φ1ut−1 + εt (5)

where η = φ0/(1− φ1) and ut is a the disturbance ut ∼ AR(1) as you can see. In PcGive, (4) can
be tested in the Test-Dynamic Analysis Menu.

Equilibrium correction model (ECM)

HN § 14.2
While the three first models are special cases or simplifications of (1), the ECM is a re-

parameterization that always hold, it does not affect the time series properties of Yt (t = 1, 2, . . .)
or of εt (t = 1, 2, . . .). There are no restrictions imposed on the ADL(1,1).

If we subtract Yt−1 on each side of (1), and add and subtract β0Xt−1 on the right hand side
we obtain

∆Yt = φ0 + β0∆Xt + (φ1 − 1)Yt−1 + (β0 + β1)Xt−1 + εt (6)

which is called the equilibrium correction form of the ADL, or the error correction form of the
ADL.

Equilibrium correction form is most precise since we can rewrite the part of the equation
that holds the lagged levels to obtain:

∆Yt = β0∆Xt

+ (φ1 − 1)

Yt−1 −
φ0

(1− φ1)
− (β0 + β1)

(1− φ1)
Xt−1︸ ︷︷ ︸

Y ∗
t−1

 + εt (7)

where the term inside the bracket is interpreted as deviation from equilibrium Y ∗t .

AR(1)
β0 = β1 = 0 gives the special case of an AR(1) for Yt.. Note that AR(1) is also an ECM, but

the correction is now with respect to the unconditional expectation . The solution from Lecture 3
can be written as:

Yt =
φ0

1− φ1︸ ︷︷ ︸
Y ∗=E(Yt)

+

Y0 −
φ0

1− φ1︸ ︷︷ ︸
Y ∗=E(Yt)

φt1 +

t−1∑
i=0

φi1εt−i. (8)

to make the ECM interpretation even clearer. Later in the term this will help us understand the
properties of model based forecasts, so we will come back to it then.

ADL(p,q) and ECM

All of the above can be extended and generalized. We can for example look at the ECM
version of ADL(4, 4) :

Yt −
4∑

i=1

φiYt−i = φ0 +

4∑
i=0

βiXt−i + εt, (9)
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one possibility is to put the levels term at the fourth lag

∆Yt = φ0 +

3∑
i=1

φ†
i
∆Yt−i +

3∑
i=0

β†i ∆Xt−i (10)

+ (φ(1)− 1)Yt−4 + β(1)Xt−4 + εt

where φ(1) is φ(L) with L = 1, β(1) is the same for β(L). Check that the coefficients of the
lag-polynomials of ∆Yt−j and ∆Xt−j are:

φ†i =

i∑
j=1

φj − 1, i = 1, 2, 3, (11)

β†i =

i∑
j=0

βj , i = 1, 2, 3.

Alternatively,we can place the level-terms at the first-lag

∆Yt = φ0 +

3∑
i=1

φ‡
i
∆Yt−i +

3∑
i=0

β‡i ∆Xt−i (12)

+ (φ(1)− 1)Yt−1 + β(1)Xt−1 + εt

φ‡
i

= −
4∑

j=i+1

φj , i = 1, 2, 3,

β‡0 = β0 (13)

β‡i = −
4∑

j=i+1

βj , i = 1, 2, 3.

Check!. In both cases the long-run multiplier with respect to Xt is

K1 =
β(1)

1− φ1(1)
=

∑4
j=0 βj

(1−
∑4

j=1 φj)
(14)

β†0 = β‡0 = β0, (15)

but note that the other coefficients of the model are not the same in the two versions.

φ†i 6= φ‡
i
, i = 1, 2, 3, (16)

β†i 6= β‡i , i = 1, 2, 3. (17)

ECMs are more flexible than this.

• The AR lag length and the Distributed Lag lengths need not be the same for the different
variables.

• The levels of Y and X can be on different lags.

The long run multiplier K1 is however invariant to the different ways of writing the ECM, it is the
coefficients of the lags of ∆Xt and ∆Yt that are affected (as illustrated). Extension of the above
to more than one explanatory variables (the k regressor case) is straight forward.

QUESTION: How can you obtain an estimator K̂1, and obtain ̂V ar(K̂1), from OLS estima-
tion of ADL (1,1)?
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