ECON 4160: Seminars autumn semester 2015—FIRST SEMINAR

André K. Anundsen, Claudia Foroni and Ragnar Nymoen

August 26, 2015

Exercise set to seminar 1 (week 36, 31 Aug & 2 Sep)

This exercise set is longer than the later ones. In Question A we review PcGive use from the first computer class as well as some important results from an introductory course in econometrics. Question B gives some training in the use of the matrix algebra and the theory from Lecture 2 and 3.

Question A

- 1. Downloadthe pdf document A first regression in OxMetrics-PcGive from the course web page (Computer Class section) and the zippet data file the zip file KonsDataSim (from the Data Sets section). Follow the step-by-step instructions and become acquainted with simple regression analysis in OxMetrics-PcGive. (This is basically a review of some of the things from the first computer class).
- 2. Since the data set consists of time series, there is a natural ordering of the data (from "oldest" to "newest"). Therefore: estimate the same relationship using recursive estimation (see the note A first regression in OxMetrics-PcGive). In the **Model-Test** menu choose **Recursive graphics** and then Beta Coefficient $\pm 2SE$. This should produce graphs with the sequences of point estimates as a function of the sample, both for the constant and for the regression coefficient, with ± 2 estimated coefficient standard errors.
 - The graphs can be said to "contain" the sequences of approximate 95 % confidence intervals. Why?
 - The graphs show that the confidence intervals are wider for shorter samples than for the longer sample. Can you briefly explain this feature?
 - The estimates of the coefficients are quite unstable at the start but the variability becomes less as the sample becomes longer. Is there an intuitive explanation for this?
- 3. Write the model we have estimated in Question A2 as

(1)
$$C_t = \beta_0 + \beta_1 I_t + \varepsilon_t, \ t = 1, 2, \dots, T$$

with C_t for consumption and I_t for income.

(a) With reference to your introductory classes in econometrics and statistics, we let the expression

$$\hat{\sigma}_{CI} = \hat{\sigma}_{IC} = \frac{1}{T} \sum_{t=1}^{T} \left(C_t - \bar{C} \right) \left(I_t - \bar{I} \right)$$

denote the empirical covariance between the variables C and I. Likewise, we define the variances of I and C as $\hat{\sigma}_{II} = \hat{\sigma}_{I}^{2} = \frac{1}{T} \sum_{t=1}^{T} (I_{t} - \bar{I})^{2}$ and $\hat{\sigma}_{CC} = \hat{\sigma}_{C}^{2} = \frac{1}{T} \sum_{t=1}^{T} (C_{i} - \bar{C})^{2}$.

Show that the expression for the empirical covariance between C and I can be written in the 3 alternative ways shown in equation (??):

$$\hat{\sigma}_{CI} = \frac{1}{T} \sum_{t=1}^{T} \left(C_t - \bar{C} \right) \left(I_t - \bar{I} \right) = \frac{1}{T} \sum_{t=1}^{T} C_t \left(I_t - \bar{I} \right) = \frac{1}{T} \sum_{t=1}^{T} I_t \left(C_t - \bar{C} \right)$$

(b) Now, let $\hat{\beta}_1$ denote the OLS estimator of β_1 in (1) and show that it can be expressed as:

$$\hat{\beta}_1 = r_{CI} \frac{\hat{\sigma}_C}{\hat{\sigma}_I}$$

where $r_{CI} = \frac{\hat{\sigma}_{CI}}{\hat{\sigma}_C \hat{\sigma}_I}$ is the correlation coefficient and $\hat{\sigma}_C$ and $\hat{\sigma}_I$ are the two variables' empirical standard deviations.

(c) Consider the "inverse regression"

(2)
$$I_t = \beta_0' + \beta_1' C_t + \varepsilon_t'$$

and show that

$$\hat{\beta}_1 = \hat{\beta}_1' \frac{\hat{\sigma}_C^2}{\hat{\sigma}_I^2}$$

where $\hat{\beta}'_1$ is the OLS estimator for the "inverse regression".

- (d) Assume that the sequence of recursive $\hat{\beta}_1$ estimates supports the interpretation that β_1 in (1) is a parameter which is *stable* over time. Assume next that the ratio $\hat{\sigma}_C^2/\hat{\sigma}_I^2$ is *unstable* over time. We may call this a *regime-shift* in the *system* that determines C_t and I_t , where σ_C^2 and σ_I^2 are parameters. Can $\hat{\beta}_1'$ be recursively stable in this case?
- (e) With reference to section §3.2 in Hendry's and Nilsen's book: Is the analysis you did in Q3e, relevant for the question whether (1) may have a structural interpretation?
- 4. Download the zip file *KonsData1Nor* from the course web page.
 - (a) Use the data for Norwegian consumption and income to estimate a loglinear "consumption function". Use the data series CP and RCa (click on the variable names to see a short description of the data) and transform to logs before estimating the consumption function. The data is quarterly and sasonally unadjusted, as a plot of the data will show, so include three seasonal dummies in the model. You do not have to create the dummies,

just add *Seasonal* from the **Formulate** menu and Seasonal. Seasonal.1 and Seasonal.2 will be added to the model, representing dummies for the first, second and third quarter each year. Use the sample, 1970(1)-2012(1).

- (b) Why do we only include 3 seasonal dummies when there are four quarters in a year? Would your answer be different if you had omitted the constant from the model? Explain briefly.
- (c) What is the estimated elasticity of consumption with respect to income?
- (d) Define the variable s_t as $s_t = \ln(CP_t) \ln(RCa_t)$. Explain why this variable is approximately equal to (minus) the savings rate.
- (e) Regress s_t on $\ln(RCa_t)$, the constant and the three seasonal dummies. Compared to the regression in 4(a), why has R^2 changed, while the estimated standard error of the regression ($\hat{\sigma}$) is unchanged?
- (f) If you were asked to test the hypothesis that the savings rate is independent of income, what would the conclusion be when apply for example a 5 % significance level? Would this inference be reliable?

Question B

Let **X** be a $n \times k$ matrix with the regressors of the model

(3)
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where \mathbf{y} is $n \times 1$ and $\boldsymbol{\varepsilon}$ is the $n \times 1$ vector with disturbances and the parameter vector $\boldsymbol{\beta}$ is $k \times 1$.

1. Define the residual vector $\hat{\boldsymbol{\varepsilon}}$

(4)
$$\hat{\boldsymbol{\varepsilon}} = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$$

where $\hat{\boldsymbol{\beta}}$ is a random vector (an estimator). Show that by requiring that $\boldsymbol{X}' \hat{\boldsymbol{\varepsilon}} = \boldsymbol{0}$, an $\hat{\boldsymbol{\beta}}$ estimator of $\boldsymbol{\beta}$ is given by:

(5)
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

- 2. Why is the estimator in (5) the OLS estimator of β ?
- 3. Under which assumption(s) is it also the ML estimator?
- 4. Show that the elements in $n^{-1}\mathbf{X}'\mathbf{X}$ and $n^{-1}\mathbf{X}'\mathbf{y}$ are (uncentered) second order empirical moments.
- 5. Assume that the first column in **X** has the number 1 in each position. Partition **X** as $\mathbf{X} = \begin{bmatrix} \boldsymbol{\iota} & \mathbf{X}_2 \end{bmatrix}$ where $\boldsymbol{\iota}$ is the $n \times 1$ column vector with ones and \mathbf{X}_2 is the $n \times (k-1)$ matrix with random variables (and deterministic) variables $X_2, \ldots X_k$. Partition $\boldsymbol{\beta}$ accordingly as $\boldsymbol{\beta}' = (\beta_1 \quad \boldsymbol{\beta}'_2)$ where β_1 is a scalar and $\boldsymbol{\beta}_2$ is $(k-1) \times 1$. Show that you can write

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} = \boldsymbol{\iota}\alpha + (\mathbf{X}_2 - \mathbf{X}_2)\boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$$

where $\bar{\mathbf{X}}_2$ is the $n \times (k-1)$ matrix with the means of each variable in each column and

$$\alpha = \beta_1 + \bar{\mathbf{x}}_2' \boldsymbol{\beta}_2$$

where $\bar{\mathbf{x}}_2$ is the $(k-1) \times 1$ vector with the means of each of the k-1 variables $X_2, \ldots X_k$.

6. Explain why the OLS estimator $\hat{\boldsymbol{\beta}}_2$ is found as

(6)
$$\hat{\boldsymbol{\beta}}_2 = \left[(\mathbf{X}_2 - \bar{\mathbf{X}}_2)' (\mathbf{X}_2 - \bar{\mathbf{X}}_2) \right]^{-1} (\mathbf{X}_2 - \bar{\mathbf{X}}_2)' \mathbf{y}$$

and why the OLS estimator of α is

(7)
$$\hat{\alpha} = (\boldsymbol{\iota}'\boldsymbol{\iota})^{-1}\,\boldsymbol{\iota}'\mathbf{y} = \bar{Y}$$

where \overline{Y} is the mean of the variables $\{Y_i; i = 1, 2, ..., n\}$ in the vector **y**.

- 7. Is the first element in $\hat{\beta}_2$ identical to the second element in $\hat{\beta}$; the second in $\hat{\beta}_2$ identical to the third in $\hat{\beta}$, and so on? Explain your answer.
- 8. Use scalar notation to express $\hat{\beta}_2$ for the case of k-1=2 and show that the existence of these estimators depends on both the absence of perfect collinarity and the existence of variability in each of the two variables