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Aanund Hylland

Gibbons Problem 1.5

The discussion goes considerably beyond solving the problem as stated by Gibbons.  Although some readers may think that there are too many details, the remarks will hopefully be useful.

A Cournot-type duopoly is studied.  The market demand is linear and given by
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where p is the price, Q is the total supply and a is a positive constant.  There are no fixed costs, and marginal costs are constant and equal to c.  The constants a and c satisfy 
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When the firms produce quantities q1 and q2, the profit of firm 1 is given by
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This can be written as
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The last term does not depend on q1. and the optimal value of q1 is
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Let 
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 for i = 1, 2.  The profit of firm 1 can be written
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Nothing is lost by assuming 
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, and this assumption is made from now on.

When 
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 is given, the optimal value of 
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For fixed 
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, the profit depends solely and negatively on the distance between 
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A similar equivalence with strict inequalities also holds.
In the tables below, firm 1 chooses row and firm 2 chooses column.  The internal part of the table gives the profit of firm 1.  Everything is symmetric, so the profit of firm 2 can be inferred and need not be given explicitly.

First, assume that the only permissible strategies are 
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.  Here rA is half the monopoly quantity, while rC is the Cournot equilibrium quantity.  The latter strategy strictly dominates the former.  Elimination of dominated strategies gives the solution 
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.  This outcome is Pareto dominated by 
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.  The normal form of the game is found by deleting the last strategy for each player in any of the tables below.  The game has the structure of the "prisoners' dilemma", since 
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 (Tables 1 ‑ 4) or 0.1388... > 0.125 > 0.11... > 0.104166... (Table 5).
Then assume that three strategies are allowed for each player, namely 
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.  The task is to choose 
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 so that no strategy for any player is strictly dominated.
For purpose of illustration, the case 
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 is presented in Table 1.  There is no dominance relation – not even a weak one – between the strategies 
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.  However, 
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.  Therefore, 
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 is not a solution to the problem.  Since everything is symmetric, 
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.  When the strategy 
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.  Hence the Cournot solution, 
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, can be found by iterated elimination of dominated strategies.
In order to find a solution to the problem, first note that 
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.  Hence it follows from 
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 that no strategy different from  GOTOBUTTON ZEqnNum366209  \* MERGEFORMAT  can dominate that strategy.
As is clear from the discussion above, 
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.  For 
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 not to be strictly dominated by 
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By (7)

, this is equivalent to
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Since 
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, this is in turn equivalent to
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or
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Then assume that 
(11)

 holds.  From  GOTOBUTTON ZEqnNum595205  \* MERGEFORMAT  follows that 
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, which, by 
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 with strict inequalities, implies  GOTOBUTTON ZEqnNum366209  \* MERGEFORMAT .  Moreover, from 
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 (again by 
(7)

 with strict inequalities).  For  GOTOBUTTON ZEqnNum366209  \* MERGEFORMAT  not to be strictly dominated by 
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Since 
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Since 
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The argument above, including the inequalities 
(14)

, show that there is one and only one solution to the problem.  The solution is given by (11)

 and  GOTOBUTTON ZEqnNum595205  \* MERGEFORMAT .
Table 2 illustrates this case.  It confirms what has been deduced above, namely that no strategy strictly dominates any other strategy.  However, 
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 weakly dominates both the two other strategies.  The numbers in the table that appear to be equal are exactly equal.  This is more clearly seen from Table 5, which is equal to Table 2 except that strategies and outcomes are expressed as integer fractions instead of being approximated by decimal numbers.
As follows from previous arguments, 
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 in order to secure that no strategy strictly dominates any other strategy.  Table 3 illustrates the case where 
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Table 1
	r' = 1/2
	r2 = rA
	r2 = rC
	r2 = r'

	
	0.25000
	0.33333
	0.50000

	Optimal r1
	0.37500
	0.33333
	0.25000

	r1 = rA
	0.25000
	0.1250000
	0.1041667
	0.0625000

	r1 = rC
	0.33333
	0.1388889
	0.1111111
	0.0555556

	r1 = r'
	0.50000
	0.1250000
	0.0833333
	0.0000000


Table 2
	r' = 5/12 ≈ 0.41667
	r2 = rA
	r2 = rC
	r2 = r'

	
	0.25000
	0.33333
	0.41667

	Optimal r1
	0.37500
	0.33333
	0.29167

	r1 = rA
	0.25000
	0.1250000
	0.1041667
	0.0833333

	r1 = rC
	0.33333
	0.1388889
	0.1111111
	0.0833333

	r1 = r'
	0.41667
	0.1388889
	0.1041667
	0.0694444


Table 3
	r' = 0.416
	r2 = rA
	r2 = rC
	r2 = r'

	
	0.25000
	0.33333
	0.41600

	Optimal r1
	0.37500
	0.33333
	0.29200

	r1 = rA
	0.25000
	0.1250000
	0.1041667
	0.0835000

	r1 = rC
	0.33333
	0.1388889
	0.1111111
	0.0835556

	r1 = r'
	0.41600
	0.1389440
	0.1042773
	0.0698880


Table 4
	r' = 0.417
	r2 = rA
	r2 = rC
	r2 = r'

	
	0.25000
	0.33333
	0.41700

	Optimal r1
	0.37500
	0.33333
	0.29150

	r1 = rA
	0.25000
	0.1250000
	0.1041667
	0.0832500

	r1 = rC
	0.33333
	0.1388889
	0.1111111
	0.0832222

	r1 = r'
	0.41700
	0.1388610
	0.1041110
	0.0692220


Table 5
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	r2 = rA
	r2 = rC
	r2 = r'
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	Optimal r1
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