
Exam in ECON3220/4220, Fall 2020
Problem 1 (Microeconomics)

November 25, 2020

Part A: consumer theory (weight 14%, equally shared)

1. For each of the axioms on preferences in Chapter 1 (completeness, transitivity, con-
tinuity, strict monotonicity, and strict convexity), represent graphically preferences
that do not satisfy that axiom.

2. Find the indirect utility function associated to the utility function U (x1, x2) =

xα1x
β
2 with α, β > 0 and check Roy’s identity for good 2.

SOLUTIONS
A1.
Completeness. Draw no-worse than and no-better than sets that do not cover the

entire domain of preferences (typically positive orthant in 2 dimensions, but one can
make a 1 dimension representation).

Transitivity. For example when preferences over two commodities are such that
(x1, x2) % (z1, z2) if and only if x1 + x2 − 2 ≥ z1 + z2. Then, (0, 0) % (1, 1) % (2, 2)
but (2, 2) � (0, 0). Graphically, the no-worse than set for (1, 1) is not a subset of the
no-worse than set of (2, 2).

Continuity. Draw an indifference curve with a dotted line (suggesting there is no
indifference)

Strict monotonicity. Draw preferences with an increasing indifference curve.
Strict convexity. Linear (or non-convex) preferences.
A2.
The demand functions solve the standard utility maximization problem:

max
x1,x2

xα1x
β
2

s.t.p1x1 + p2x2 ≤ y

For simplicity, I take the logaritmic transformation of the utility. Lagrangean:

L = α lnx1 + β lnx2 + λ (y − p1x1 − p2x2)
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The solution is interior because of monotonicity of preferences and infinite marginal
utility when a good goes to zero. The first order conditions are:

α
x1

= λp1
β
x2

= λp2

p1x1 + p2x2 = y

Combining the first two gives:

x2 =
βp1
αp2

x1

Substituting in the budget constraint gives the demand for good 1:

x1 (p, y) = x∗1 =
α

α+ β

y

p1

Substituting in the previous gives:

x2 (p, y) = x∗2 =
β

α+ β

y

p2

Substituting in the original utility function gives:

V (p, y) = U (x1 (p, y) , x2 (p, y)) =

((
1 +

β

α

)−1 y

p1

)α((
1 +

α

β

)−1 y

p2

)β

=
ααββ

(α+ β)α+β
yα+β

pα1 p
β
2

To check Roy’s identity for good 2, we need the derivative of the indirect utility function
with respect to p2 and y.

∂

∂p2
V (p, y) = −β ααββ

(α+ β)α+β
yα+β

pα1 p
β
2

p−1
2

∂

∂y
V (p, y) = (α+ β)

ααββ

(α+ β)α+β
yα+β

pα1 p
β
2

y−1

Roy’s identity tells that the demand for good two is given by:

x2 (p, y) = −
∂
∂p2

V (p, y)

∂
∂yV (p, y)

= −
−β ααββ

(α+β)α+β
yα+β

pα1 p
β
2

p−1
2

(α+ β) ααββ

(α+β)α+β
yα+β

pα1 p
β
2

y−1

= − −βp−1
2

(α+ β) y−1
=

β

α+ β

y

p2
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Part B: production theory (weight 15%, equally shared)

1. Explain the economic meaning of concavity with respect to prices of the cost func-
tion.

2. For each of the following, show that these cannot be cost functions (these violate
some of its properties):

a) c (w, y) = y2 (w1 + ew2);

b) c (w, y) =
√

(1− y)w1w2;

c) c (w, y) = y
(
w1
w2

)
;

3. For the cost function c (w, y) = y2w1, derive the production function and the profit
function.

SOLUTIONS
B1.
Assume a price of a good changes. If the firm does not change inputs, the cost of the

firm changes linearly with the price (the cost is given by quantity of inputs times price
of inputs). However, the firm might reoptimize and reduce the cost. This means that
the cost function is concave in prices.

B2.
a) the function is convex with respect to the price of input 2.
b) This function is decreasing with respect to y
c) this function is decreasing in the price of input 2.
B3.
The production function associated to this cost function is:

f (x1, x2) =
√
x1.

The profit function is obtained by finding the optimal supply y and substituting back.

max
y
py − y2w1

FOC:
p = 2y∗w1

Optimal supply:

y(p,w) = y∗ =
p

2w1

Profit function:

Π (p,w) = py∗ − (y∗)2w1 =
p2

4w1
.
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Part C: general equilibrium and taxation (weight 21%, equally shared)

Corn is used for both the production of food and for the production of ethanol, an
alternative fuel. Denote the quantities of corn by xC , food by xF , and ethanol by xE .
There are two representative firms, operating respectively in the food and ethanol

sectors. The production functions in both the food industry and the ethanol sectors
are constant returns to scale. Let zC denote the input of corn, yF denote the output
of food, and yE the output of ethanol. Then, yF ≤ fF (zC) = AzC with A > 0 and
yE ≤ fE (zC) = zC .
The representative individual has a utility function U (xF , xE) = lnxF + xE and an

endowment of corn ωC .
The market is perfectly competitive.

1. Verify that the conditions of the first welfare theorem are satisfied.

2. Compute the general equilibrium outcome. [Hint: the easiest method is to directly
identify the optimal quantities, without using prices, demand, supply, etc.]

3. Briefly explain the inverse elasticity rule for optimal commodity taxation and dis-
cuss its implications for the taxation of food and ethanol. [Clarification: no need
to find the optimal taxes nor the elasticities!]

SOLUTIONS
C1.
For the first welfare theorem to hold, we need that preferences are locally non satiated.

The utility is strictly increasing in the commodities.
C2.
Since the competitive equilibrium is Pareto efficient, we can find the set of Pareto

efficient allocations by maximizing the utility on the feasible allocations.

max
xF ,xE

lnxF + xE

subject to:

xF ≤ AzCF

xE ≤ zCE
zCF + zCE ≤ ω,

where zCF is the input of corn for food production and zCE is the input of corn for
ethanol production. Substituting gives:

max
zCF

lnAzCF + (1− zCF ).

The first order condition for an interior solution is then:
1

A
= zCF ,
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but this holds only if A ≥ 1. If A < 1, a corner solution will emerge with zCF = 1.
Thus, the unique equilibrium outcome is:

zCF =

{
1
A if A ≥ 1

1 if A < 1

yF = xF =

{
1 if A ≥ 1

A if A < 1

yE = xE =

{
1− 1

A if A ≥ 1

0 if A < 1

C3.
If the demand of a commodity is independent of the price of others (cross price elas-

ticities are zero), the inverse elasticity rule tells that the tax rate on a consumption good
is inversely proportional to its elasticity.
When A < 1, the only good purchased in food, so it is the only one that can be taxed.

As A increases, the demand for food becomes more elastic and taxes start to be levied
also on ethanol.
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Solution sketches for the exam in ECON3220/4220, Fall 2020

Problem 2 (Game theory and the economics of information)

Part A: Rationalizable strategies and mixed-strategy Nash equilibrium

Weight: 16% (with equal weight = 8% on each subproblem)

Consider the following normal form game.

L C R
U

M

D

0, 0 2, 0 1, 4

−1, 4 3, 1 3, 2

2, 0 2, 3 0, 1

(a) What strategies are rationalizable for each of the two players?

3

A strategy is rationalizable if and only if it survives iterated elimination of strictly dominated 
strategies. U is strictly dominated by a mixture of M and D where the probabilities of each 
of these strategies exceeds 1 . With U eliminated, R is strictly dominated by a mixture of L
and C where the probabilities of each of these strategies exceeds 1

3 . No further elimination

is possible. Hence, M and D are rationalizable for player 1, L and C are rationalizable for

player 2.

(b) The game has one and only one Nash equilibrium, in mixed strategies. Find the mixed

strategies that the players use in this Nash equilibrium.

By determining, for each player, the best response to pure strategies for the opponent, it can

easily be checked that there is no Nash equilibrium in pure strategies. Since U is strictly

dominated, this strategy cannot be a best response to any belief concerning the choice of

player 2 and cannot be assigned positive probability in a mixed-strategy Nash equilibrium.

If U is played with probability 0, then R cannot be a best response to any remaining belief

concerning the choice of player 1 and cannot be assigned positive probability in a mixed

strategy Nash equilibrium. For player 1 to be indifferent between M and D, player 2 must

assign probability 1
4 to L and probability 3

4 to C. For player 1 to be indifferent between L

and C, player 2 must assign probability 1
2 to M and probability 1

2 to D. Hence, the mixed

strategy that player 1 uses is (0, 12 ,
1
2) and the mixed strategy that player 2 uses is (14 ,

3
4 , 0).

Part B: Auctions under complete and incomplete information

Weight: 24% (with equal weight = 8% on each subproblem)

Consider a private value second-price sealed-bid auction with two bidders who both are risk-

neutral, have valuations in the interval [0, 1] and can submit bids in the interval [0, 1]. In a

private value second-price sealed-bid auction the bidders are first informed of their valuations,
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they then submit their bids, the item is assigned to the bidder with the highest bid (and with

equal probability to each if the two bids are equal), and the winner pays the second highest bid

(i.e., the bid of the other bidder when there are only two bidders). The utility of the winner

equals his/her valuation minus the payment, while the other bidder has zero utility.

(a) Assume first that the valuations of the two player are commonly known, with v1 = 1 and

v2 = 0. One Nash equilibrium of the auction is that the players bid their valuations (b1 = 1

and b2 = 0), as bidder 1’s utility equals 1 for any positive bid and 1 with probability equal

to 0.5 for a bid equal to 0, and bidder 2’s utility equals 0 for any bid less than 1 and −1

with probability equal to 0.5 for a bid equal to 1.

Another Nash equilibrium is that b1 = 0 and b2 = 1. Why?

Given that b2 = 1, player 1 cannot gain by bidding 1 and thereby having equal chance of

winning the auction as his/her valuation is 1 and the payment if the auction is won is 1.

Given that b1 = 0, the utility of player 2 is 0 if he/she wins the auction as his/her valuation

is 0 and the payment is 0. Therefore, player 2 cannot gain by bidding 0 and thereby having

equal chance of not winning the auction.

(b) Assume now that the valuations are independent and identically distributed on the interval

[0, 1], and each bidder is only informed of his/her own valuation. Consider that each player

i = 1, 2 bids his/her valuation, i.e., b1(v1) = v1 for all v1 in [0, 1] and b2(v2) = v2 for all v2

in [0, 1]. Why is this a Bayesian Nash equilibrium?

Consider the strategy of player i and let j be the other player. If j bids less that vi, then

player i gains by winning the auction, and bidding vi achieves this. The utility when winning

does not depend on his/her own bid as long as he/she wins, so vi is an optimal choice. If

j bids at least vi, then player i cannot gain by winning the auction, and bidding vi ensures

that his/her utility is 0. Hence, bi(vi) = vi for all vi in [0, 1] is a best response to any bidding

strategy for the other bidder j and thus also to the strategy bj(vj) = vj for all vj in [0, 1].

(c) Assume still, as in part (b), that the valuations are independent and identically distributed

on the interval [0, 1], and each bidder is only informed of his/her own valuation. But consider

now that bidder 1 always bids 0, independently of his/her valuation, i.e., b1(v1) = 0 for all v1

in [0, 1], and that bidder 2 always bids 1, independently of his/her valuation, i.e., b2(v2) = 1

for all v2 in [0, 1]. Why is this also a Bayesian Nash equilibrium?

Given that b2(v2) = 1 for all v2 in [0, 1], player 1, independently of his/her valuation, cannot

gain by bidding 1 and thereby having equal chance of winning the auction as his/her valuation

is at most 1 and the payment if the auction is won is 1. Given that b1(v1) = 0 for all v1 in

[0, 1], the utility of player 2 is non-negative if he/she wins the auction as his/her valuation is

non-negative and the payment is 0. Therefore, player 2, independently of his/her valuation,

cannot gain by bidding 0 and thereby having equal chance of not winning the auction.
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Part C: Perfect Bayesian equilibrium

Weight: 10%

Consider the following extensive form game, where the first number is the payoff of player

1 and the second number is the payoff of player 2. Show that this game has one and only one

Perfect Bayesian equilibrium.

1

1

Nature

)(  B 2
1

U

D

2U

D )(A  2
1

2 U′

D′

D′

U′

L R

L′ R′

2, 1
4, 3

–2, 1
0, 0–1, –2

1, 1
3, 0

1, 1

Player 2 will always choose U after having observed L/L′. Therefore, player 1 of type A will

choose R, since the smallest payoff of doing so exceeds the payoff of 1 of choosing L. And player 1

of type B will choose L′, since the payoff of 1 of choosing L′ exceeds the largest payoff of choosing

R′. It now follows from Bayes’ rule that player 2 will assign probability 1 to player 1 being of type

A after having observed R/R′ and therefore choose D′ in this case.
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