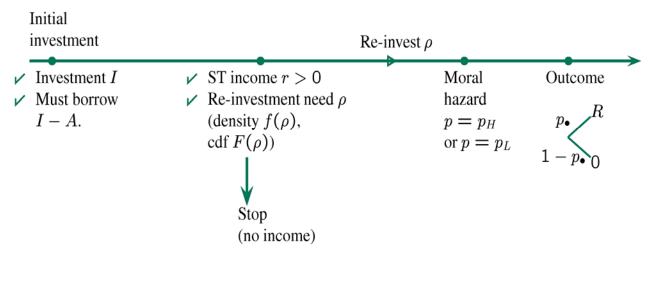
Liquidity management

- Multistage financing
- An intermediate date between the financing stage and the realization of the project outcome.
- Following up on the discussion of the liquidity/accountability tradeoff in chapter 4.
- The borrower needs to prepare for a liquidity shock.
- The borrower should hoard reserves.
 - Holding liquid securities
 - Credit line
 - o Retensions
- Hoarding of reserves is an insurance mechanism
 - True even if borrower is risk neutral
 - Value of funds higher in bad states than in good states, because of credit rationing.
 - Borrower wants to transfer wealth from good states to bad states which is what an insurance contract does.

Basic model

• Fixed investment, with a stochastic need for reinvestment at an intermediate date.



- Date 0: Investment I, own assets A, borrowing need I A.
- Date 1 the intermediate date:
 - Investment yields a short-term return *r*; deterministic and verifiable.
 - Continuation requires a *reinvestment* of size $\rho \ge 0$, *ex ante* unknown: probability distribution $F(\rho)$, density $f(\rho)$.
 - The value of ρ becomes known at date 1.
 - No reinvestment means liquidation of the firm, liquidation value 0.
- Date 2 in case of reinvestment at date 1: Investment returns *R* if success, 0 if failure. Success probability *p* depends on borrower's effort: $p = p_H$ if she behaves, $p = p_L < p_H$ if not.
- Risk neutrality. Limited liability. Competition among lenders.
- Contract: $\{r_b, R_b, \rho^*\}$
 - r_b and R_b what borrower receives at dates 1 and 2.
 - ρ^* the cutoff reinvestment requirement: continue if and only if $\rho \le \rho^*$.
- Borrower's net utility equals net present value of the project:

$$U_b(\rho^*) = [r + F(\rho^*)p_H R] - [I + \int_0^{\rho^*} \rho f(\rho) d\rho]$$

- o Second term: expected total investment
- Borrower's incentive constraint:

$$R_{b} \geq \frac{B}{\Delta p}$$

- Borrower receives 0 at date 1: $r_b = 0$.
 - \circ All of *r* is payed out to outside investors.
 - Zero r_b increases R_b and alleviates the incentive problem at date 2.
- Expected pledgeable income:

$$\mathscr{I}(\rho^*) = r + F(\rho^*)p_H\left[R - \frac{B}{\Delta p}\right] - \Im^* \rho f(\rho)d\rho$$

• Investors must cover all the reinvestment

- NPV is maximized at $\rho^* = p_H R = \rho_1$.
 - $U_b'(\rho^*) = f(\rho^*)p_H R \rho^* f(\rho^*).$
 - For $\rho^* < \rho_1$, the expected gain from rescuing the project is larger than the cost.
- Pledgeable income is maximized at $\rho^* = p_H \left[R \frac{B}{\Delta p} \right] = \rho_0.$
 - For $\rho^* > \rho_0$, the cost to the investors from continuing is larger than what they expect to get in return.

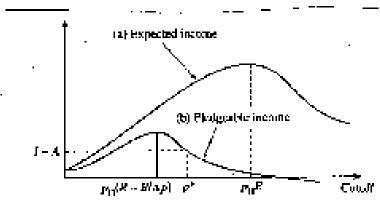


Figure 5.2, p. 204

- Three cases
 - Efficient cutoff: $\mathscr{R}(\rho_1) \ge I A$.
 - The NPV-maximizing cutoff leaves enough for the investors: ρ* = ρ₁.
 - Too much liquidation: $\mathscr{R}(\rho_1) < I A \leq \mathscr{R}(\rho_0)$
 - $r_b = 0, R_b = B/\Delta p$, and

 $\rho^* \in [\rho_0, \rho_1]$ solves $\mathscr{R}(\rho) = I - A$

- Credit rationing at date 1: In order to secure funds at date 0, the borrower accepts a reduced reinvestment cutoff at date 1.
- No funding: $I A > \mathscr{R}(\rho_0)$
 - Even maximizing pledgeable income is not enough.

Maturity at a cash rich firm

- *Cash rich firm*: $r > \rho^*$; high short-term returns.
- Implementing the optimal contract
 - Short-term debt: $d = r \rho^*$.

• Long-term debt:
$$D = R - \frac{B}{\Delta p}$$
 (to be paid if continuation)

- Note: erratum for footnote 7 on p. 204; see: <u>http://press.princeton.edu/tirole/tirole_errata3.pdf</u>
- A theory of *maturity structure* of debt
 - Stronger firms have larger A, and subsequently (weakly) higher ρ^* and therefore less short-term debt.
 - The more current debt a firm has, the lower is its *A*, and the more short-term its future debt will be.
- Short-term debt vs dividend

Credit lines for cash poor firms

- *Cash poor firm*: $r < \rho^*$. The extreme case: r = 0.
- With *r* = 0, there are no short-term returns to cover (in part) the liquidity needs at the intermediate date.
- Can a wait-and-see strategy work?
 - At date 1, the value of ρ is known. But the outside investors are not able to supply more funds than what the firm is worth to them, so the firm will only get funding if

$$\rho \leq p_H \left[R - \frac{B}{\Delta p} \right] = \rho_0.$$

• This is not optimal, since $\rho^* \in [\rho_0, \rho_1]$.

- It is better to *hoard reserves* at date 0 to face the liquidity shock at date 1.
 - *Liquidity management* is necessary.

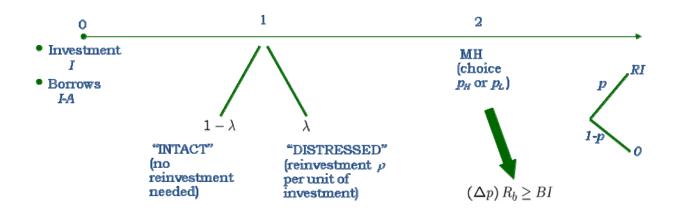
- Two ways to hoard reserves:
 - Borrowing $I + \rho^*$ at date 0, with a covenant that no further claims be issued at date 1, so that initial claimholders are not diluted.
 - Securing a *line of credit* equal to $\rho^* \rho_0$, with a right to dilute initial claimholders in order to get ρ_0 in new funds at date 1.
 - A line of credit is an agreement providing credit up to a certain amount.
 - The line of credit must be *non-revokable*; otherwise, the lender would not want to abide with the agreement in cases where $\rho \in (\rho_0, \rho^*)$.

Growth opportunities

- An alternative scenario: if you do not reinvest at the intermediate date, you don't have to close down; but if you do reinvest, you increase the prospects of your project.
 - Reinvestment increases probabilities of success from p_H and p_L (depending on borrower efforts) to $p_H + \tau$ and $p_L + \tau$, where $0 < \tau < 1 - p_H$.
- Better growth opportunities (higher τ) call for longer maturities, that is, less short-term debt.

The liquidity-scale tradeoff

- Liquidity management with a variable investment.
- The entrepreneur now faces a choice between a larger investment and more liquidity.
- Variable-investment model.
- First a simple version two values of the per-unit liquidity shock
 - \circ 0, with probability 1λ : the firm is *intact*.
 - $\circ \rho$, with probability λ : the firm is *in distress*.



- Initial investment *I*. Continuation, which requires a reinvestment ρI if the firm is in distress at date 1, is subject to moral hazard.
- Project yields *RI* at date 2 if success, 0 otherwise.
- Success probability p_H or p_L .
- Private benefit from misbehaving BI.
- Assumption: $\rho_0 < c < \rho_1$, where $c \equiv \min\left\{1 + \lambda \rho, \frac{1}{1 \lambda}\right\}$.
 - No liquidity shock: $\lambda = 0$, and so c = 1.
- Borrower receives R_b if success, 0 otherwise, where $R_b \ge \frac{B}{An}$.
- If distress: abandon or pursue the project?

- Abandon project if distress
 - o Investors' breakeven constraint

$$(1-\lambda)\rho_0 I = I - A$$

• Entrepreneur's net utility = NPV

$$U_b^0 = [(1-\lambda)\rho_1 - 1]I = \frac{(1-\lambda)\rho_1 - 1}{1 - (1-\lambda)\rho_0}A = \frac{\rho_1 - \frac{1}{1-\lambda}}{\frac{1}{1-\lambda} - \rho_0}A$$

• Compare with case without liquidity shock: $\lambda = 0$.

- Pursue project if distress
 - o Investors' breakeven constraint

$$\rho_0 I = (1 + \lambda \rho) I - A$$

 \circ Entrepreneur's net utility = NPV

$$U_{b}^{1} = [\rho_{1} - (1 + \lambda \rho)]I = \frac{\rho_{1} - (1 + \lambda \rho)}{(1 + \lambda \rho) - \rho_{0}}A$$

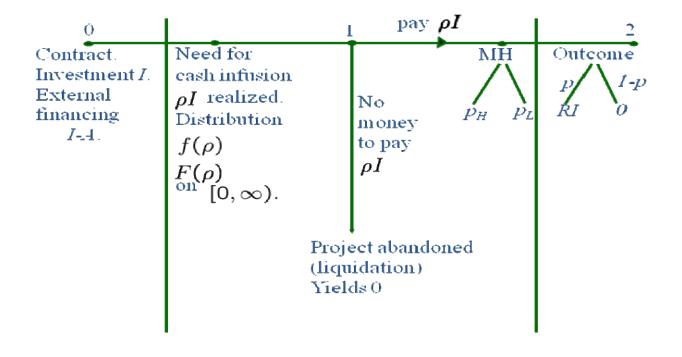
• Pursuing the project in case of distress at date 1 is better than abandoning it if:

$$U_{b}^{1} \geq U_{b}^{0} \Leftrightarrow 1 + \lambda \rho \leq \frac{1}{1 - \lambda} \Leftrightarrow \rho \leq \frac{1}{1 - \lambda}$$

- Withstanding the liquidity shock is optimal if it is
 - o low: ρ is low
 - o likely: λ is high.
- If $\rho_0 < \rho \le \frac{1}{1-\lambda}$, then *liquidity management* is required.
 - For example: a credit line.

A continuum of liquidity shocks

- Continuous investment, continuous shock.
- At date 1, continuation requires a reinvestment ρI , where $\rho \ge 0$.
 - o Per-unit-of-investment cost overruns.
 - Probability distribution $F(\rho)$, density $f(\rho)$.



- NPV($\tilde{\rho}$) net present value for a given cutoff $\tilde{\rho}$. NPV($\tilde{\rho}$) = { $F(\tilde{\rho})p_{H}R - [1 + \int_{\tilde{c}}^{\tilde{c}} \rho f(\rho)d\rho]$ }
- Assumption: There exists some $\tilde{\rho}$ such that NPV($\tilde{\rho}$) > 0.
- Question: What is the optimal cutoff rule ρ^* ?
- Incentive constraint if continuation: $R_b \ge \frac{BI}{\Delta p}$
- Breakeven constraint with cutoff at ρ^* : $F(\rho^*)p_H(RI - R_b) \ge I - A + \int_{0}^{\infty} \rho If(\rho)d\rho$

• Borrowing capacity:

$$I \le k(\rho^*)A = \frac{1}{1 + \int_0^{\rho^*} \rho f(\rho) d\rho - \rho_0 F(\rho^*)} A$$

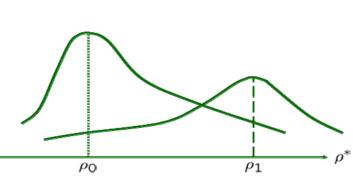
• Recall the equity multiplier without liquidity shock: $k = \frac{1}{1 - \rho_0}$

- Liquidity shocks reduce the equity multiplier: $k(\rho^*) < \frac{1}{1-\rho_0}$.
- Due to competition among creditors, borrower obtains NPV(ρ^*). $U_h = \{F(\rho^*)\rho_1 - [1 + I_0^* \rho f(\rho) d\rho]\}I \Leftrightarrow$

$$U_b = m(\rho^*)k(\rho^*)A,$$

where
$$m(\rho^*) = F(\rho^*)\rho_1 - 1 - \int_0^{\rho^*} \rho f(\rho)d\rho$$

- The *margin* per unit of investment: $m(\rho^*)$
- The borrower must trade off the margin and the equity multiplier
 - Maximizing m(ρ*) would maximize profit and yield ρ* = ρ₁. But k'(ρ₁) < 0.
 - Maximizing k(ρ*) would maximize pledgeable income and yield ρ₀. But m'(ρ₀) > 0.



• Write the borrower's net utility as

$$U_{b} = \frac{\rho_{1} - c(\rho^{*})}{c(\rho^{*}) - \rho_{0}} A, \text{ where: } c(\rho^{*}) = \frac{1 + \int_{0}^{\rho^{*}} \rho f(\rho) d\rho}{F(\rho^{*})}$$

• Note: $F(\rho^*)c(\rho^*) = 1 + \int_0^{\rho^*} \rho f(\rho) d\rho$

• $c(\rho^*)$ is the expected cost per unit of effective investment

• Maximizing U_b is tantamount to minimizing $c(\rho^*)$.

• Minimizing $c(\rho^*)$:

$$c'(\rho^{*}) = \frac{\rho^{*} f(\rho^{*}) F(\rho^{*}) - [1 + j_{0}^{*} \rho f(\rho) d\rho] f(\rho^{*})}{[F(\rho^{*})]^{2}}$$
$$c'(\rho^{*}) = \frac{f(\rho^{*})}{F(\rho^{*})} [\rho^{*} - c(\rho^{*})].$$

• The optimal cutoff is implicitly defined by:

$$\rho^* = c(\rho^*)$$

• In equilibrium, the borrower's net utility is

$$U_{b} = \frac{\rho_{1} - \rho^{*}}{\rho^{*} - \rho_{0}} A$$

• The optimum cutoff lies between the expected per-unit-ofinvestment pledgeable income and income:

 $\rho_0 < \rho^* < \rho_1$

Trading off size and liquidity: Increasing the cutoff above
 *ρ** would be good for profit but would also increase the demand for liquidity.

Risk management

- Suppose there is some residual uncertainty ε in the reinvestment requirement at date 1, such that $E(\varepsilon | \rho) = 0$.
- Consequences are adverse if liquidity falls short of a reinvestment
- Calls for buying insurance even if the entrepreneur is risk neutral.
- Tirole, Sec. 5.4

Endogenous liquidity shocks

- The entrepreneur may incur efforts to reduce or even eliminate the need for reinvestments. How to provide her with incentives to do this?
- A simple situation:
 - Before date 1, the borrower can incur effort costs *c* that will eliminate reinvestment needs completely: $\rho = 0$ with probability 1. If not, then ρ is drawn from the distribution $F(\rho)$ as before.
 - If the firm is cash poor little or no income *r* at date 1 the optimal contract has a covenant that no more funds shall be reinvested. But is this credible?
 - If the borrower does *not* incur costs *c* and the liquidity needs turn out to be $0 \le \rho \le \rho_0$, then it is in both lender's and borrower's interest to renegotiate the original contract.
 - This scope for renegotiation reduces the borrower's incentives to incur the effort costs *c*.
 - Soft budget constraint.
- More generally: Suppose the borrower can act at date 0 in a way that would improve the project, and that information arrives at date 1 that indicates whether or not she did so.
 - Moral hazard at both dates 0 and 1 (with respect to outcomes at dates 1 and 2).
 - o Examples
 - Short-term income *r* stochastic *and* dependent on date-0 efforts
 - The project, if abandoned at date 1, has a liquidation value *L* that is stochastic and dependent on date 0 efforts
 - The project's date-2 return can be improved through efforts at date 0, and information about these improvements may be available before the reinvestment decision is made.
- Here: short-term income affected stochastically by date-0 efforts.

Endogenous intermediate income

- Variable-investment model.
- The usual stochastic return *RI* at date 2, subject to date-1 moral hazard.
- An investment of *I* at date 0 returns *rI* at date 1, where *r* is verifiable, and $r \in [0, r^+]$.
- Exerting effort affects the probability distribution of *r*.
- If the entrepreneur works at date 0, then r is distributed according to G(r), with density g(r). If the entrepreneur shirks at date 0, then r is distributed according to G̃(r), with density g̃(r).
- The likelihood ratio

$$l(r) = \frac{g(r) - \widetilde{g}(r)}{g(r)}$$

- The monotone likelihood ratio property (MLRP): $l'(r) \ge 0$.
 - Implying that the distribution of *r* improves if the entrepreneur works: $G(r) \leq \widetilde{G}(r), \forall r$.
- Private benefit at date 0 if entrepreneur shirks: B_0I .
- <u>Benchmark</u>: Credibility is not an issue the "no soft budget constraint" (NSBC) case.
- Contract: $\{\rho^*(r), \Delta(r)\}$, where
 - $\rho^*(r)$ is the state-contingent cutoff
 - $\Delta(r) \ge 0$ is the borrower's state-contingent "extra rent" per unit of investment:
 - If continuation,

$$\Delta(r) = p_{H}\left(R_{b} - \frac{BI}{\Delta p}\right),$$

what the borrower receives over and above the minimum required to preserve date-1 incentives.

• If liquidation, $\Delta(r)$ is cash compensation.

• Lenders' breakeven constraint (*IR*_{*l*}):

$$\left\{\int_{0}^{r^{+}} \left[r + F\left(\rho^{*}(r)\right)\rho_{0} - \int_{0}^{\rho^{*}(r)}\rho f\left(\rho\right)d\rho - \Delta(r)\right]g(r)dr\right\} I \ge I - A$$

• Borrower's date-0 incentive constraint (*IC*_b):

$$\begin{cases} \int_0^{r^+} \left[F\left(\rho^*(r)\right)\left(\rho_1 - \rho_0\right) + \Delta(r) \right] \left[g(r) - \tilde{g}(r)\right] dr \end{cases} & I \ge B_0 I \Leftrightarrow \\ \begin{cases} \int_0^{r^+} \left[F\left(\rho^*(r)\right)\left(\rho_1 - \rho_0\right) + \Delta(r) \right] l(r)g(r) dr \end{cases} & I \ge B_0 I \end{cases} \end{cases}$$

 The optimal contract maximizes borrower's net utility subject to the two above constraints, with respect to {ρ*(r), Δ(r), I}. We ignore the choice of *I* for the moment.

$$U_{b} = \left\{ \int_{0}^{r^{+}} \left[r + F(\rho^{*}(r))\rho_{1} - \int_{0}^{\rho^{*}(r)}\rho f(\rho)d\rho - 1 \right] g(r)dr \right\} I$$

- Lagrangian multipliers: μ for IR_l and ν for IC_b .
- Pointwise maximization.
 - For each *r*, find the optimal pair $\{\rho^*(r), \Delta(r)\}$
- Fix *r*. First-order conditions with respect to $\rho^*(r)$ and $\Delta(r)$: $\{f(\rho^*)\rho_1 - \rho^*f(\rho^*) + \mu[f(\rho^*)\rho_0 - \rho^*f(\rho^*)] + \nu[f(\rho^*)(\rho_1 - \rho_0)]l(r)\}$ $\times g(r)I = 0$

$$\{-\mu + \nu l(r)\}g(r)I = 0$$
$$\Leftrightarrow$$

$$\rho^{*}(r) = \frac{\rho_{1} + \mu \rho_{0}}{1 + \mu} + \frac{\nu(\rho_{1} - \rho_{0})}{1 + \mu} l(r)$$

$$\mu = v l(r)$$

- But the constraint $\Delta(r) \ge 0$ may be binding. Therefore,
 - either: $\Delta(r) > 0 \Rightarrow \mu = \nu l(r) \Rightarrow \rho^* = \rho_1$,
 - or: $\Delta(r) = 0 \Longrightarrow \mu + \nu l(r) \le 0 \Longrightarrow \rho^* \le \rho_1$.

•
$$E_{G(\cdot)}[l(r)] = \int_0^{r^+} \frac{g(r) - \tilde{g}(r)}{g(r)} g(r) dr = \int_0^{r^+} g(r) dr - \int_0^{r^+} \tilde{g}(r) dr = 0$$

- This implies: $E[\rho * (r)] = \frac{\rho_1 + \mu \rho_0}{1 + \mu}$
 - In expectation, the cutoff is a weighted average of ρ₁ and ρ₀, and ρ₁ < E[ρ*(r))] < ρ₀; as in the case without date-0 moral hazard, the firm *trades off size and liquidity*.
- We can write:

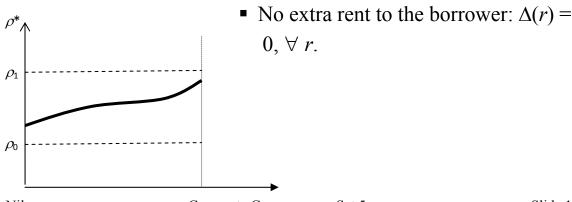
$$\rho^*(r) = E[\rho^*(r)] + \lambda l(r),$$

where: $\lambda = \frac{\nu}{1+\mu}(\rho_1 - \rho_0) > 0.$

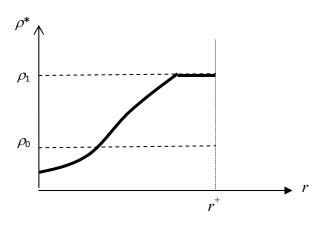
- By assumption (MLRP): $l'(r) \ge 0$. Therefore: $\frac{d\rho^*}{dr} \ge 0$.
- The continuation rule is more lenient, the higher is the date-1 income *r*.
- Two possibilities:

• $\rho^*(r)$ increases moderately

- because the date-0 incentive problem is small
 - date-0 private benefits B₀ not very high, so that the borrower's date-0 incentive constraint is not very restrictive, making v low;
 - date-0 liquidity shocks being mainly outside the borrower's control, so that *l*(*r*) stays close to 0.
- or because the date-1 incentive problem is small
 - date-1 private benefits *B* small, or $\Delta p/p_H$ large, again making ν low.

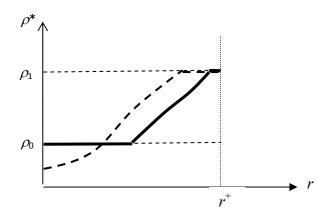


- $\rho^*(r)$ increases steeply
 - because one or both of the two moral hazard problems are more serious
 - When intermediate income is high, first-best can be reached: ρ* = ρ₁.
 - Extra rent to the borrower at high *r*: When intermediate income is high, she gets to keep some of it.
 - At a low intermediate income, we may even have ρ*
 < ρ₀.



- Soft budget constraint: $\rho^* < \rho_0$ is not credible.
 - The parties will renegotiate a contract whenever *r* is realized and $\rho^*(r) < \rho_0$.
 - Formally, same problem as before, with an added constraint: $\rho^* \ge \rho_0$.
 - When incentive problems are small, so that there is only a moderate increase in $\rho^*(r)$ in the NSBC case, there is no change in the optimal contract.
 - When incentive problems are greater, the constraint $\rho^* \ge \rho_0$ binds for small values of *r*.

• Increasing ρ^* in order to satisfy the credibility constraint at low values of *r* calls for decreasing it for higher values of *r*, in order to keep satisfying the lenders' breakeven constraint.



 Credibility problems at low values of *r* decreases continuation – and reduces efficiency – at larger values.

Free cash flow

- Tirole, Sec. 5.6.
- If the firm has more cash than it needs, there are incentives for *overinvestment*. It has been argued that debt may mitigate this problem.
- Back to the discussion of the liquidity-scale tradeoff.
- But now there is a deterministic short-term income *rI*, which is fully pledgeable.
- Lenders' breakeven constraint with cutoff at ρ^* :

$$rI + F(\rho^*)p_H(RI - R_b) \ge I - A + \int_0^{\rho^*} \rho I f(\rho) d\rho$$

- Everything as if the unit investment cost is (1 r) rather than 1.
- Cutoff implicitly given by:

$$\rho^* = c(\rho^*) = \frac{1 - r + \int_0^{\rho^*} \rho f(\rho) d\rho}{F(\rho^*)}$$

- Cutoff ρ^* is now *decreasing* in the short-term income *r*.
 - A high *r* makes it possible to reduce continuation in order to increase the borrowing capacity.
- The *free-cash-flow* assumption: $r > \rho^*$.
 - The entrepreneur would like to commit herself not to reinvest the amount $(r \rho^*)I$.
 - This calls for *short-term debt*, that is, debt to be paid at the intermediate date.
 - In more general settings, short-term debt may not fully resolve the free-cash-flow problem.