Distributive Justice and Economic Inequality

P. G. Piacquadio

UiO, January 17th, 2017

P. G. Piacquadio Distributive Justice and Economic Inequality

Framework

- A pair $(x,i) \in X \times N$ is called a station.
- An evaluation **profile** is denoted U. It collects all individual evaluations on $X \times N$.
- If X is finite, U can be described by a matrix $|X| \times |N|$ with generic element U(x, i).
- $U_x \equiv U(x, \cdot)$ is the row vector and $U_i \equiv U(\cdot, i)$ is the column vector.
- Let $\mathscr{U} \equiv \{ U | U : X \times N \to \mathbb{R} \}$. A domain is a subset $\mathscr{D} \subseteq \mathscr{U}$.
- A social welfare functional is a map F : D → R. It assigns social preferences R_U to each D ∈ D, i.e. R_U = F(U).

э

- A pair $(x,i) \in X \times N$ is called a station.
- An evaluation **profile** is denoted U. It collects all individual evaluations on $X \times N$.
- If X is finite, U can be described by a matrix $|X| \times |N|$ with generic element U(x, i).
- $U_x \equiv U(x, \cdot)$ is the row vector and $U_i \equiv U(\cdot, i)$ is the column vector.
- Let $\mathscr{U} \equiv \{U | U : X \times N \to \mathbb{R}\}$. A domain is a subset $\mathscr{D} \subseteq \mathscr{U}$.
- A social welfare functional is a map F : D → R. It assigns social preferences R_U to each D ∈ D, i.e. R_U = F(U).

- A pair $(x,i) \in X \times N$ is called a station.
- An evaluation **profile** is denoted U. It collects all individual evaluations on $X \times N$.
- If X is finite, U can be described by a matrix $|X| \times |N|$ with generic element U(x, i).
- $U_x \equiv U(x, \cdot)$ is the row vector and $U_i \equiv U(\cdot, i)$ is the column vector.
- Let $\mathscr{U} \equiv \{ U | U : X \times N \to \mathbb{R} \}$. A **domain** is a subset $\mathscr{D} \subseteq \mathscr{U}$.
- A social welfare functional is a map F : D → R. It assigns social preferences R_U to each D ∈ D, i.e. R_U = F(U).

- A pair $(x,i) \in X \times N$ is called a station.
- An evaluation **profile** is denoted U. It collects all individual evaluations on $X \times N$.
- If X is finite, U can be described by a matrix $|X| \times |N|$ with generic element U(x, i).
- $U_x \equiv U(x, \cdot)$ is the row vector and $U_i \equiv U(\cdot, i)$ is the column vector.
- Let $\mathscr{U} \equiv \{U | U : X \times N \to \mathbb{R}\}$. A domain is a subset $\mathscr{D} \subseteq \mathscr{U}$.
- A social welfare functional is a map F : D → R. It assigns social preferences R_U to each D ∈ D, i.e. R_U = F(U).

Framework

- A pair $(x,i) \in X \times N$ is called a station.
- An evaluation **profile** is denoted U. It collects all individual evaluations on $X \times N$.
- If X is finite, U can be described by a matrix $|X| \times |N|$ with generic element U(x, i).
- $U_x \equiv U(x, \cdot)$ is the row vector and $U_i \equiv U(\cdot, i)$ is the column vector.
- Let $\mathscr{U} \equiv \{ U | U : X \times N \to \mathbb{R} \}$. A domain is a subset $\mathscr{D} \subseteq \mathscr{U}$.
- A social welfare functional is a map F : D → R. It assigns social preferences R_U to each D ∈ D, i.e. R_U = F(U).

э

- A pair $(x,i) \in X \times N$ is called a station.
- An evaluation **profile** is denoted U. It collects all individual evaluations on $X \times N$.
- If X is finite, U can be described by a matrix $|X| \times |N|$ with generic element U(x, i).
- $U_x \equiv U(x, \cdot)$ is the row vector and $U_i \equiv U(\cdot, i)$ is the column vector.
- Let $\mathscr{U} \equiv \{ U | U : X \times N \to \mathbb{R} \}$. A domain is a subset $\mathscr{D} \subseteq \mathscr{U}$.
- A social welfare functional is a map F : D → R. It assigns social preferences R_U to each D ∈ D, i.e. R_U = F(U).

Discussion

- We already discussed the relationship between BS-SWF and Arrowian SWF:
 - the Arrowian SWF defines a BS-SWF for each possible society.
- The SWFL approach is even more general:
 - the SWFL framework includes information about a specific representation of preferences, i.e. *U*;
 - if this information is disregarded and only preferences are taken into account, then the SWFL is "equivalent" to an Arrowian SWF;
 - if this information is not disregarded, more welfare criteria become available.

A (1) < A (1) < A (1) < A (1) </p>

Discussion

- We already discussed the relationship between BS-SWF and Arrowian SWF:
 - the Arrowian SWF defines a BS-SWF for each possible society.
- The SWFL approach is even more general:
 - the SWFL framework includes information about a specific representation of preferences, i.e. *U*;
 - if this information is disregarded and only preferences are taken into account, then the SWFL is "equivalent" to an Arrowian SWF;
 - if this information is not disregarded, more welfare criteria become available.

How much information?

• How to measure utility information?

- There are two dimensions: intrapersonal and interpersonal.
- Intrapersonal comparisons of utilities ask:
 - what can we say if U(x,i) = 4, U(y,i) = 2?
 - what do we learn from $U(\bar{x}, i) = 5$ and $U(\bar{y}, i) = 3$?

b) 4 (E) b)

How much information?

- How to measure utility information?
- There are two dimensions: intrapersonal and interpersonal.
- Intrapersonal comparisons of utilities ask:
 - what can we say if U(x,i) = 4, U(y,i) = 2?
 - what do we learn from $U(\bar{x}, i) = 5$ and $U(\bar{y}, i) = 3$?

How much information?

- How to measure utility information?
- There are two dimensions: intrapersonal and interpersonal.
- Intrapersonal comparisons of utilities ask:
 - what can we say if U(x,i) = 4, U(y,i) = 2?
 - what do we learn from $U(\bar{x},i) = 5$ and $U(\bar{y},i) = 3$?

- Assume the only thing we learn is that i prefers x to y (or x to ȳ). Then the only thing that matters are the ordinal preferences R_i of i.
- In other words, any strictly increasing transformation ϕ of U_i , i.e. $\overline{U}_i = \phi_i(U_i)$, gives us the same information. This utility is **ordinal.**
- Assume we also learn that the change in utility from x to \bar{x} is as large as the change in utility from y to \bar{y} .
- Then, the specific U_i matters. In fact, this information is preserved under a smaller set of transformations ϕ_i : it needs to be positive affine ($\phi_i(U_i) = a_i + b_i U_i$ with $b_i > 0$). Then, this utility is cardinal.

- Assume the only thing we learn is that i prefers x to y (or x to ȳ). Then the only thing that matters are the ordinal preferences R_i of i.
- In other words, any strictly increasing transformation ϕ of U_i , i.e. $\bar{U}_i = \phi_i(U_i)$, gives us the same information. This utility is ordinal.
- Assume we also learn that the change in utility from x to \bar{x} is as large as the change in utility from y to \bar{y} .
- Then, the specific U_i matters. In fact, this information is preserved under a smaller set of transformations ϕ_i : it needs to be positive affine ($\phi_i(U_i) = a_i + b_i U_i$ with $b_i > 0$). Then, this utility is cardinal.

- Assume the only thing we learn is that i prefers x to y (or x to ȳ). Then the only thing that matters are the ordinal preferences R_i of i.
- In other words, any strictly increasing transformation ϕ of U_i , i.e. $\bar{U}_i = \phi_i(U_i)$, gives us the same information. This utility is ordinal.
- Assume we also learn that the change in utility from x to \bar{x} is as large as the change in utility from y to \bar{y} .
- Then, the specific U_i matters. In fact, this information is preserved under a smaller set of transformations ϕ_i : it needs to be positive affine $(\phi_i (U_i) = a_i + b_i U_i \text{ with } b_i > 0)$. Then, this utility is **cardinal**.

- Assume the only thing we learn is that i prefers x to y (or x to ȳ). Then the only thing that matters are the ordinal preferences R_i of i.
- In other words, any strictly increasing transformation ϕ of U_i , i.e. $\bar{U}_i = \phi_i(U_i)$, gives us the same information. This utility is ordinal.
- Assume we also learn that the change in utility from x to \bar{x} is as large as the change in utility from y to \bar{y} .
- Then, the specific U_i matters. In fact, this information is preserved under a smaller set of transformations ϕ_i : it needs to be positive affine $(\phi_i(U_i) = a_i + b_i U_i \text{ with } b_i > 0)$. Then, this utility is cardinal.

...ratio scale

- Assume we also learn that the proportional change in utility is larger when going from y to \overline{y} than when going from x to \overline{x} .
- Then, an even smaller set of trasformations are admitted: ϕ needs to be a positive rescaling function ($\phi_i(U_i) = b_i U_i$ with $b_i > 0$). Then, this utility is **ratio-scale**.

• • • • •

...ratio scale

- Assume we also learn that the proportional change in utility is larger when going from y to y than when going from x to x.
- Then, an even smaller set of trasformations are admitted: ϕ needs to be a positive rescaling function ($\phi_i(U_i) = b_i U_i$ with $b_i > 0$). Then, this utility is **ratio-scale.**

- Interpersonal comparisons of utilities ask:
 - what can we say if U(x,i) = 4, U(x,j) = 2?
 - what do we learn from $U(\bar{x},i) = 5$ and $U(\bar{x},j) = 3$?
- The first case is that we do not learn whether *i* is better-off than *j*. Any transformations φ_i, φ_j preserve this property. Then, the utilities of *i* and *j* are **non-comparable**.
- The opposite case is that we learn exactly that *i* is better-off than *j* both at *x* and at \bar{x} . This is preserved only if $\phi_i = \phi_j$. Then, the utilities of *i* and *j* are **fully comparable**.
- An intermediate case, is that we do not learn whether *i* is better-off than *j*, but we learn that moving from *x* to *x* both individuals enjoy the same utility gain. This is preserved only if φ_i (ΔU_i) = φ_j (ΔU_j). Then, the utilities of *i* and *j* are unit comparable (or comparable in terms of gains and base):
 P. G. Piacquadio Distributive Justice and Economic Inequality

- Interpersonal comparisons of utilities ask:
 - what can we say if U(x,i) = 4, U(x,j) = 2?
 - what do we learn from $U(\bar{x},i) = 5$ and $U(\bar{x},j) = 3$?
- The first case is that we do not learn whether *i* is better-off than *j*. Any transformations ϕ_i, ϕ_j preserve this property. Then, the utilities of *i* and *j* are **non-comparable**.
- The opposite case is that we learn exactly that *i* is better-off than *j* both at *x* and at \bar{x} . This is preserved only if $\phi_i = \phi_j$. Then, the utilities of *i* and *j* are **fully comparable**.
- An intermediate case, is that we do not learn whether *i* is better-off than *j*, but we learn that moving from *x* to *x* both individuals enjoy the same utility gain. This is preserved only if φ_i (ΔU_i) = φ_j (ΔU_j). Then, the utilities of *i* and *j* are unit comparable (or comparable in terms of gains and base):
 P. G. Piacquadio Distributive Justice and Economic Inequality

- Interpersonal comparisons of utilities ask:
 - what can we say if U(x,i) = 4, U(x,j) = 2?
 - what do we learn from $U(\bar{x},i) = 5$ and $U(\bar{x},j) = 3$?
- The first case is that we do not learn whether *i* is better-off than *j*. Any transformations ϕ_i, ϕ_j preserve this property. Then, the utilities of *i* and *j* are **non-comparable**.
- The opposite case is that we learn exactly that *i* is better-off than *j* both at *x* and at \bar{x} . This is preserved only if $\phi_i = \phi_j$. Then, the utilities of *i* and *j* are **fully comparable**.
- An intermediate case, is that we do not learn whether *i* is better-off than *j*, but we learn that moving from *x* to *x* both individuals enjoy the same utility gain. This is preserved only if φ_i (ΔU_i) = φ_j (ΔU_j). Then, the utilities of *i* and *j* are unit comparable (or comparable in terms of gains and losses):

- Interpersonal comparisons of utilities ask:
 - what can we say if U(x,i) = 4, U(x,j) = 2?
 - what do we learn from $U(\bar{x},i) = 5$ and $U(\bar{x},j) = 3$?
- The first case is that we do not learn whether *i* is better-off than *j*. Any transformations ϕ_i, ϕ_j preserve this property. Then, the utilities of *i* and *j* are **non-comparable**.
- The opposite case is that we learn exactly that *i* is better-off than *j* both at *x* and at \bar{x} . This is preserved only if $\phi_i = \phi_j$. Then, the utilities of *i* and *j* are **fully comparable**.
- An intermediate case, is that we do not learn whether *i* is better-off than *j*, but we learn that moving from *x* to \bar{x} both individuals enjoy the same utility gain. This is preserved only if $\phi_i(\Delta U_i) = \phi_j(\Delta U_j)$. Then, the utilities of *i* and *j* are **unit comparable** (or comparable in terms of gains and losses).

Combining inter- and intra-personal comparisons (1)

- Ordinality and non-comparability. Invariance to individual positive transformations $V_i = \varphi_i(U_i)$.
 - *F* satisfies ordinality and non-comparability if for each pair $U, V \in \mathcal{U}$ such that for each $i \in N$ $V_i = \varphi_i \circ U_i$, then $F(U) \equiv R_U = R_V \equiv F(V)$.
- **Co-ordinality (common ordinal scale)**. Invariance to common increasing transformations $V_i = \varphi(U_i)$.
- Co-cardinality (cardinal scale and full comparability). Invariance to common positive affine transformation $V_i = a + bU_i$.

(4月) (1日) (1日)

Combining inter- and intra-personal comparisons (1)

- Ordinality and non-comparability. Invariance to individual positive transformations $V_i = \varphi_i(U_i)$.
 - *F* satisfies ordinality and non-comparability if for each pair $U, V \in \mathcal{U}$ such that for each $i \in N$ $V_i = \varphi_i \circ U_i$, then $F(U) \equiv R_U = R_V \equiv F(V)$.
- Co-ordinality (common ordinal scale). Invariance to common increasing transformations $V_i = \varphi(U_i)$.
- Co-cardinality (cardinal scale and full comparability). Invariance to common positive affine transformation $V_i = a + bU_i$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Combining inter- and intra-personal comparisons (1)

- Ordinality and non-comparability. Invariance to individual positive transformations $V_i = \varphi_i(U_i)$.
 - *F* satisfies ordinality and non-comparability if for each pair $U, V \in \mathcal{U}$ such that for each $i \in N$ $V_i = \varphi_i \circ U_i$, then $F(U) \equiv R_U = R_V \equiv F(V)$.
- Co-ordinality (common ordinal scale). Invariance to common increasing transformations $V_i = \varphi(U_i)$.
- Co-cardinality (cardinal scale and full comparability). Invariance to common positive affine transformation $V_i = a + bU_i$.

4 冊 ト 4 三 ト 4 三 ト

Combining inter- and intra-personal comparisons (II)

- Cardinal scale and no comparability. Invariance to individual positive affine transformations $V_i = a_i + b_i U_i$.
- Cardinal scale and unit comparability. Invariance to common rescaling and individual change of origin V_i = a_i + bU_i.
- Ratio-scale and full comparability. Invariance to common rescaling $V_i = bU_i$.
- **Ratio-scale and no comparability**. Invariance to individual rescaling $V_i = b_i U_i$.

Combining inter- and intra-personal comparisons (II)

- Cardinal scale and no comparability. Invariance to individual positive affine transformations $V_i = a_i + b_i U_i$.
- Cardinal scale and unit comparability. Invariance to common rescaling and individual change of origin V_i = a_i + bU_i.
- **Ratio-scale and full comparability**. Invariance to common rescaling $V_i = bU_i$.
- **Ratio-scale and no comparability**. Invariance to individual rescaling $V_i = b_i U_i$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Combining inter- and intra-personal comparisons (II)

- Cardinal scale and no comparability. Invariance to individual positive affine transformations $V_i = a_i + b_i U_i$.
- Cardinal scale and unit comparability. Invariance to common rescaling and individual change of origin V_i = a_i + bU_i.
- Ratio-scale and full comparability. Invariance to common rescaling $V_i = bU_i$.
- Ratio-scale and no comparability. Invariance to individual rescaling V_i = b_iU_i.

・ロト ・ 同ト ・ ヨト ・ ヨト

Combining inter- and intra-personal comparisons (II)

- Cardinal scale and no comparability. Invariance to individual positive affine transformations $V_i = a_i + b_i U_i$.
- Cardinal scale and unit comparability. Invariance to common rescaling and individual change of origin V_i = a_i + bU_i.
- Ratio-scale and full comparability. Invariance to common rescaling $V_i = bU_i$.
- Ratio-scale and no comparability. Invariance to individual rescaling $V_i = b_i U_i$.

マロト イヨト イヨト

The SWFL approach Welfarism

Leximin

A graphical representation

э

Formal welfarism

- Let ℋ(X, 𝒴) be the evaluation space:
 ℋ(X, 𝒴) ≡ {r ∈ ℝ^{|N|} |∃x ∈ X, ∃U ∈ 𝒴 such that U_x = r}.
- A social welfare ordering (SWO) *R*^{*} is a ranking of profiles of utility levels.
- A social welfare functional *F* satisfies **formal welfarism** if there exists a SWO *R** such that:

 $\forall u, v \in \mathscr{H}(X, \mathscr{D}), \forall x, y \in X, \forall U \in \mathscr{D},$

 $\langle u = U_x \text{ and } v = U_y \rangle \Rightarrow \langle u R^* v \text{ iff } x R_U y \rangle.$

・ 同 ト ・ ヨ ト ・ ヨ

Formal welfarism

- Let $\mathscr{H}(X,\mathscr{D})$ be the evaluation space: $\mathscr{H}(X,\mathscr{D}) \equiv \left\{ r \in \mathbb{R}^{|N|} | \exists x \in X, \exists U \in \mathscr{D} \text{ such that } U_x = r \right\}.$
- A social welfare ordering (SWO) R* is a ranking of profiles of utility levels.
- A social welfare functional *F* satisfies **formal welfarism** if there exists a SWO *R*^{*} such that:

$$\forall u, v \in \mathscr{H}(X, \mathscr{D}), \forall x, y \in X, \forall U \in \mathscr{D},$$

 $\langle u = U_x \text{ and } v = U_y \rangle \Rightarrow \langle u R^* v \text{ iff } x R_U y \rangle.$

Formal welfarism

- Let ℋ(X, 𝒴) be the evaluation space:
 ℋ(X, 𝒴) ≡ {r ∈ ℝ^{|N|} |∃x ∈ X, ∃U ∈ 𝒴 such that U_x = r}.
- A social welfare ordering (SWO) R* is a ranking of profiles of utility levels.
- A social welfare functional *F* satisfies **formal welfarism** if there exists a SWO *R*^{*} such that:

$$\forall u, v \in \mathscr{H}(X, \mathscr{D}), \forall x, y \in X, \forall U \in \mathscr{D},$$
$$\langle u = U_x \text{ and } v = U_y \rangle \Rightarrow \langle uR^*v \text{ iff } xR_Uy \rangle.$$

• • = • • = •

Formal welfarism: a characterization

• Pareto indifference:

$\forall U \in \mathscr{D}, \forall x, y \in X, xI_U y \text{ if } U_x = U_y.$

• Binary independence:

 $\forall V \in \mathscr{D}, \forall x, y \in X, xR_V y \text{ if } \exists U \in \mathscr{D} \text{ such that } V_x = U_x, V_y = U_y \text{ and } x$

 Theorem: When D = U, formal welfarism is equivalent to the combination of Pareto indifference and binary independence. Moreover, H(X,D) = ℝ^N.

A (1) < A (1) < A (1) < A (1) </p>

Formal welfarism: a characterization

• Pareto indifference:

$$\forall U \in \mathscr{D}, \forall x, y \in X, xI_U y \text{ if } U_x = U_y.$$

• Binary independence:

 $\forall V \in \mathscr{D}, \forall x, y \in X, xR_V y \text{ if } \exists U \in \mathscr{D} \text{ such that } V_x = U_x, V_y = U_y \text{ and } x$

 Theorem: When D = U, formal welfarism is equivalent to the combination of Pareto indifference and binary independence. Moreover, H(X,D) = ℝ^N.

Formal welfarism: a characterization

• Pareto indifference:

$$\forall U \in \mathscr{D}, \forall x, y \in X, xI_U y \text{ if } U_x = U_y.$$

• Binary independence:

 $\forall V \in \mathscr{D}, \forall x, y \in X, xR_V y \text{ if } \exists U \in \mathscr{D} \text{ such that } V_x = U_x, V_y = U_y \text{ and } x$

 Theorem: When D = U, formal welfarism is equivalent to the combination of Pareto indifference and binary independence. Moreover, ℋ(X, D) = ℝ^N.

Definitions

• The (pure) utilitarian SWO R^* holds that for each pair $u, v \in \mathbb{R}^N$, uR^*v if and only if

$$\sum_{i\in N}u_i\geq \sum_{i\in N}v_i.$$

 The "associated" utilitarian SWFL F requires that for each pair x, y ∈ X and each U ∈ D, xR_Uy if and only if

$$\sum_{i\in N} U(x,i) \ge \sum_{i\in N} U(y,i).$$

• • • • •

Definitions

• The (pure) utilitarian SWO R^* holds that for each pair $u, v \in \mathbb{R}^N$, uR^*v if and only if

$$\sum_{i\in\mathbb{N}}u_i\geq\sum_{i\in\mathbb{N}}v_i.$$

• The "associated" utilitarian SWFL F requires that for each pair $x, y \in X$ and each $U \in \mathcal{D}$, xR_Uy if and only if

$$\sum_{i\in\mathbb{N}}U(x,i)\geq\sum_{i\in\mathbb{N}}U(y,i).$$

• • • • •

Axioms

• Weak Pareto*. For each pair $u, v \in \mathbb{R}^N$, if $u \gg v$ then uP^*v .

- First, define a **permutation** π and let Π be the set of all permutations.
- Anonoymity*. For each $\pi \in \Pi$ and each pair $u, v \in \mathbb{R}^N$, uI^*v if $v = \pi u$.
- Inv* $(a_i + bu_i)$. For each $(a_i) \in \mathbb{R}^N$, for each $b \in \mathbb{R}_+$, for each pair $u, v \in \mathbb{R}^N$,

 $uR^*v \Leftrightarrow (a_1 + bu_1, \dots, a_n + bu_n) R^*(a_1 + bv_1, \dots, a_n + bv_n).$

イロト イポト イラト イラト

Axioms

- Weak Pareto*. For each pair $u, v \in \mathbb{R}^N$, if $u \gg v$ then uP^*v .
- First, define a **permutation** π and let Π be the set of all permutations.
- Anonoymity*. For each $\pi \in \Pi$ and each pair $u, v \in \mathbb{R}^N$, uI^*v if $v = \pi u$.
- Inv* $(a_i + bu_i)$. For each $(a_i) \in \mathbb{R}^N$, for each $b \in \mathbb{R}_+$, for each pair $u, v \in \mathbb{R}^N$,

 $uR^*v \Leftrightarrow (a_1 + bu_1, \dots, a_n + bu_n) R^*(a_1 + bv_1, \dots, a_n + bv_n).$

イロト イポト イラト イラト

Axioms

- Weak Pareto*. For each pair $u, v \in \mathbb{R}^N$, if $u \gg v$ then uP^*v .
- First, define a **permutation** π and let Π be the set of all permutations.
- Anonoymity*. For each $\pi \in \Pi$ and each pair $u, v \in \mathbb{R}^N$, uI^*v if $v = \pi u$.
- Inv* $(a_i + bu_i)$. For each $(a_i) \in \mathbb{R}^N$, for each $b \in \mathbb{R}_+$, for each pair $u, v \in \mathbb{R}^N$,

 $uR^*v \Leftrightarrow (a_1 + bu_1, \dots, a_n + bu_n) R^*(a_1 + bv_1, \dots, a_n + bv_n).$

イロト イポト イラト イラト

Axioms

- Weak Pareto*. For each pair $u, v \in \mathbb{R}^N$, if $u \gg v$ then uP^*v .
- First, define a **permutation** π and let Π be the set of all permutations.
- Anonoymity*. For each $\pi \in \Pi$ and each pair $u, v \in \mathbb{R}^N$, uI^*v if $v = \pi u$.
- Inv* $(a_i + bu_i)$. For each $(a_i) \in \mathbb{R}^N$, for each $b \in \mathbb{R}_+$, for each pair $u, v \in \mathbb{R}^N$,

$$uR^*v \Leftrightarrow (a_1 + bu_1, \dots, a_n + bu_n) R^*(a_1 + bv_1, \dots, a_n + bv_n).$$

Theorem: utilitarianism

- **Theorem 4.4** (d'Aspremont and Gevers, 2002). A SWO *R**is pure *utilitarian* iff it satisfies *weak Pareto**, *Anonoymity**, and *Inv**(*a*_{*i*} + *bu*_{*i*}).
- Proof. Two parts.
 - Necessity. A utilitarian SWO R* satisfies weak Pareto*, Anonoymity*, and Inv*(a_i + bu_i).
 - Sufficiency. A SWO R* that satisfies weak Pareto*, Anonoymity*, and Inv*(a; + bu;) is utilitarian.

• • • • •

Theorem: utilitarianism

- **Theorem 4.4** (d'Aspremont and Gevers, 2002). A SWO *R**is pure *utilitarian* iff it satisfies *weak Pareto**, *Anonoymity**, and *Inv**(*a*_{*i*} + *bu*_{*i*}).
- Proof. Two parts.
 - Necessity. A utilitarian SWO R* satisfies weak Pareto*, Anonoymity*, and Inv*(a_i + bu_i).
 - Sufficiency. A SWO R* that satisfies weak Pareto*, Anonoymity*, and Inv*(a_i + bu_i) is utilitarian.

Proof: sufficiency

• Let a pair $u, v \in \mathbb{R}^{|N|}$ be such that $\sum_{i \in N} u_i = \sum_{i \in N} v_i$.

- By Anonymity*, permute u and v in increasing order. Clearly, πul*u and πvl*v.
- Subtract from each raw of πu and π̄ν the smallest number. By lnv*(a_i + bu_i), the new utility vectors are rank as the starting ones.
- Repeat permutation and subtraction at most |N| times, you get two vectors of zeros, which are equally good.

Proof: sufficiency

- Let a pair $u, v \in \mathbb{R}^{|N|}$ be such that $\sum_{i \in N} u_i = \sum_{i \in N} v_i$.
- By Anonymity*, permute u and v in increasing order. Clearly, $\pi u l^* u$ and $\pi v l^* v$.
- Subtract from each raw of πu and πv the smallest number. By $lnv^*(a_i + bu_i)$, the new utility vectors are rank as the starting ones.
- Repeat permutation and subtraction at most |N| times, you get two vectors of zeros, which are equally good.

Proof: sufficiency

- Let a pair $u, v \in \mathbb{R}^{|N|}$ be such that $\sum_{i \in N} u_i = \sum_{i \in N} v_i$.
- By Anonymity*, permute u and v in increasing order. Clearly, $\pi u l^* u$ and $\pi v l^* v$.
- Subtract from each raw of πu and πv the smallest number. By $lnv^*(a_i + bu_i)$, the new utility vectors are rank as the starting ones.
- Repeat permutation and subtraction at most |N| times, you get two vectors of zeros, which are equally good.

・ 同 ト ・ 三 ト ・

Proof: sufficiency

- Let a pair $u, v \in \mathbb{R}^{|N|}$ be such that $\sum_{i \in N} u_i = \sum_{i \in N} v_i$.
- By Anonymity*, permute u and v in increasing order. Clearly, $\pi u l^* u$ and $\pi v l^* v$.
- Subtract from each raw of πu and πv the smallest number. By $lnv^*(a_i + bu_i)$, the new utility vectors are rank as the starting ones.
- Repeat permutation and subtraction at most |N| times, you get two vectors of zeros, which are equally good.

Proof: sufficiency

- Assume now that that $\sum_{i \in N} u_i > \sum_{i \in N} v_i$.
- Define $\delta \equiv \frac{\sum_{i \in N} u_i \sum_{i \in N} v_i}{|N|}$ and the utility vector w such that for each $i \in N$, $w_i = u_i \delta$.
- Since u ≫ w, weak Pareto* implies that uP*w.
- Since $\sum_{i \in N} w_i = \sum_{i \in N} v_i$, wI^*v . By transitivity, uP^*v .

b) 4 (E) b)

Proof: sufficiency

- Assume now that that $\sum_{i \in N} u_i > \sum_{i \in N} v_i$.
- Define $\delta \equiv \frac{\sum_{i \in N} u_i \sum_{i \in N} v_i}{|N|}$ and the utility vector w such that for each $i \in N$, $w_i = u_i \delta$.
- Since $u \gg w$, weak Pareto* implies that uP^*w .
- Since $\sum_{i \in N} w_i = \sum_{i \in N} v_i$, wI^*v . By transitivity, uP^*v .

b) (1) (2) (2) (3)

Proof: sufficiency

- Assume now that that $\sum_{i \in N} u_i > \sum_{i \in N} v_i$.
- Define $\delta \equiv \frac{\sum_{i \in N} u_i \sum_{i \in N} v_i}{|N|}$ and the utility vector w such that for each $i \in N$, $w_i = u_i \delta$.
- Since $u \gg w$, weak Pareto* implies that uP^*w .
- Since $\sum_{i \in N} w_i = \sum_{i \in N} v_i$, wI^*v . By transitivity, uP^*v .

F 4 3 F 4

Proof: sufficiency

- Assume now that that $\sum_{i \in N} u_i > \sum_{i \in N} v_i$.
- Define $\delta \equiv \frac{\sum_{i \in N} u_i \sum_{i \in N} v_i}{|N|}$ and the utility vector w such that for each $i \in N$, $w_i = u_i \delta$.
- Since $u \gg w$, weak Pareto* implies that uP^*w .
- Since $\sum_{i \in N} w_i = \sum_{i \in N} v_i$, wI^*v . By transitivity, uP^*v .

Definitions

• The leximin SWO R^* holds that for each pair $u, v \in \mathbb{R}^N$, uR^*v if and only if

$$u \geq_{lex} v$$
 .

• \geq_{lex} compares vectors by the smallest elements; if equal, by the second smallests; etc.

• • • • •

Definitions

• The leximin SWO R^* holds that for each pair $u, v \in \mathbb{R}^N$, uR^*v if and only if

$$u \ge_{lex} v$$
 .

 ≥_{lex} compares vectors by the smallest elements; if equal, by the second smallests; etc.

3 N

Axioms

- Strict Pareto*. For each pair $u, v \in \mathbb{R}^N$, if u > v then uP^*v .
- Minimal Individual Symmetry*. For any pair $i, j \in N$, there exists ul^*v such that $u_i > v_i$, $u_j < v_j$ and $u_k = v_k$ for all $k \neq i, j$.
- Minimal equity*. For some pair $i, j \in N$, there exists $u, v \in \mathbb{R}^N$, such that $u_k = v_k$ for each $k \neq i, j$, $v_i < u_i < u_j < v_j$, and uR^*v .
- Inv*(φ(u_i)). For each real-valued and increasing function φ, for each pair u, v ∈ ℝ^N,

 $uR^{*}v \Leftrightarrow \left(\phi\left(u_{1}\right),...,\phi\left(u_{n}\right)\right)R^{*}\left(\phi\left(v_{1}\right),...,\phi\left(v_{n}\right)\right).$

Separability*. For each u, v, u', v' ∈ ℝ^N, uR*v ⇔ u'R*v', if there exists M ⊂ N such that u_i = v_i and u'_i = v'_i for each i ∈ M, whereas u_i = u'_i and v_i = v'_i for each i ∉ N \ M.
 P. G. Piacquadio Distributive Justice and Economic Inequality

Axioms

- Strict Pareto*. For each pair $u, v \in \mathbb{R}^N$, if u > v then uP^*v .
- Minimal Individual Symmetry*. For any pair $i, j \in N$, there exists uI^*v such that $u_i > v_i$, $u_j < v_j$ and $u_k = v_k$ for all $k \neq i, j$.
- Minimal equity*. For some pair $i, j \in N$, there exists $u, v \in \mathbb{R}^N$, such that $u_k = v_k$ for each $k \neq i, j$, $v_i < u_i < u_j < v_j$, and uR^*v .
- Inv*(φ(u_i)). For each real-valued and increasing function φ, for each pair u, v ∈ ℝ^N,

 $uR^{*}v \Leftrightarrow (\phi(u_{1}),...,\phi(u_{n}))R^{*}(\phi(v_{1}),...,\phi(v_{n})).$

Separability*. For each u, v, u', v' ∈ ℝ^N, uR*v ⇔ u'R*v', if there exists M ⊂ N such that u_i = v_i and u'_i = v'_i for each i ∈ M, whereas u_i = u'_i and v_i = v'_i for each i ∉ N \ M.
 P. G. Piacquadio Distributive Justice and Economic Inequality

Axioms

- Strict Pareto*. For each pair $u, v \in \mathbb{R}^N$, if u > v then uP^*v .
- Minimal Individual Symmetry*. For any pair $i, j \in N$, there exists ul^*v such that $u_i > v_i$, $u_j < v_j$ and $u_k = v_k$ for all $k \neq i, j$.
- Minimal equity*. For some pair $i, j \in N$, there exists $u, v \in \mathbb{R}^N$, such that $u_k = v_k$ for each $k \neq i, j$, $v_i < u_i < u_j < v_j$, and uR^*v .
- Inv*(φ(u_i)). For each real-valued and increasing function φ, for each pair u, v ∈ ℝ^N,

 $uR^{*}v \Leftrightarrow (\phi(u_{1}),...,\phi(u_{n}))R^{*}(\phi(v_{1}),...,\phi(v_{n})).$

Separability*. For each u, v, u', v' ∈ ℝ^N, uR*v ⇔ u'R*v', if there exists M ⊂ N such that u_i = v_i and u'_i = v'_i for each i ∈ M, whereas u_i = u'_i and v_i = v'_i for each i ∈ N \ M.
 P. G. Piacquadio Distributive Justice and Economic Inequality

Axioms

- Strict Pareto*. For each pair $u, v \in \mathbb{R}^N$, if u > v then uP^*v .
- Minimal Individual Symmetry*. For any pair $i, j \in N$, there exists uI^*v such that $u_i > v_i$, $u_j < v_j$ and $u_k = v_k$ for all $k \neq i, j$.
- Minimal equity*. For some pair $i, j \in N$, there exists $u, v \in \mathbb{R}^N$, such that $u_k = v_k$ for each $k \neq i, j$, $v_i < u_i < u_j < v_j$, and uR^*v .
- Inv*(φ(u_i)). For each real-valued and increasing function φ, for each pair u, v ∈ ℝ^N,

 $uR^*v \Leftrightarrow (\phi(u_1),...,\phi(u_n))R^*(\phi(v_1),...,\phi(v_n)).$

Separability*. For each u, v, u', v' ∈ ℝ^N, uR*v ⇔ u'R*v', if there exists M ⊂ N such that u_i = v_i and u'_i = v'_i for each i ∈ M, whereas u_i = u'_i and v_i = v'_i for each i ∉ N \ M, (E) = 2
 P. G. Piacquadio Distributive Justice and Economic Inequality

Axioms

- Strict Pareto*. For each pair $u, v \in \mathbb{R}^N$, if u > v then uP^*v .
- Minimal Individual Symmetry*. For any pair $i, j \in N$, there exists uI^*v such that $u_i > v_i$, $u_j < v_j$ and $u_k = v_k$ for all $k \neq i, j$.
- Minimal equity*. For some pair $i, j \in N$, there exists $u, v \in \mathbb{R}^N$, such that $u_k = v_k$ for each $k \neq i, j$, $v_i < u_i < u_j < v_j$, and uR^*v .
- Inv*(φ(u_i)). For each real-valued and increasing function φ, for each pair u, v ∈ ℝ^N,

 $uR^*v \Leftrightarrow (\phi(u_1),...,\phi(u_n))R^*(\phi(v_1),...,\phi(v_n)).$

Separability*. For each u, v, u', v' ∈ ℝ^N, uR*v ⇔ u'R*v', if there exists M ⊂ N such that u_i = v_i and u'_i = v'_i for each i ∈ M, whereas u_i = u'_i and v_i = v'_i for each i ∈ N \ M. < ≥ · ≥ ·
 P. G. Piacquadio Distributive Justice and Economic Inequality

Theorem: leximin

• **Theorem 4.16** (d'Aspremont and Gevers, 2002). A SWO R^* satisfying Strict Pareto*, Minimal Individual Symmetry*, Minimal equity*, and Inv*($\phi(u_i)$) is leximin.