ECON 4310

Labor supply elasticites

by
Steinar Strøm, fall 2004

This note is a supplement to the Labor supply note, section 1 Static model, single individuals, avaiable on the webside for the 4310 course.

Here we will derive the elasticites set out in the Labor supply note.
As before let
$\mathrm{U}=$ the utility level
$\mathrm{C}=$ disposable income=consumption
$\mathrm{h}=$ annual hours worked
L=leisure
$\mathrm{w}=$ hourly wage rate
$\mathrm{k}=$ non-wage income, hereafter called capital income.
$\mathrm{T}=$ taxes
The behavior of the individual follows from solving the following maximization problem:
$\mathrm{Max}_{\mathrm{h}} \mathrm{U}(\mathrm{C}, \mathrm{L})$
subject to
(1) $\mathrm{C} \leq \mathrm{wh}+\mathrm{k}-\mathrm{T}(\mathrm{wh}, \mathrm{k})$
(2) $\mathrm{L}=1-\mathrm{vh}$
(3) $v=\frac{1}{8760}$
(4) $\mathrm{h} \geq 0$

Eqs (2) and (3) imply that we have normalized annual leisure to vary between 0 and 1.
$T($.$) is the tax function. In practice this function is a stepwise linear function of wh. In$ Norway the tax function has the following structure:
(5) $\left\{\begin{array}{l}T=t_{k} k \text { for } w h \leq b \\ T=t_{k} k+t_{1}(w h-b) \text { for } b \leq w h \leq R_{1} \\ T=t_{k} k+t_{1}\left(R_{1}-b\right)+t_{2}\left(w h-R_{1}\right) \text { for } R_{1} \leq w h \leq R_{2} \\ T=t_{k} k+t_{1}\left(R_{1}-b\right)+t_{2}\left(R_{2}-R_{1}\right)+t_{3}\left(w h-R_{2}\right) \text { for } R_{2} \leq w h\end{array}\right.$

The marginal tax rate on capital income is t_{k} and it is constant (proportional taxation), while taxation on wage income is progressive. Wage income below b is not taxed. Wage income in the interval $\left(b, R_{1}\right)$ is taxed at the marginal tax rate t_{1}, wage income in the next interval $\left(R_{1}, R_{2}\right)$ is taxed at the marginal tax rate rate t_{2}, and wage income above R_{2} is taxed at the marginal tax rate t_{3}. In a strict progressive tax system, $t_{1}<t_{2}<t_{3}$. In the tax literature the income intervals are called tax brackets. We observe that (5) gives a stepwise linear representation of the tax function in eq (1). Note that the policy instrument of the government are the tax rates $\left(t_{k}\right.$ and $\left.t_{i}, i=1,2,3\right)$ and the bounds of the tax brackets $(b$, R_{1} and R_{2}).

Combining (1) and (5) we get
(6) $\mathrm{C}=\mathrm{m}_{\mathrm{i}} \mathrm{h}+\mathrm{I}_{\mathrm{i}} ; \mathrm{i}=0,1,2,3$.
where

$$
\text { (7) }\left\{\begin{array}{l}
\left\{\mathrm{m}_{0}=\mathrm{w} ; \mathrm{I}_{0}=\mathrm{k}\left(1-\mathrm{t}_{\mathrm{k}}\right)\right\} \text { for } \mathrm{wh} \leq \mathrm{b} \\
\left\{\mathrm{~m}_{1}=\mathrm{w}\left(1-\mathrm{t}_{1}\right) ; \mathrm{I}_{1}=\mathrm{k}\left(1-\mathrm{t}_{\mathrm{k}}\right)+\mathrm{t}_{1} \mathrm{~b}\right\} \text { for } \mathrm{b} \leq \mathrm{wh} \leq \mathrm{R}_{1} \\
\left\{\mathrm{~m}_{2}=\mathrm{w}\left(1-\mathrm{t}_{2}\right) ; \mathrm{I}_{2}=\mathrm{k}\left(1-\mathrm{t}_{\mathrm{k}}\right)+\mathrm{t}_{1} \mathrm{~b}+\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \mathrm{R}_{1}\right\} \text { for } \mathrm{R}_{1} \leq \mathrm{wh} \leq \mathrm{R}_{2} \\
\left\{\mathrm{~m}_{3}=\mathrm{w}\left(1-\mathrm{t}_{3}\right) ; \mathrm{I}_{3}=\mathrm{k}\left(1-\mathrm{t}_{\mathrm{k}}\right)+\mathrm{t}_{1} \mathrm{~b}+\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \mathrm{R}_{1}+\mathrm{t}_{3} \mathrm{R}_{2}\right\} \text { for } \mathrm{R}_{2} \leq \mathrm{wh}
\end{array}\right.
$$

In the tax-labor supply literature m_{i} is called the marginal wage rate and I_{i} the virtual income.

We will assume that the utility function has the follwing structure:

$$
\begin{equation*}
\mathrm{U}=\alpha \frac{\mathrm{C}^{\mu}-1}{\mu}+\beta \frac{\mathrm{L}^{\gamma}-1}{\gamma} \tag{8}
\end{equation*}
$$

where
(9) $\{\mu, \gamma\} \leq 1$
$\mathrm{Eq}(9)$ is a sufficient condition for a quasi-concave utility function.
The maximization problem now is
(10 $\left\{\begin{array}{l}\operatorname{Max}_{h}\left[U=\alpha \frac{\mathrm{C}^{\mu}-1}{\mu}+\beta \frac{\mathrm{L}^{\gamma}-1}{\gamma}\right] \\ \text { given } \\ \mathrm{C}=\mathrm{mh}+\mathrm{I} \\ \mathrm{L}=1-\text { vh }\end{array}\right.$
We should keep in mind that m and I vary with respect to the optimal income and hence optimal hours.

The first order conditions (necessary conditions, but if (9) is fulfilled they are also sufficient conditions) are:
(11) $\frac{\partial \mathrm{U} / \partial \mathrm{L}}{\partial \mathrm{U} / \partial \mathrm{C}}=\frac{\mathrm{m}}{\mathrm{v}}$
or $u \sin g(8)$ and $L=1-v h$
(12) $\frac{(1-v h)^{\gamma-1}}{C^{\mu-1}}=\frac{m}{v}$

In addition
(13) $\mathrm{C}=\mathrm{mh}+\mathrm{I}$

Taking logs in (12) gives us the following representation of the first order conditions:

$$
\begin{align*}
& \text { (14) }(\gamma-1) \ln (1-v h)-(\mu-1) \ln \mathrm{C}=\ln \mathrm{m}-\ln v \tag{14}\\
& \text { (13) } \mathrm{C}=\mathrm{mh}+\mathrm{I}
\end{align*}
$$

We are now ready to derive the elasticities. These elastcities have to be interpreted as giving the marginal change in optimal hours around the optimal point.

1) The uncompensated marginal wage elasticity (Cournot).

Inserting (13) in (14) and taking the derivatives of h wrt m, and using the definition of an elasticity, which here says that $\mathrm{El}(\mathrm{h}: \mathrm{m})=\frac{\partial \mathrm{h}}{\partial \mathrm{m}} \frac{\mathrm{m}}{\mathrm{h}}$, we get immediately:
(15) $\mathrm{El}(\mathrm{h}: \mathrm{m})=\frac{1+(\mu-1) \frac{\mathrm{mh}}{\mathrm{C}}}{(1-\mu) \frac{\mathrm{mh}}{\mathrm{C}}+(1-\gamma) \frac{\mathrm{vh}}{(1-v h)}}$

The numerator can be negative or positive depending on the magnitudes of (μ, mh and C). The denominator is positive given that $(\mu, \gamma)<1$. (For those who are interested: Show that while $(\mu, \gamma)<1$ is a suffcient condition for a quasi-concave utility function, a necessary condition is that the denominator in (15) is positive.)

2) The virtual income elasticity.

Following the same procedure but now taking the derivative with respect to I and henceforth using the definition of an elasticity, we get
(16) $\operatorname{El}(\mathrm{h}: \mathrm{I})=\frac{(\mu-1) \frac{\mathrm{I}}{\mathrm{C}}}{(1-\mu) \frac{\mathrm{mh}}{\mathrm{C}}+(1-\gamma) \frac{\mathrm{vh}}{(1-v h)}}$
3) The compensated (utility constant) marginal wage elasticity (Slutsky).

Now, we cannot use (13), because we have to replace it by the condition that utility is kept constant, or
(17) $\bar{U}=U(C, L)$

Taking the derivatives in (17) wrt the marginal wage rate we get
(18) $\frac{\partial \mathrm{U}}{\partial \mathrm{C}} \frac{\partial \mathrm{C}}{\partial \mathrm{m}}+\frac{\partial \mathrm{U}}{\partial \mathrm{L}} \frac{\partial \mathrm{L}}{\partial \mathrm{m}}=0$
which implies
(19) $\frac{\partial \mathrm{C}}{\partial \mathrm{m}}=-\frac{\partial \mathrm{U} / \partial \mathrm{L}}{\partial \mathrm{U} / \partial \mathrm{C}} \frac{\partial \mathrm{L}}{\partial \mathrm{m}}$

But since (11) holds at the optimal point (before the marginal wage is changed), we get
(20) $\frac{\partial \mathrm{C}}{\partial \mathrm{m}}=-\frac{\mathrm{m}}{v} \frac{\partial \mathrm{~L}}{\partial \mathrm{~m}}=-\frac{\mathrm{m}}{v}\left(-v \frac{\partial \mathrm{~h}}{\partial \mathrm{~m}}\right)=\mathrm{m} \frac{\partial \mathrm{h}}{\partial \mathrm{m}}$.

Taking the derivative in (14) wrt m and using (20) and the definition of an elasticity, we get

$$
\begin{equation*}
\mathrm{El}(\mathrm{~h}: \mathrm{m} \mid \mathrm{U}=\overline{\mathrm{U}})=\frac{1}{(1-\mu) \frac{\mathrm{mh}}{\mathrm{C}}+(1-\gamma) \frac{\mathrm{vh}}{(1-v h)}} \tag{21}
\end{equation*}
$$

4) The consumption constant marginal wage elasticity (Frisch).

Holding C constant in (14) we immediately get

$$
\begin{equation*}
\mathrm{El}(\mathrm{~h}: \mathrm{m} \mid \mathrm{C}=\overline{\mathrm{C}})=\frac{1}{1-\gamma} \frac{1-v \mathrm{~h}}{v \mathrm{~h}} \tag{22}
\end{equation*}
$$

