Macroeconomic Theory Econ 4310 Lecture 1

Asbjørn Rødseth

University of Oslo

20 August 2011

Asbjørn Rødseth (University of Oslo)

Macroeconomic Theory

20 August 2011 1 / 23

3

- ∢ ≣ →

Some practical information

- Reading list with net addresses
- Lecture plan
- ▷ No lectures next week
- Exercises every week (almost)
- Seminars only in last half

3

Introduction

- ▷ Explaining the behavior of economic aggregates over time
- ▷ Micro-based macro theory
- Starting from static general equilibrium
- > Extending it with a time dimension and uncertainty
- ▷ Trade period by period
- > Intertemporal choice (saving and investment decisions)
- ▷ Flows accumulating to stocks
 - Investment to capital
 - Saving to wealth
 - Deficits to debt
- Labor market rigidities

ECON4310 Some substantial issues

- Economic growth
- Real interest rates
- Government deficits and debts
- Public pension schemes
- Petroleum funds
- Business cycles
- Asset pricing
- Unemployment

3

э.

-

Basic questions about research strategy

- Equilibrium or disequilibrium?
- > Always start with individual agents optimizing?
- Rational opinions or animal spirits?
- Money important or not?

Less emphasis in ECON4310

- ▷ Money, monetary policy, nominal rigidities (ECON4325, ECON4330)
- Open economy issues (ECON4330)

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Assumed background

- Standard micro theory
- Basic national accounting
- Simple Keynesian models

Alternative mathematical techniques

- Discrete time (Williamson, Romer)
- Continuous time (Romer)

A B < A B </p>

A simple, static general equilibrium model

- Source: Williamson 1.1
- Example of micro approach to macro
- Static starting point
- Need to refresh micro theory?

Model structure

- N identical households
- Two goods: consumption (c) and leisure (0 $\leq \ell \leq 1$)
- *M* identical firms, constant returns to scale in each
- Two factors of production: labor n and capital k
- The aggregate capital stock K is exogenously given
- Three markets: output, labor, capital
- Two relative prices: real wage (w) and real rental price of capital (r). (The consumption good is the numeraire with price 1)
- All agents are price-takers

Competitive equilibrium

- 1. Each household chooses c and ℓ optimally given w and r.
- 2. Each firm chooses n and k optimally given w and r.
- 3. All markets clear. The choices of consumers and producers are mutually consistent.

Households

Maximize:

$$U = u(c, \ell) \tag{1}$$

with respect to c and ℓ given budget

$$c = w(1 - \ell) + rK/N \tag{2}$$

 $0 \le \ell \le 1$, $1 - \ell$ being labor supply. Each household owns the same share of K. First order condition:

$$\frac{u_2(c,\ell)}{u_1(c,\ell)} = w \tag{3}$$

イロト 不得下 イヨト イヨト

(2) and (3) can be solved for c and ℓ as functions of w, r and K/N. Regularity conditions on u to ensure that there is one and only one solution (e.g. u strictly increasing and quasi-concave u).

Firms

Production function:

$$y = zf(k, n) \tag{4}$$

z = exogenous productivity shock Constant returns to scale:

$$f(\lambda k, \lambda n) = \lambda f(k, n)$$

Marginal cost constant and equal to average cost.

"First-order conditions for maximum profit":

$$zf_1(k, n) = r$$
 (5)
 $zf_2(k, n) = w$ (6)

Is there a (unique) profit maximum when returns to scale are constant?

Firm behavior with constant returns to scale (CRS)

First order condition for minimum cost:

$$\frac{zf_1(k,n)}{zf_2(k,n)} = \frac{r}{w}$$
(7)

Zero profit condition:

$$zf(k,n) - rk - wn = 0 \tag{8}$$

Necessary for equilibrium with finite and strictly positive output.

The marginal-productivity conditions, (5) and (6), are equivalent to the minimum cost and the zero profit condition, (7) and (8).

- No profits to distribute to owners / consumers
- Distribution of output on firms indeterminate (assume equal)

Proof of equivalence 1

1) (5) and (6) \Longrightarrow (7) and (8)

(5) and (6) obviously imply (7). To prove that zero profits is also implied, we need the Euler's theorem

$$f(k,n) = f_1(k,n)k + f_2(k,n)n$$
(9)

(This is a general property of functions that are homogenous of degree one, easily proved by differentiating with respect to λ). Insertion from (5) and (6) in Euler equation yields

$$f(k,n) = rk/z + wn/z$$

or after rearrangement

$$zf(k,n) - rk - wn = 0$$

which is the zero profit condition.

Proof of equivalence 2

2) (7) and (8) \Longrightarrow (5) and (6)

Combining (9) and the zero profit condition yields:

$$zf_1(k,n)k + zf_2(k,n)n = rk + wn$$

Use the condition for cost-minimization to eliminate f_2 and solve for f_1 . You then end up with (5) and (6)follows accordingly.

- 32

Market clearing

Labor market:

$$N(1-\ell) = Mn \tag{10}$$

Capital market:

$$K = Mk \tag{11}$$

Goods market:

$$Nc = My$$
 (12)

3

(人間) トイヨト イヨト

Competitive equilibrium

- 1. Each household chooses c and ℓ optimally given w, r and K/N. Eq: (2) (3)
- 2. Each firm chooses n and k optimally given w and r. Eq: (4) (5) (6)
- 3. All markets clear. The choices of consumers and producers are mutually consistent. (10) (11) (12)

8 equations, 7 unknowns: w, r, n, k, c, ℓ , y

Walras' law: When n-1 markets are in equilibrium, the n'th market will also be in equilibrium.

Representative consumers and producers: Let M = N = 1

E SQA

Properties of equilibrium

$$\frac{u_2(c,\ell)}{u_1(c,\ell)} = zf_2(k,1-\ell) = w$$
(13)

$$c = zf(k, 1 - \ell) \tag{14}$$

$$r = zf_1(k, 1 - \ell), \ w = zf_2(k, 1 - \ell)$$
(15)

Output per capita determined by:

- Capital stock
- Productivity
- Preference for leisure
- k given at the macro level

3

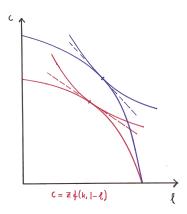
∃ → (∃ →

What if ..?

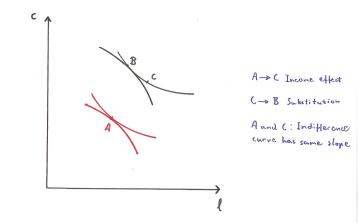
- Productivity increases?
- ▷ Preferences for leisure increases?
- ▷ More capital is available?
- A government starts taxing and spending?

The effect of increased productivity

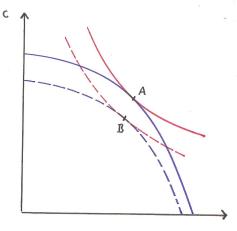
Income effect favors leisure, substitution effect work



Income and substitution effects



Including government consumption, lump sum tax



Asbjørn Rødseth (University of Oslo)

Some properties of competitive equilibria

Existence, uniqueness

- Competitive equilibrium exists provided preferences and production possibilities satisfy some regularity conditions and markets are complete
- With sufficient regularity conditions we also get unique solutions for prices and individual utilities, but not necessarily a unique distribution of production among firms (c.f. constant returns case).

Welfare theorems

- 1. A competitive equilibrium is Pareto optimal
- 2. All Pareto optimal allocation can be achieved by appropriate redistributions of the initial endowments.

Caveats: No external effects, no collective goods, no increasing returns, complete markets, no asymmetric, information, no distorting taxes, etc

Social optimum

- Requires a welfare function that makes interpersonal comparisons
- Pareto optimum necessary, but not sufficient for social optimum.
- With a single consumer Social optimum, Pareto optimum and competitive equilibrium coincide

Social planner's problem

$$\max U = u(c, \ell) \tag{16}$$

given
$$c = zf(k, 1 - \ell)$$
 (17)

First-order condition

$$\frac{u_2(c,\ell)}{u_1(c,\ell)} = zf_2(k,1-\ell)$$
(18)

Solution to planning problem is also market solution.