Macroeconomic Theory Econ 4310 Lecture 2

Asbjørn Rødseth

University of Oslo

30 August 2011

Asbjørn Rødseth (University of Oslo)

Macroeconomic Theory

30 August 2011 1 / 16

3

- ∢ ≣ →

I ∃ ►

ም.

Solow's growth model

- Source: Romer Ch. 1
- Discrete versus continuous time
- Read Ch. 1

(日) (周) (三) (三)

3

Solow's growth model

$$Y_{t} = F(K_{t}, A_{t}L_{t})$$
(1)

$$I_{t} = sY_{t}$$
(2)

$$K_{t+1} = K_{t} + I_{t}$$
(3)

$$L_{t} = L_{0}(1 + n)^{t}$$
(4)

$$A_{t} = A_{0}(1 + g)^{t}$$
(5)

$$Y_t = ext{output}$$

 $K_t = ext{capital},$
 $L_t = ext{labor}$
 $I_t = ext{investment}$
 $A_t = ext{labor productivity}$

$$\begin{split} F &= \text{production function} \\ F &: \text{ constant returns to scale,} \\ F_1, F_2 &> 0, F_{11}, \ F_{22} < 0 \\ K_0, \ L_0 \text{ given} \end{split}$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Stocks and flows

- Flows are measured per unit of time
 - *I_t* no of machines per year
- Stocks are measured at a point in time
 - K_t no of machines available at beginning of period t
- Some flows are add to stocks over time
 - Accumulation equations: $K_{t+1} = K_t + I_t$

Condensing the model (Removing the trend)

 $A_t L_t$ = Labor input in efficiency units.

$$A_t L_t = A_0 L_0 [(1+g)(1+n)]^t = A_0 L_0 (1+\gamma)^t$$

 $\gamma =$ "natural" growth rate, $\gamma = n + g + ng$ Define new variables:

k = K/AL = capital intensity, y = Y/AL = output per efficiency unit of labor

$$y = F(K_t, A_t L_t) / A_t L_t = F\left(\frac{K_t}{A_t L_t}, \frac{A_t L_t}{A_t L_t}\right) = F(k_t, 1)$$

Define f(k) = F(k, 1). Then

$$y_t = f(k_t) \tag{6}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Condensing the model

$$K_{t+1} - K_t = I_t = sY_t \tag{7}$$

Divide through (7) by $A_t L_t$:

$$\frac{K_{t+1}}{A_t L_t} - \frac{K_t}{A_t L_t} = s \frac{Y_t}{A_t L_t}$$
$$k_{t+1} (A_{t+1} L_{t+1} / A_t L_t) - k_t = s y_t$$

$$k_{t+1}(1+\gamma) - k_t = sy_t \tag{8}$$

 $\gamma k_{t+1} = {\rm investment}$ needed for capital stock to keep pace with natural growth rate

or

3

< 回 > < 三 > < 三 >

Model in intensive form

$$egin{aligned} &k_{t+1}(1+\gamma)-k_t = \mathsf{sy}_t \ &y_t = f(k_t) \end{aligned}$$

or simply

$$k_{t+1}(1+\gamma) - k_t = sf(k_t) \tag{9}$$

One difference equation in one unknown time series, k_t . Initial k (k_0) given

(日) (同) (三) (三)

э

Assumed properties of *f* (Inada conditions):

$$f'(k) > 0, \ f''(k) < 0$$

 $f(0) = 0, \ f'(0) = \infty, \ f'(\infty) = 0$

Wages and rental price of capital:

$$r_t = F_1(K_t, A_t L_t) = f'(k_t)$$
$$w_t = A_t F_2(K_t, A_t L_t) = A_t [f(k_t) - k_t f'(k_t)]$$

(Use Euler's theorem and that when $F(X_1, X_2)$ is homogeneous of degree 1, then $F'_i(X_1, X_2)$ is homogenous of degree 0).

The steady state ("Balanced growth path")

$$k_{t+1}(1+\gamma) - k_t = sf(k_t)$$

Steady state k^* defined by $k_{t+1} = k_t = k^*$ or

$$k^*(1+\gamma) - k^* = sf(k^*)$$

$$sf(k^*) = \gamma k^* \tag{10}$$

 $\gamma \mathbf{k}^* = \text{investment needed to keep up}$ with growth in AL.

Two steady states, one with $k^* = 0$, one with $k^* > 0$

More about the steady state

- Growth rate of output per capita is equal to productivity growth rate g
- \triangleright Capital intensity, k^* depends positively on *s*, negatively on *n* and *g*.
- \triangleright Level of output depends positively on *s*, negatively on *n*
- \triangleright Real interest rate, $r^* = f'(k^*)$ depends negatively on s, positively on n and g
- ▷ Real wage, $w^* = A[f(k^*) k^* f'(k^*)]$, grows with rate of productivity growth
- \triangleright The share of wage income in total output is constant.
- \triangleright Level of real wage depends positively on *s*, negatively on *n* and *g*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Transitional dynamics

30 August 2011 11 / 16

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Stationarity and stability

- A stationary state is in a dynamic model is a state where all the variables in the model stay constant
- A stationary state is a state that reproduces itself over time
- In $k_{t+1} = [sf(k_t) + k_t]/(1 + \gamma) \ k_t = k^*$ makes $k_{t+1} = k^*$
- A stationary state can be either stable or unstable

一日、

Stability

- A stationary point is globally stable if, for any given starting point, the economy moves towards that stationary point as time goes to infinity
- A stationary point is locally stable if for any starting point *in a region around the stationary point*, the economy moves towards that stationary point as time goes to infinity.
- In a single equation model local stability requires that the feed-back from the variable to itself is less than one-to-one.

$$\frac{dk_{t+1}}{dk_t} = \frac{sf'(k_t)}{1+\gamma} < 1$$

(日) (周) (日) (日)

The Golden Rule of Accumulation

Consumption per efficiency unit of labor in steady state is:

$$c = f(k) - \gamma k \tag{11}$$

First order condition for maximum is $f'(k) - \gamma = 0$. Golden rule level of k, k^{**} is determined by

$$f'(k^{**}) = \gamma \tag{12}$$
$$r^{**} = \gamma$$

Interest rate equal to natural growth rate Savings rate required to reach k^{**} :

$$s^{**} = \gamma k^{**} / f(k^{**}) = r^{**} k^{**} / f(k^{**})$$

Along the Golden rule path the savings rate equals the income share of capital.

If s is increased beyond s^{**} , consumption is reduced both now and in all future!

Asbjørn Rødseth (University of Oslo)

Some questions

- 1. Is it conceivable that rational agents will save too much for society's long-run good?
- 2. Should society aim at the golden rule level of capital in the long run?
- 3. How much private saving should we expect in a market equilibrium?

Discrete versus continuous time

$$\begin{aligned} k_{t+1} - k_t &= sf(k_t) - \gamma k_{t+1} & \dot{k}(t) &= sf(k(t)) - \gamma k(t) \\ sf(k^*) &= \gamma k^* & sf(k^*) &= \gamma k^* \\ \gamma &= n + g + ng & \gamma &= n + g \end{aligned}$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン