Macroeconomic Theory Econ 4310 Lecture 4-5 Parts

Asbjørn Rødseth

University of Oslo

13th September 2011

Ramsey-model with trend growth

$$\max V = \sum_{t=0}^{\infty} \beta^t u(c_t A_t) L_t \text{ given}$$
 (1)

$$c_{t} = k_{t} + f(k_{t}) - (1+n)(1+g)k_{t+1},$$

$$A_{t} = A_{0}(1+g)^{t}, \qquad L_{t} = L_{0}(1+n)^{t}$$

$$k_{0} = \bar{k}_{0}, k_{t} \geq 0, c_{t} \geq 0$$
(2)

Maximize with respect to c_t and k_{t+1} for t = 0, 1, 2, ...

Deriving first-order conditions

Imagine that (2) is used to replace c_t in (1). Maximize with respect to k_{t+1} for $t=0,1,2,\ldots$ Single out the terms in V that contain k_{t+1} :

$$V = \ldots + \beta^{t} u(c_{t}A_{t})L_{t} + \beta^{t+1} u(c_{t+1}A_{t+1})L_{t+1} + \ldots$$

Take derivatives:

$$\frac{\partial V}{\partial k_{t+1}} = \beta^t u'(c_t A_t) A_t L_t \frac{dc_t}{dk_{t+1}} + \beta^{t+1} u'(c_{t+1} A_{t+1}) A_{t+1} L_{t+1} \frac{dc_{t+1}}{dk_{t+1}} = 0$$

Deriving first-order conditions 2

Replace dc_t/dk_{t+1} and dc_{t+1}/dk_{t+1} with the expressions you get from (2):

$$dc_t/dk_{t+1} = -(1+n)(1+g), \qquad dc_{t+1}/dk_{t+1} = 1+f'(k_{t+1})$$

This yields

$$-u'(c_tA_t)\overbrace{(1+n)(1+g)A_tL_t}^{A_{t+1}L_{t+1}} + \beta u'(c_{t+1}A_{t+1})A_{t+1}L_{t+1}(1+f'(k_{t+1})) = 0$$

which simplifies to

$$u'(c_t A_t) = \beta u'(c_{t+1} A_{t+1})(1 + f'(k_{t+1}))$$
(3)

Warnings!

- There may be no maximum!
- Discounted utility may be infinite! Low discount rate, high productivity growth
- Balanced growth paths are possible only if u(c) is CRRA

Assume CRRA utility and $\rho > (1 - \theta)g + n$.

CRRA-preferences

$$u(x) = (1/(1-\theta))x^{1-\theta}, \sigma = 1/\theta > 0$$

First order condition:

$$(c_{t}A_{t})^{-\theta} = (c_{t+1}A_{t+1})^{-\theta}\beta(1 + f'(k_{t+1}))$$

$$\frac{(c_{t}A_{t})^{-\theta}}{(c_{t+1}A_{t+1})^{-\theta}} = \beta(1 + f'(k_{t+1}))$$

$$\frac{c_{t+1}A_{t+1}}{c_{t}A_{t}} = [\beta(1 + f'(k_{t+1}))]^{\sigma}$$
(4)

Consumption growth rates

Per capita:

$$\frac{c_{t+1}A_{t+1}}{c_tA_t} = [\beta(1+f'(k_{t+1}))]^{\sigma}$$

Per efficiency unit of labor:

$$\frac{c_{t+1}}{c_t} = [\beta(1+f'(k_{t+1}))]^{\sigma}/(1+g)$$

Conditions for balanced growth

$$c_{t+1} = c_t \Longrightarrow \qquad \left(\frac{1 + f'(k_*)}{1 + \rho}\right)^{\sigma} \frac{1}{1 + g} = 1$$
 (5)

$$k_{t+1} = k_t \Longrightarrow c^* = f(k^*) - (n+g+ng)k_*$$
 (6)

Loglinearizing steady state condition (7)

$$(1+g)^{-1}(1+\rho)^{-\sigma}[(1+f'(k_*))]^{\sigma} = 1$$

$$-\ln(1+g) - \sigma\ln(1+\rho) + \sigma\ln(1+f'(k_*)) = \ln 1 = 0$$

$$-g - \sigma\rho + \sigma f'(k_*) \approx 0$$

$$f'(k_*) \approx \rho + \frac{1}{\sigma}g$$
(7)

Short period, g, ρ and f'(k) small numbers, $ln(1+x) \approx x$

σ	ho	g	$f'(k_*)$
0.5	0.02	0.03	0.08
0.5	0.02	0.04	0.10
1.0	0.02	0.03	0.05
1.0	0.02	0.02	0.04

$$f'(k_*) \approx \rho + \frac{1}{\sigma}g$$

Observations on the steady state

$$f'(k_*) \approx \rho + \frac{1}{\sigma}g$$

- $\triangleright k_*$ is independent of *n*
- $hd k_*$ depends negatively on ho
- \triangleright k_* depends negatively on g and more so the lower is σ
- $hd k_*$ depends positively on σ when g>0

High g implies high real interest rate.

Comparison of steady states

Golden rule
$$f'(k_{**}) \approx n + g$$

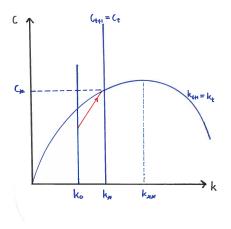
Ramsey
$$f'(k_*) pprox
ho + rac{1}{\sigma} g$$

By assumption

$$\rho > \left(1 - \frac{1}{\sigma}\right)g + n$$

By implication

$$\rho + \frac{1}{\sigma}g > n + g$$
 and $k_* < k_{**}$



$$c = f(k) - \gamma k$$

