
• Fully funded system: government saves the pension-tax revenue, so no
effect on aggregate savings (increased government savings h matches re-
duction in private savings)

St = b+ h+ k

—Note: no need for such pension system unless some people are irra-
tional (rational households can save on their own)

7 Decisions under uncertainty

Purpose of lecture:

1. study decisions under uncertainty

2. Understand the permanent income hypothesis

7.1 Expected utility

• Define a state of the world as one particular realization of uncertainty
(e.g., rain or sun tomorrow)

• Make two key assumptions:

1. Suppose households have concave preferences over consumption, u (c),
which are separable between different states of the world. That is,
utility in one state of the world does not depend on events that did
not happen.

2. Assume that households fully understand the probabilities of the risk
they face

• Then households make decisions under uncertinaty as if they maximize
expected utility :

maxE {u (c)}

• Example: Compare two lotteries A and B. Lottery A gives cA with prob-
ability pA and zero otherwise. Lottery B gives cB with probability pB and
zero otherwise. What lottery will be preferred? Houshold will choose A if

pAu (cA) + (1− pA)u (0) > pBu (cB) + (1− pB)u (0)

• Jensen’s inequality imply that housholds prefer certainty whenever u is
strictly concave (FIGURE):

u (E {c}) > E {u (c)}

• In most cases such behavior makes sense (e.g., purchase of fire insurance)
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• Deviations from expected utility: Preferences for gambling and Allais
paradox. These deviations imply one of two things: (1) housholds of-
ten misunderstands or overweights probabilities close to zero or one, or
(2) preferences do not satisfy expected utility theory, for example because
they have prospect theory preferences)

7.2 A two-period consumption-savings problem

• Consider the following problem:

maxE1 {u (c1) + βu (c2)}
subject to

c1 = 1− a2

c2 = w̃2 + (1 + r) a2,

where income in period 2, w̃2, is uncertain:

w̃2 =

{
1 + ε with prob. p
1− ε with prob. 1− p

• Substitute the budget constraints into the utility function and reqrite the
problem:

max
a2

E1 {u (1− a2) + βu (w̃2 + (1 + r) a2)}

= max
a2

2∑
i=1

pi {u (1− a2) + βu (w̃2 + (1 + r) a2)}

= max
a2
{u (1− a2) + pβu (1 + ε+ (1 + r) a2)

+ (1− p)βu (1− ε+ (1 + r) a2)}

Differentiate w.r.t. a2:

0 = −u′ (1− a2) + β (1 + r) ·
[pu′ (1 + ε+ (1 + r) a2) + (1− p)u′ (1− ε+ (1 + r) a2)]

⇒

u′ (1− a2) = β (1 + r) · [pu′ (1 + ε+ (1 + r) a2) + (1− p)u′ (1− ε+ (1 + r) a2)]

= E1 {(1 + r) · βu′ (w̃2 + (1 + r) a2)}
⇒

u′ (c1) = E1 {(1 + r) · βu′ (c2)} (13)

Comments:

—This is the Euler equation under uncertainty.
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—Note that solving this problem did require rational expectations (but
not necessarily perfect foresight). Rational expectations requires that
the household knows the future probabilities, not the realized out-
comes.

• Dynamics: Suppose there are more periods, so the problem is

maxE0

{ ∞∑
t=0

βtu (ct)

}
ct + at+1 = w̃t + (1 + r) at for all t ≥ 0

Write this problem in value function form:

V (at, wt) = max {u (ct) + EtV (at+1, wt+1)}
subject to

ct + at+1 = wt + (1 + r) at,

where the value function V is the expected discounted utility, and a and w
are the state variables. Given the function V , consmption can be expressed
as a function of the same state variables: C (a,w). This is the policy
rule for consumption. It can be shown that a condition for optimality is
the Euler equation, u′ (ct) = Et {(1 + r) · βu′ (ct+1)}, so the policy rule
must satisfy the following Euler equation for any combination of the state
variables (a,w):

u′ (C (at, wt)) = Et {(1 + r) · βu′ (C (at+1, wt+1))} .

• Detour on asset pricing : note that the Euler equation determines the price
of a (riskless) bond q by rewriting equation (13) as follows:

q ≡ 1

1 + r
= E1

{
β
u′ (c2)

u′ (c1)

}
To get this, note that c1 is known at time t = 1, so it is allowed to divide
inside the expectation operator. This equation can also be used to find the
period-1 price p1 of any asset (whose price and dividends are stochastic
and given by p̃2 and d̃2 next period):

p1 · u′ (c1) = E1

{
βu′ (c2) ·

(
p̃2 + d̃2

)}
⇒

p1 = E1


β
u′ (c2)

u′ (c1)︸ ︷︷ ︸
s t o ch a s t i c d i s c o u n t fa c t o r

·
(
p̃2 + d̃2

)
... this equation is what the field of asset pricing in finance is all about.
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7.3 Permanent income hypothesis: a special case

• We will now consider a special case of decisions under uncertainty, namely
when preferences are linear-quadratic:

u (c) = c− a

2
c2

Note that in this case, marginal utility is given by

u′ (c) = 1− a · c

• Linear-quadratic preferences imply the following Euler equation:

1− act = Et {(1 + r) · β (1− act+1)} (14)

= (1 + r)β − (1 + r)βaEt {ct+1}
⇒

ct =
1− (1 + r)β

a
+ (1 + r)β · Et {ct+1} (15)

• Suppose, for simplicity, that r is such that (1 + r)β = 1, i.e., there is no
intertemporal motive to save. In this case the Euler equation (15) becomes

ct = Et {ct+1} ,

so the household wants to hold expected consumption constant.

• Recall that the budget constraint has to hold with equality. Since Ponzi
schemes are ruled out (1 + r = 1/β > 1), the discounted value of con-
sumptoin must equal discounted income:

(1 + r) a0 +

∞∑
t=0

wt

(1 + r)
t =

∞∑
t=0

ct

(1 + r)
t

Take the expected value on both sides to obtain that consumption must
equal expected income:

(1 + r) a0 + E0

{ ∞∑
t=0

wt

(1 + r)
t

}
= E0

{ ∞∑
t=0

ct

(1 + r)
t

}

=

∞∑
t=0

E0ct

(1 + r)
t

The law of iterated expectations says that

E0 {xt} = E0 {E1 {xt}} ,

which implies that

E0ct = E0 {E1ct} = ... = E0 {E1 {E2... {Et−1ct}}} = c0.
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The Euler equation can then be rewritten as

(1 + r) a0 + E0

{ ∞∑
t=0

wt

(1 + r)
t

}
=

∞∑
t=0

E0ct

(1 + r)
t

= c0

( ∞∑
t=0

1

(1 + r)
t

)
=
c0
r

which implies that consumption is given by

c0 = r ·
[

(1 + r) a0 + E0

{ ∞∑
t=0

wt

(1 + r)
t

}]
,

Conclusion: optimal consuption is to consume a constant share r of ex-
pected lifetime wealth W . This is the permanent income hypothesis:
c = rW

• By the definition of expectations, we can always write
ct = Et−1 {ct}+ εt,

where εt is a stochastic variable with

Et−1 {εt} = 0

Since ct = Et−1 {ct}, we can then write
ct = ct−1 + εt,

which is the random-walk hypothesis of Hall (1978).

• What is εt? Simplify by setting r = 0 and finite horizon, so that

c0 =
1

T − 1
·
[
a0 + E0

{
T∑
t=0

wt

}]
Compute c1

c1 =
1

T − 1
·
[
a1 + E1

{
T∑
t=1

wt

}]

=
1

T − 1
·
[
−c0 + a0 + w0 + E1

{
T∑
t=1

wt

}]

=
1

T − 1
·
[
−c0 + a0 + w0 + E0

{
T∑
t=1

wt

}
− E0

{
T∑
t=1

wt

}
+ E1

{
T∑
t=1

wt

}]

=
1

T − 1
·
[
−c0 + Tc0 − E0

{
T∑
t=1

wt

}
+ E1

{
T∑
t=1

wt

}]

= c0 +
1

T − 1
·
[
E1

{
T∑
t=1

wt

}
− E0

{
T∑
t=1

wt

}]
≡ c0 + ε1
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Here, ε1 is the innovation in permanent income. Note:

—A permanent increase in period t = 1 which was unexpected in period
t = 0: wt = w0 + ∆ (and no further change in wt) would give a one-
for-one increase in consumption:

c1 = c0 +
1

T − 1
·
[
E1

{
T∑
t=1

(w0 + ∆)

}
− E0

{
T∑
t=1

w0

}]

= c0 +
1

T − 1
·
T∑
t=1

∆ = c0 +
T

T − 1
·∆

—A transitory (one-period) increase in period t = 1 which was unex-
pected in period t = 0: w1 = w0 + ∆ (and wt = w0 thereafter) would
give only a small increase in consumption:

c1 = c0 +
1

T − 1
·
[
E1

{
w0 + ∆ +

T∑
t=2

w0

}
− E0

{
T∑
t=1

w0

}]

= c0 +
1

T − 1
∆

• Note: linear-quadratic preferences exhibit certainty equivalence, in the
sense that rise does not matter for savings.

• Empirical tests of the random-walk hypothesis using houshold-level data:

— Souleles (1999), Johnsen et al. (2003), and others show that houshold-
level consumption responds to (small) predictable income changes
(for example tax rebates that are announced long time in advance).
For example, the Bush tax rebates had big effects on consumption.
This is inconsistent with PIH.

—Using household-level data, Paxson (1993) and Hsieh (2003) show
that for large predicted income changes (+/- 10%), there is no re-
sponse in consumption (which is consistent with PIH).

—How can this be true? Potential resolution: many housholds may be
locked into a mortgage and may be liquidity constrained in terms of
temporary expenditurs. It may be costly to change the mortgage, so
one would pay such a cost (and potentially get less constrained) only
if the future income change is suffi ciently large. Or perhaps not all
housholds pay attention.
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8 Consumption-based asset pricing

Purpose of lecture:

1. Explore the asset-pricing implications of the neoclassical model

2. Understand the pricing of insurance and aggregate risk

3. Understand the quantitative limitations of the model

8.1 The fundamental asset pricing equation

• Consider and economy where people live for two periods ...

max
{ct,ct+1,at+1}

{u (ct) + βEtu (ct+1)}

subject to

yt = ct + ptat+1

ct+1 = yt+1 + (pt+1 + dt+1) at+1,

where yt is income in period t, pt is the (ex-dividend) price of the asset in
period t, and dt is the dividend from the asset in period t.

• Substitute the two constraints into the utility function:

max
at+1
{u (yt − ptat+1) + βEtu (yt+1 + (pt+1 + dt+1) at+1)}

and differentiate w.r.t. how much of the asset to purchase, at+1:

0 = −pt · u′ (yt − ptat+1) + βEt {u′ (yt+1 + (pt+1 + dt+1) at+1) · (pt+1 + dt+1)}
⇒

pt · u′ (ct) = βEt {u′ (ct+1) · (pt+1 + dt+1)} .

• Interpretation: the left-hand side is the marginal cost of purchasing one
additional unit of the asset, in utility terms (so price * marginal utility),
while the right-hand side is the expected marginal gain in utility terms
(i.e., next-period marginal utility time price+dividend).

• Rewrite to get the fundamental asset-pricing equation:

pt = Et

{
βu′ (ct+1)

u′ (ct)
· (pt+1 + dt+1)

}
,

where the term βu′(ct+1)
u′(ct)

is the (stochastic) discount factor (or the “pricing
kernel”).
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• Key insight #1: Suppose the household is not borrowing constrained
and suppose the household has the opportunity to purchase an asset. Then
this equation —and the consumption process for this household —can be
used to price that asset. This applies to any asset and to the consumption
procvess for any household.

• What goes wrong if the household is borrowing constrained? The problem
is that if the houshold is constrained in period t. Consider, for example,
a case when the household would like to borrow so as to increase current
consumption, but is not allowed to do so. Then marginal utility in period
t is very high and the Euler equation (for a riskless bond that pays one
unit of consumption for sure next period) becomes an inequality:

u′ (ct) >
1

qt
βEt {u′ (ct+1)}

— Intuition: the household feels that the bond is very expensive (i.e.,
that the interest rate is very low), so it would like to sell bonds (i.e.,
borrow from the bank), but the bank does not allow the houshold to
do so. Clearly, the consumption stream of this household cannot be
used to price the asset.

8.2 Which assets are expensive?

• Define the return of an asset i as

1 + rit+1 =
pit+1 + dit+1

pit
,

so the asset-pricing equation can be rewritten as

1 = Et

{
βu′ (ct+1)

u′ (ct)
·
(
1 + rit+1

)}
• Compare the price of a risky asset with that of a safe asset (i.e., a bond
with a safe return r̄t+1):

1 = Et

{
βu′ (ct+1)

u′ (ct)
·
(
1 + rit+1

)}
= Et

{
βu′ (ct+1)

u′ (ct)

}
+ Et

{
βu′ (ct+1)

u′ (ct)
· rit+1

}
1 = Et

{
βu′ (ct+1)

u′ (ct)
· (1 + r̄t+1)

}
= Et

{
βu′ (ct+1)

u′ (ct)

}
· (1 + r̄t+1) ,

where the last equation follows from the fact that r̄t+1 is riskfree. Combine
these equations to obtain:

Et

{
βu′ (ct+1)

u′ (ct)
· rit+1

}
= Et

{
βu′ (ct+1)

u′ (ct)

}
· r̄t+1

⇒

Et

{
βu′ (ct+1)

u′ (ct)
·
(
rit+1 − r̄t+1

)}
= 0, (16)
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where the term
(
rit+1 − r̄t+1

)
is the (stochastic) excess return on the risky

asset.

• Recall that the formula for covariance between two stochastic variables X
and Y is

cov (X,Y ) = E {X · Y } − E (X) · E (Y )

⇒
E {X · Y } = E (X) · E (Y ) + cov (X,Y )

• Multiply equation (16) by u′ (ct) /β on both sides, and use the covariance
formula:

0 = Et
{
u′ (ct+1) ·

(
rit+1 − r̄t+1

)}
= cov

{
u′ (ct+1) ,

(
rit+1 − r̄t+1

)}
+ Et {u′ (ct+1)} · Et

(
rit+1 − r̄t+1

)
= cov

{
u′ (ct+1) ,

(
rit+1 − r̄t+1

)}
+ Et {u′ (ct+1)} ·

(
Et
(
rit+1

)
− r̄t+1

)
(17)

The term Et
(
rit+1

)
− r̄t+1 is the “risk premium”, i.e., the expected excess

return, or the expected return on asset i relative to the return on the
riskless bond.

• Make two key assumptions:

1. Suppose the economy nis a representative-agent economy, so that
each household’s consumption is a constant share of the aggregate
consumption (ct = Ct)

2. Suppose (for simplicity) that the utility function is quadratic, i.e.,
that

u (c) = c− ac
2

2
⇒

u′ (c) = 1− ac

Insert this expression for u′ into equation (17):

0 = cov
{

(1− aCt+1) ,
(
rit+1 − r̄t+1

)}
+ Etu

′ (Ct+1) ·
(
Et
(
rit+1

)
− r̄t+1

)
= −a · cov

{
Ct+1,

(
rit+1 − r̄t+1

)}
+ Etu

′ (Ct+1) ·
(
Et
(
rit+1

)
− r̄t+1

)
(18)

• Consider three cases:

1. The market portfolio: Suppose asset M is the market portfolio (i.e.,
the whole stock market). Note that both the stock market and ag-
gregate consumption increase when times are good, so the return on
stocks is highly correlated with consumption:

cov
{
Ct+1,

(
rMt+1 − r̄t+1

)}
> 0.
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Equation (18) then implies that

Etu
′ (Ct+1) ·

(
Et
(
rit+1

)
− r̄t+1

)
> 0,

so the return on the market portfolio must be higher than the safe
return (since u′ (c) > 0):

Et
(
rit+1

)
> r̄t+1

Key message: the risk premium on the market portolio is posi-
tive because the aggregate stock market is correlated with aggregate
consumption.

2. An asset with non-systematic risk: Suppose the asset i is risky, but
the return is completely uncorrelated with aggregate consumption:

cov
{
Ct+1,

(
rit+1 − r̄t+1

)}
= 0.

Equation (18) then implies that

Etu
′ (Ct+1) ·

(
Et
(
rit+1

)
− r̄t+1

)
= 0,

which again implies that this asset has the same expected return as
the safe bond, even if it is risky:

Et
(
rit+1

)
= r̄t+1,

Key message: there is zero premium for holding idiosyncratic risk
(i.e., risk which is uncorrelated with aggregate consumption).

3. Insurance: Suppose the asset i is risky, but the return is negatively
correlated with aggregate consumption:

cov
{
Ct+1,

(
rit+1 − r̄t+1

)}
< 0,

so the return is high precicely when consumption is low. This is an
example of an asset which serves as insurance. Equation (18) then
implies that

Etu
′ (Ct+1) ·

(
Et
(
rit+1

)
− r̄t+1

)
< 0

⇒
Et
(
rit+1

)
< r̄t+1,

so this asset has a lower return than the safe bond (i.e., a negative risk
premium). Key message: households are willing to pay a premium
in order to get insurance.
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8.3 Consumption-based CAPM

• Rewrite equation (18) as follows:

Et
(
rit+1

)
− r̄t+1 =

a · cov
{
Ct+1,

(
rit+1 − r̄t+1

)}
Et [u′ (Ct+1)]

,

so the expected premium return on the market portfolio is

Et
(
rMt+1

)
− r̄t+1 =

a · cov
{
Ct+1,

(
rMt+1 − r̄t+1

)}
Et [u′ (Ct+1)]

.

• Rewrite the expected return on asset i as

Et
(
rit+1

)
=

cov
{
Ct+1,

(
rit+1 − r̄t+1

)}
cov

{
Ct+1,

(
rMt+1 − r̄t+1

)} a · cov {Ct+1,
(
rMt+1 − r̄t+1

)}
Et [u′ (Ct+1)]

+ r̄t+1

=
cov

{
Ct+1,

(
rit+1 − r̄t+1

)}
cov

{
Ct+1,

(
rMt+1 − r̄t+1

)} [Et (rMt+1

)
− r̄t+1

]
+ r̄t+1

=
corr

{
Ct+1,

(
rit+1 − r̄t+1

)}
std (Ct+1) std

(
rit+1

)
corr

{
Ct+1,

(
rMt+1 − r̄t+1

)}
std (Ct+1) std

(
rMt+1

) [Et (rMt+1

)
− r̄t+1

]
+ r̄t+1

=
std
(
rit+1

)
std
(
rMt+1

) corr {Ct+1,
(
rit+1 − r̄t+1

)}
corr

{
Ct+1,

(
rMt+1 − r̄t+1

)} [Et (rMt+1

)
− r̄t+1

]
+ r̄t+1

≡ std
(
rit+1

)
·BETAi ·

[
Et
(
rMt+1

)
− r̄t+1

]
+ r̄t+1,

where the “consumption BETAi”is defined as

BETAi ≡
1

std
(
rMt+1

) corr {Ct+1,
(
rit+1 − r̄t+1

)}
corr

{
Ct+1,

(
rMt+1 − r̄t+1

)}
Interpretation: the term BETAi for an asset i reveals the risk premium
of additional risk of this asset.

8.4 Equity premium puzzle

• Go back to equation (16),

Et
{
mt+1 ·

(
rMt+1 − r̄t+1

)}
= 0,

where the stochastic discount factor mt+1 is

mt+1 =
βu′ (ct+1)

u′ (ct)
.

Using the formula for the covariance, rewrite this as

0 = Et {mt+1} · Et
{
rMt+1 − r̄t+1

}
+ cov

(
mt+1,

(
rMt+1 − r̄t+1

))
= Et {mt+1} · Et

{
rMt+1 − r̄t+1

}
+ corr

(
mt+1, r

M
t+1

)
· std (mt+1) · std

(
rMt+1

)
⇒

std (mt+1) = −Et {mt+1} ·
Et
{
rMt+1 − r̄t+1

}
std
(
rMt+1

) 1

corr
(
mt+1, rMt+1

)
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Recall that for the safe asset we have

1

1 + r̄t+1
= Et

{
βu′ (ct+1)

u′ (ct)

}
= Et {mt+1} ,

so we can rewrite the equation above as

std (mt+1) = − 1

corr
(
mt+1, rMt+1

) 1

1 + r̄t+1

Et
{
rMt+1 − r̄t+1

}
std
(
rMt+1

)
• Note that corr

(
mt+1, r

M
t+1

)
< 0 (since aggregate consumption and rMt+1

are positively correlated) and that by definition,

−corr
(
mt+1, r

M
t+1

)
≤ 1.

Therefore, the smallest possible value of the term − 1

corr(mt+1,rMt+1)
is one:

− 1

corr
(
mt+1, rMt+1

) ≥ 1.

This implies a (Hansen-Jaganathan) bound on the variability of mt+1:

std (mt+1) ≥ 1

1 + r̄t+1

Et
{
rMt+1 − r̄t+1

}
std
(
rMt+1

) (19)

• The term Et{rMt+1−r̄t+1}
std(rMt+1)

is the Sharpe ratio (after the Nobel Laureate

William F. Sharpe), i.e., the “return per unit of risk”.

• Data: The Sharpe ratio is typically around 40% on an annual basis in
developed countries, while the annual safe interest rate has been close to
zero on average.

—Thus, the standard deviation of the stochastic discount factor should
be around 40%

• Suppose the utility function exhibits constant relative risk aversion, i.e.,

u (c) =
c1−γ − 1

1− γ ,

so the discount factor becomes

mt+1 = β

(
Ct+1

Ct

)γ
,

which is close to 1 on average (at least when the time period is short).
The standard deviation of m is therefore approximately

std

{
log

(
β

(
Ct+1

Ct

)γ)}
= std

{
log (β) + γ log

(
Ct+1

Ct

)}
= γ · std

{
log

(
Ct+1

Ct

)}
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Using U.S. data, the volatility of consumption growth is about

std

{
log

(
Ct+1

Ct

)}
≈ 3%.

Equation (19) then implies that γ must be at least γ = 40/3 ≈ 13, which
is very large.

• Using other approximations and bounds, it is straightforward to show that
in this model, the risk aversion must be at least 50 in order to account for a
risk premium of 6%, when the standard deviation of consumption growth
is just 3% and the variability of the stock market is std

(
rM
)

= 16%. This
is the equity premium puzzle.

• Note that estimates of the risk aversion (using micro data) implies a risk
aversion somewhere in the range of γ ∈ [1, 5]., which is MUCH lower than
50.

• For example, with a risk aversion of 25, a household who is offered a 50/50
change of a gain or loss of 20% of lifetime consumption, would prefer to
rather take a 17% loss for sure.
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