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So far..

Some of the (many) things you have learned so far in this course are:

1 The set-up of the basic neoclassical model

2 An equivalent formulation using the social planner’s problem

3 Analysis of steady state

These three points are covered by chapters 3-5 in Krueger’s notes.
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Today’s lecture

Today we move on to see how the models can be solved (chapter 6 of Krueger) as well as using
our first stochastic model (chapter 10).

1 Quick review of basic model

2 Example of an analytical solution

3 Concept of linearization

4 Linearizing the basic model

5 Lineraizing the stochastic version of the basic model

6 Impulse-response functions
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Roadmap
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Behind the roadmap
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The basic model

Basic model

We are considering the social planner’s problem:

max
{cs ,ks+1}∞s=t

∞∑
s=t

βs u(cs )

s.t.

ct + kt+1 = Akαt n1−α
t + (1− δ)kt

ct ≥ 0

kt+1 ≥ 0

0 ≤ nt ≤ 1

with kt > 0 given. Can simplify by setting nt = 1 and ignore ct ≥ 0 and kt+1 ≥ 0 under ‘normal’
assumptions. Note that the full RBC model will have

Productivity (A) being stochastic

Labor supply entering the utility function
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The basic model

Basic model II

Optimum is characterized by the Euler equation:

u′(ct ) = β[1− δ + αAkα−1
t+1 ]u′(ct+1)

the resource constriant:
ct + kt+1 = Akαt + (1− δ)kt

as well as a transversality condition:

lim
T→∞

βT u′(cT ) = 0
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The basic model

Basic model III

Intuition behind the transversality condition? Simple intuition: It replaces a kT +1 = 0 restriction
for the finite-period case. More complicated answer: Start out with the Euler equation:

u′(ct ) = β[1− δ + rt+1]u′(ct+1)

= β(rt+1 − δ)u′(ct+1) + β
{
β[1− δ + rt+2]u′(ct+2)

}
= ...

=
T∑

s=t+1

βs−t (rs − δ)u′(cs ) + βT u′(cT +1)

We see that the transversality condition restricts the last term on the RHS to converge to zero.
Note typo in first version of slides

Marcus Hagedorn ECON 4310 September 30, 2013 Very very early 8 / 53



The basic model

Basic model IV

Hence under
lim

T→∞
βT u′(cT ) = 0

we have

u′(ct ) =
∞∑

s=t+1

βs−t (rs − δ)u′(cs )

If this condition fails to be satisfied the agent could increase lifetime utility by saving one unit
extra of capital and re-investing it in every period forever (consuming the dividends).
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The basic model

Basic model V

Steady state? With no growth in technology or population, the steady state requires kt = kt+1

and ct = ct+1. In the Euler equation that gives:

u′(c∗) = β[1− δ + αAk∗α−1]u′(c∗)

or

k∗ =

(
ρ+ δ

αA

) 1
α−1

where ρ = 1
β
− 1 is the discount rate. Steady state consumption follows from the resource

constraint
c∗ = Ak∗α − δk∗
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The basic model

Basic model VI

With this we have

Conditions that must be satisfied in optimum

A description of the steady state

What remains is to answer: How do we find the set {c∗s , k∗s+1}∞s=t that actually solves the
problem?
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Analytical solution

Solving the model: Analytical solution

In general: Not easy to find an analytical solution for the problem. But we can simplify the
model to a case where we can find one.
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Analytical solution

Solving the model: Analytical solution II

Assume that
u(C) = log C

and also simplify by setting δ = 1. The transversality condition is satisfied in steady state (ct

constant) as long as β < 1, so let us ignore that condition. Combining the Euler equation with
the resource constraint, we have:

1

Akαt − kt+1
=

βαAkα−1
t+1

Akαt+1 − kt+2

The sequence of capital stocks, {ks+1}∞s=t , that satisfies this condition for all t is the solution to
our problem. How to find it?
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Analytical solution

Solving the model: Analytical solution III

We use guess and verify. Let us guess that the solution is a constant savings rate, namely

kt+1 = sAkαt

for some value of s. Insert that into our condition to find

1

(1− s)Akαt
=

βαAkα−1
t+1

(1− s)Akαt+1

which can be simplified to give
kt+1 = βαAkαt

Hence if s = βα, we see that this is indeed the solution. For any initial capital stock k0, setting
kt+1 = βαAkαt will ensure that the Euler condition, the resource constraint, and the transversality
condition hold. Hence it is the solution.
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Linearization

Linearization

Fine. The solution to our problem under log utility and full depreciation turned out to be a
constant savings rate. But analytical solutions like that are usually much more difficult to find.
We will instead most of the time apply linearization techniques.
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Linearization

Linearization II

[Remember that dynamic programming is another alternative, but we put most emphasis on
linearization in this class]
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Linearization

Linearization III

Main point with linearization: To solve the model as an approximation around its steady state.
Hence we assume that the steady state is a relevant concept, and look at the
dynamics of the model when the economy faces small departures from steady
state.

Marcus Hagedorn ECON 4310 September 30, 2013 Very very early 17 / 53



Linearization

Linearization IV

What does linearization entail? We will do first-order Taylor approximations. This means utilizing
the Taylor approximation

f (x) ≈ f (a) + f ′(a)(x − a)

for a point a. For x = a, this holds trivially. It is a good approximation for values of x “close to”
a. [But there is hardly any discussion of what is close enough]. For a multivariate function f (x , y)
we can approximate it around the point (a, b) using

f (x , y) ≈ f (a, b) +
∂f (a, b)

∂x
(x − a) +

∂f (a, b)

∂y
(y − b)
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Linearization

Linearization V

Another trick we will use is to define x̂t = log xt − log xss , i.e. the log deviation of xt from steady
state. This often comes in handy because log differences are approximately the percentage
difference:

log xt − log x∗ = log
( xt

x∗

)
= log

(
xt − x∗

x∗
+ 1

)
≈

xt − x∗

x∗

One way to use that approximation, is when we want to rewrite a levels variable in its percentage
deviation. First do the following:

xt = e log xt = x∗e log xt−log x∗ = x∗e x̂t

Then Taylor approximate the last expression around x̂t = 0 (i.e. the steady state):

e x̂t ≈ e0 + e0(x̂t − 0) = 1 + x̂t

Hence:
xt ≈ x∗(1 + x̂t )
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Linearizing the basic model

Linearizing the model

We are ready to linearize the model. We know that the solution is characterized by the Euler
equation:

u′(ct ) = β[1− δ + αAkα−1
t+1 ]u′(ct+1)

and the resource constraint:
ct + kt+1 = Akαt + (1− δ)kt

(we ignore the transversality since we are approximating the solution close to steady state)

Marcus Hagedorn ECON 4310 September 30, 2013 Very very early 20 / 53



Linearizing the basic model

Linearizing the model II

Start with the resource constraint. One element at the time:

ct ≈ c∗(1 + ĉt )

kt+1 ≈ k∗(1 + k̂t+1)

Akαt ≈ Ak∗α + αAk∗α−1(kt − k∗)

≈ Ak∗α + αAk∗α−1k∗k̂t

= Ak∗α(1 + αk̂t )

(1− δ)kt ≈ (1− δ)k∗(1 + k̂t )

Plug this into the resource constraint:

c∗(1 + ĉt ) + k∗(1 + k̂t+1) ≈ Ak∗α(1 + αk̂t ) + (1− δ)k∗(1 + k̂t )
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Linearizing the basic model

Linearizing the model III

We simplify futher by using
c∗ = Ak∗α − δk∗

since then
c∗(1 + ĉt ) + k∗(1 + k̂t+1) ≈ Ak∗α(1 + αk̂t ) + (1− δ)k∗(1 + k̂t )

simplifies to:

c∗ĉt + k∗k̂t+1 =
[
1 + αAk∗α−1 − δ

]
k∗k̂t

Finally, since we know that in steady state:

1 = β(1− δ + αAk∗α−1)

we get:

c∗ĉt + k∗k̂t+1 =
1

β
k∗k̂t (1)

Note the slight change from first version of slides
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Linearizing the basic model

Linearizing the model IV

The fun continues with the Euler equation. To linearize marginal utility is simple:

u′(ct ) ≈ u′(c∗) + u′′(c∗)(ct − c∗)

≈ u′(c∗) + u′′(c∗)c∗ĉt

= u′(c∗)

[
1 +

c∗u′′(c∗)

u′(c∗)
ĉt

]
β(1− δ)u′(ct+1) ≈ β(1− δ)u′(c∗)

[
1 +

c∗u′′(c∗)

u′(c∗)
ĉt+1

]
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Linearizing the basic model

Linearizing the model V

Then there is the last term:

αAkα−1
t+1 βu′(ct+1)

≈ αAk∗α−1βu′(c∗) + α(α− 1)Ak∗α−2βu′(c∗)(kt+1 − k∗) + αAk∗α−1βu′′(c∗)(ct+1 − c∗)

≈ αAk∗α−1βu′(c∗) + α(α− 1)Ak∗α−2βu′(c∗)k∗k̂t+1 + αAk∗α−1βu′′(c∗)c∗ĉt+1

= αAk∗α−1βu′(c∗)

[
1 + (α− 1)k̂t+1 +

c∗u′′(c∗)

u′(c∗)
ĉt+1

]
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Linearizing the basic model

Linearizing the model VI

Let us define

θ = −
c∗u′′(c∗)

u′(c∗)

(we return to what θ is in a minute). Combine all the approximations for the Euler equation:

u′(c∗) [1− θĉt ] = β(1− δ)u′(c∗) [1− θĉt+1] + αAk∗α−1βu′(c∗)
[
1 + (α− 1)k̂t+1 − θĉt+1

]
Let u′(c∗) go against each other:

[1− θĉt ] = β(1− δ) [1− θĉt+1] + αAk∗α−1β
[
1 + (α− 1)k̂t+1 − θĉt+1

]
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Linearizing the basic model

Linearizing the model VII

We can actually do more. Once more we use that in steady state:

1 = β(1− δ + αAk∗α−1)

so in the Euler equation:

[1− θĉt ] = β(1− δ) [1− θĉt+1] + βαAk∗α−1
[
1 + (α− 1)k̂t+1 − θĉt+1

]
−θĉt + [1− β(1− δ − αAk∗α−1)] = −β(1− δ + αAk∗α−1)θĉt+1 + βαAk∗α−1(α− 1)k̂t+1

−θĉt = −θĉt+1 + βαAk∗α−1(α− 1)k̂t+1

(Note how we use β(1− δ + αAk∗α−1) = 1 two different places).
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Linearizing the basic model

Linearizing the model VIII

Dividing by −θ we are finished (for now) with the Euler equation:

ĉt = ĉt+1 − β
1

θ
αAk∗α−1(α− 1)k̂t+1 (2)

What is θ?

θ = −
c∗u′′(c∗)

u′(c∗)

θ is the coefficient of relative risk aversion (evaluated in the steady state). Recall seminar 1 where
we showed that for a utility function

u(c) =
c1−1/σ

1− 1/σ

the intertemporal elasticity of substitution is σ, while the CRRA is 1/σ. Hence, if we impose this

utility function, then θ = 1/σ! So what determines the impact of k̂t+1 (which influences the
interest rate) on consumption is the intertemporal elasticity of substitution.
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Linearizing the basic model

Linearizing the model IX

So, the log-linearized pair of equilibrium conditions (1) and (2) read:

c∗ĉt + k∗k̂t+1 =
1

β
k∗k̂t

ĉt = ĉt+1 − β
1

θ
αAk∗α−1(α− 1)k̂t+1

Combine these two conditions to get:

k∗

c∗

(
1

β
k̂t − k̂t+1

)
=

k∗

c∗

(
1

β
k̂t+1 − k̂t+2

)
− β

1

θ
αAk∗α−1(α− 1)k̂t+1

THIS is a second-order linear difference equation which is straightforward to solve to get a
solution for k̂t . Using that, we solve for ĉt , and then we have the complete solution. Note: Slides
28-31 replace slide 28 from first version of slide set
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Linearizing the basic model

Solving the linear model X

Let us see how to find the solution. What we use is the method of undetermined coefficients.
Suppose we conjecture that the solution is

k̂t+1 = ak̂t

This would imply
k̂t+2 = ak̂t+1 = a2k̂t

Let us insert for that solution in our difference equation:

k∗

c∗

(
1

β
k̂t − ak̂t

)
=

k∗

c∗

(
1

β
ak̂t − a2k̂t

)
− β

1

θ
αAk∗α−1(α− 1)ak̂t

which is, after dividing by k̂t :

k∗

c∗

(
1

β
− a

)
=

k∗

c∗

(
1

β
a− a2

)
− β

1

θ
αAk∗α−1(α− 1)a
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Linearizing the basic model

Linearizing the model XI

That equation is really just a second-order equation for a (a is the only unknown). So it is ‘easy’
to find a, provided that a solution exists. The equation can re-arranged as

a2 −
[

1 +
1

β
−

c∗

k∗
(1− α)

β

θ
αAk∗α−1

]
a +

1

β
= 0

which has two solutions:

ai =
1

2

[
1 +

1

β
−

c∗

k∗
(1− α)

β

θ
αAk∗α−1

]

+
1

2
(−1)i

√[
1 +

1

β
−

c∗

k∗
(1− α)

β

θ
αAk∗α−1

]2

− 4
1

β

for i = 1, 2.
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Linearizing the basic model

Linearizing the model XII

Can show that (see Krueger):

Both roots are real

Both roots are positive

That a1 > 1 and a2 < 1

Hence we will use a2 as our solution, since a > 1 would imply that we diverge from steady state.
This means that the solution to our model is:

k̂t+1 = a2k̂t

ĉt = k∗

c∗

[
k̂t/β − k̂t+1

]
So for an initial value for k̂0, we have the full solution, and can solve for the path of consumption
and capital (as percentage deviations from steady state).
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Linearizing the basic model

Linearizing the model XIII

The procedure can be summarized as follows:

1 Start out with the conditions that must hold in optimum

2 Linearize the conditions around steady state. Gives (1) and (2)

3 Solve the implied system of linear difference equations

4 Gives you a solution for k̂t+1 and ĉt for all t given an initial condition

Steps 3-4 are most often done with the aid of a computer. The most important job is therefore to
derive optimality conditions and linearizing them.
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Stochastic version of the simple model

Making the basic model stochastic

The first part of the lecture helps us see how to solve the model, i.e. see what the actual values
of consumption and capital are. But this was for a deterministic model where we just have
convergence to the steady state. Once we are “there”, nothing more happens. More relevant to
look at stochastic models where unexpected shocks are continuously pushing us away from steady
state.
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Stochastic version of the simple model

Making the basic model stochastic II

This is the whole fundament of modern business cycle models. Most DSGE models are solved by

Deriving first-order conditions

Linearizing around steady state

Calibrating the model (topic for a future lecture)

Solving for the paths of the endogenous variables

Evaluating the effect of various shocks to the economy

In these models, business cycles are caused by stochastic shocks and the economy’s endogenous
response to these.

Marcus Hagedorn ECON 4310 September 30, 2013 Very very early 34 / 53



Stochastic version of the simple model

Stochastic basic model

We introduce stochasticity by making technology random. The parameter A in the basic model
was referred to as technology. Let us make it a stochastic variable At , where

At = Aezt

and zt is an autoregressive error of order 1:

zt = ρzt−1 + εt

where εt is N(0, σ2) (confer lecture 9 for more about AR-processes). The point with defining A
as we have done here, is to get:

log At = log A + zt

so that log of productivity is linear in the shock. In the non-stochastic steady state we have
zt = 0 and At = A. Hence:

Ât ≈ zt

so zt is the percentage deviation of technology from its steady state value.
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Stochastic version of the simple model

Stochastic basic model II

With stochastic technology, this gives us the following social planner’s problem:

max
{cs ,ks+1}∞s=t

Et

∞∑
s=t

βs u(cs )

s.t.

ct + kt+1 = At kαt n1−α
t + (1− δ)kt

At = Aezt

zt = ρzt−1 + εt

ct ≥ 0

kt+1 ≥ 0

0 ≤ nt ≤ 1

with kt > 0 given. Can as before simplify by setting nt = 1 and ignore ct ≥ 0 and kt+1 ≥ 0 under
‘normal’ assumptions.
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Stochastic version of the simple model

Stochastic basic model III

The conditions that we will work with now are the stochastic Euler equation:

u′(ct ) = βEt

{
[1− δ + αAt+1kα−1

t+1 ]u′(ct+1)
}

the resource constraint:
ct + kt+1 = At kαt + (1− δ)kt

and the definitions of At and zt :

At = Aezt

zt = ρzt−1 + εt
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Stochastic version of the simple model

Stochastic basic model IV

What now? We can do the exact same thing as for the deterministic model: Linearize around a
non-stochastic steady state to find a set of linear difference equation that can be solved to obtain
a solution.
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Stochastic version of the simple model

Linearizing the stochastic basic model

The biggest change compared to the deterministic model is that At is also a variable we need to
take into account. Start with the resource constraint.

ct ≈ c∗(1 + ĉt ) (Same)

kt+1 ≈ k∗(1 + k̂t+1) (Same)

(1− δ)kt = (1− δ)k∗(1 + k̂t ) (Same)

At kαt ≈ Ak∗α + αAk∗α−1(kt − k∗) + k∗α(At − A)

≈ Ak∗α + αAk∗α−1k∗k̂t + Ak∗αÂt

= Ak∗α(1 + zt + αk̂t )

(since Ât = zt ). Plug this into the resource constraint:

c∗(1 + ĉt ) + k∗(1 + k̂t+1) ≈ Ak∗α(1 + zt + αk̂t ) + (1− δ)k∗(1 + k̂t )
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Stochastic version of the simple model

Linearizing the stochastic basic model II

We can still use
c∗ = Ak∗α − δk∗

since
c∗(1 + ĉt ) + k∗(1 + k̂t+1) ≈ Ak∗α(1 + zt + αk̂t ) + (1− δ)k∗(1 + k̂t )

is then:
c∗ĉt + k∗k̂t+1 =

[
1 + αAk∗α−1 − δ

]
k∗k̂t + αAk∗αzt

or

c∗ĉt + k∗k̂t+1 =
1

β
k∗k̂t + αAk∗αzt (3)
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Stochastic version of the simple model

Linearizing the stochastic basic model III

What changes for the Euler equation? Having expectations do not change the approximations
that much for the marginal utility terms:

u′(ct ) ≈ u′(c∗)

[
1 +

c∗u′′(c∗)

u′(c∗)
ĉt

]
(Same)

β(1− δ)Et u′(ct+1) ≈ β(1− δ)Et
[
u′(c∗) + u′′(c∗)(ct+1 − c∗)

]
= β(1− δ)u′(c∗)

[
1 +

c∗u′′(c∗)

u′(c∗)
Et ĉt+1

]
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Stochastic version of the simple model

Linearizing the stochastic basic model IV

For the term involving At+1 we need to remember that this is a variable too:

αEt

[
At+1kα−1

t+1 βu′(ct+1)
]

≈ αAk∗α−1βu′(c∗) + α(α− 1)Ak∗α−2βu′(c∗)(kt+1 − k∗) + αAk∗α−1βu′′(c∗)Et (ct+1 − c∗)

+ αk∗α−1Et (At+1 − A)

≈ αAk∗α−1βu′(c∗) + α(α− 1)Ak∗α−2βu′(c∗)k∗k̂t+1 + αAk∗α−1βu′′(c∗)c∗ĉt+1

+ αAk∗α−1Et (zt+1)

= αAk∗α−1βu′(c∗)

[
1− (1− α)k̂t+1 + Et zt+1 +

c∗u′′(c∗)

u′(c∗)
Et ĉt+1

]
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Stochastic version of the simple model

Linearizing the stochastic basic model V

By once more defining

θ = −
c∗u′′(c∗)

u′(c∗)

we can repeat the simplifications from before to get:

ĉt = Et ĉt+1 − β
1

θ
αAk∗α−1

[
Et zt+1 − (1− α)k̂t+1

]
(4)
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Stochastic version of the simple model

Linearizing the stochastic basic model VI

End result? Two linearized conditions:

c∗ĉt + k∗k̂t+1 =
1

β
k∗k̂t + αAk∗αzt

ĉt = Et ĉt+1 − β
1

θ
αAk∗α−1

[
Et zt+1 − (1− α)k̂t+1

]
as well as the definition of zt :

zt = ρzt−1 + εt
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Stochastic version of the simple model

Linearizing the stochastic basic model VII

These three linear equations can be used to solve for the entire path of consumption and capital.
But now we have stochastic difference equations which add another layer of difficulties. Most
often: Let a computer do the job.
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Stochastic version of the simple model

Using software to help us

We will come back to how we use a specific software for helping us solve for the optimal path.
For now just take the solution for granted:

Linear equations ⇒ Computer ⇒ Solution

What can we use the solution for?
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Stochastic version of the simple model

Impulse-response functions

Assume that we start out in steady state, i.e. ĉt = k̂t = zt = 0. Then there is a shock to
technology: εt = ∆ > 0. How will consumption and capital respond? A graph that illustrates the
response (assuming no other shocks in the future) is often referred to as an impulse-response
function.
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Stochastic version of the simple model

Impulse-response functions II

First look at our model to gain some intuition:

c∗ĉt + k∗k̂t+1 =
1

β
k∗k̂t + αAk∗αzt

ĉt = Et ĉt+1 − β
1

θ
αAk∗α−1

[
Et zt+1 − (1− α)k̂t+1

]
A shock to zt has two effects:

It increases available goods today

It increases the rate of return on capital (provided that the shock is persistent – i.e. ρ > 0)

Let us look at the impulse-response for a model with β = 0.99, δ = 0.01, α = 1/3, θ = 1, A = 1
and ρ = 0.5.
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Stochastic version of the simple model

Impulse-response functions III

Solid: Consumption. Dashed: Capital. Effect of a one percentage point shock to εt . Since
ρ = 0.5, zt is quite persistent.
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Stochastic version of the simple model

Impulse-response functions IV

Impulse-response functions is a common way to illustrate the dynamics of a model. So you should
get used to seeing such plots!
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Stochastic version of the simple model

Simulation

To generate artificial business cycle data, we draw realizations for {εt}T
t=0, and solve for zt , ĉt

and k̂t+1 (letting k̂0 = 0 be the initial condition). One realization of ĉt is plotted here:
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Stochastic version of the simple model

Simulation II

We see that even the basic model we’ve worked with so far, appended with a slightly persistent
technology shock, manages to produce data that at least looks a bit like normal business cycles.
But making cycles that look a bit like actual data is not enough: The BC facts reviewed in
Lecture 9 give one dimension a good model should match.
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Stochastic version of the simple model

Next steps?

Next steps involve

Adding the labor supply dimension

Then combining it all in a full RBC model
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