# Search and unemployment (2nd lecture) Lecture 17, ECON 4310 

Marcus Hagedorn

November 11, 2013

## Last week: One-sided search

## Structure of the model last week:



## Two-sided search

Today: Two-sided search.

- We need a story for how wage offers come by
$\Rightarrow$ Natural to extend the model to include firms that open vacancies
- Let $u_{t}$ denote the unemployment rate, while $v_{t}$ is the vacancy rate
- Assuming a total mass of 1 among both workers and firms, then $u$ and $v$ also measure the number of unemployed and vacancies


## Two-sided search II

Instead of having random job offers, we will now imagine that

- A certain number of unemployed, $u$, and vacant positions, $v$, lead to some number of matches, $m$ [a match means that a worker is matched with a vacant position]
- Search frictions will affect how efficiently the economy can 'transform' unemployed and vacancies into matches


## Two-sided search III

The matching technology will be conveniently/elegantly summarized in a matching function:

$$
m_{t}=m\left(u_{t}, v_{t}\right)
$$

where $m(u, v)$ is some constant-returns-to-scale function. The matching function summarizes all the search frictions that are present in the labor market. $m_{t}$ measures the number of matches.

## Two-sided search IV

Two definitions: Since there are $u_{t}$ unemployed, the probability an unemployed is matched with a vacant position will be

$$
\frac{m_{t}}{u_{t}}=\frac{m\left(u_{t}, v_{t}\right)}{u_{t}}=m\left(1, \frac{v_{t}}{u_{t}}\right)=m\left(1, \theta_{t}\right)=p(\theta)
$$

where we refer to $\theta=v_{t} / u_{t}$ as a measure of labor market tightness. Similarly, the probability that a firm gets it vacant position filled is:

$$
\frac{m_{t}}{v_{t}}=\frac{m\left(u_{t}, v_{t}\right)}{v_{t}}=m\left(\frac{u_{t}}{v_{t}},\right)=m\left(\frac{1}{\theta_{t}}, 1\right)=q(\theta)
$$

## Two-sided search V

We see that

$$
p^{\prime}(\theta)=m_{2}\left(1, \theta_{t}\right)>0
$$

so the probability of finding a job for an unemployed is increasing in labor market tightness. Conversely,

$$
q^{\prime}(\theta)=-m_{1}\left(\frac{1}{\theta}, 1\right) \frac{1}{\theta^{2}}<0
$$

showing that the probability that a firm gets it vacancy filled is decreasing in labor market tightness. It is normal to assume that $m(u, v)$ satisfies $\lim _{\theta \rightarrow \infty} p(\theta)=\lim _{\theta \rightarrow 0} q(\theta)=1$.

## Two-sided search VI

It looks like the matching function has some empirical relevance:

Figure : Empirical matching function $[p(\theta)]$, 1951-2003. Source: Shimer (2005).


## Two-sided search VII

- In the one-sided model we had 'search frictions' introduced through the short-cut of assuming a stochastic process for wage offers
- By modeling frictions explicitly using the matching funciton we are one step closer to a more proper model of the labor market


## Two-sided search VIII

## New structure:



## Two-sided search IX

Steps needed to put this figure into equations:
(1) Make assumptions regarding frictions
$\Rightarrow$ Matching function
(2) Describe the wage bargain
$\Rightarrow$ Nash bargaining
(3) Find the reservation wage
$\Rightarrow$ Will not be necessary given the wage bargaining
(9) Determine the equilibrium number of vacancies
$\Rightarrow$ Zero-profit condition

## Building model: Step 1

OK, so the first step is to specify that for

- $u_{t}$ unemployed and $v_{t}$ vacancies
$\Rightarrow$ We get $m_{t}=m\left(u_{t}, v_{t}\right)$ matches
A match means that one worker and a firm meet, and may initiate a worker-employer relationship if they agree on the wage.


## Building model: Step 2

Next step: How do they bargain over the wage? This will be the main job, since we need to specify

- Preferences of workers and income alternatives
- Preferences of firms and production technology
- Value functions
- Wage bargaining procedure


## Building model: Step 2 II

In the one-sided model workers recieved random wage offers. Now we assume that once it is matched with a firm:

- The worker gets employed (starting next period) if they agree on a wage $w$. If they don't agree, the worker gets an unemployment benefit $b$
- Separation happens with an exogenous probability $\delta$
- Utility function is as in the one-sided model, $U=E_{0} \sum_{t=0}^{\infty} \beta^{t} c_{t}$
- Still no saving opportunities (so consumption equals income every period)


## Building model: Step 2 III

We can use what we learned in the one-sided model to say something about the value functions of the worker. The value function of an employed worker with a wage $w$ has the same definition as before:

$$
V_{e}(w)=\beta\left[w+\delta V_{u}+(1-\delta) V_{e}(w)\right]
$$

which we once again re-write into

$$
\begin{equation*}
\rho V_{e}(w)=w+\delta\left(V_{u}-V_{e}(w)\right) \tag{1}
\end{equation*}
$$

## Building model: Step 2 IV

As for $V_{u}$, we treat it slightly different from before. To simplify, we will only consider the steady state where all workers have the same wage, $w^{s 5}$. In that case the value function of an unemployed must satisfy

$$
V_{u}=\beta\left[b+p(\theta) V_{e}\left(w^{s s}\right)+(1-p(\theta)) V_{u}\right]
$$

(so we don't need the integral-mess from the one-sided model) which we re-write into

$$
\begin{equation*}
\rho V_{u}=b+p(\theta)\left(V_{e}\left(w^{55}\right)-V_{u}\right) \tag{2}
\end{equation*}
$$

## Building model: Step 2 V

Then we specify the preferences of the firm. Firms are assumed to maximize

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t}\left(\pi_{t}-x_{t}\right)
$$

where $\pi_{t}$ are period $t$ profits and $x_{t}$ is the cost from posting vacancies. The firm 'consumes' all goods itself (workers do not recieve the profits). Their production technology is very simple:

- A firm that hires one worker will produce $y$ units of output
- It produces nothing without a worker and cannot hire more than one
- It pays $k$ to open a vacancy (which it may do if it is without a worker)
- Once a vacancy is opened, it is matched with a worker with probability $q(\theta)$


## Building model: Step 2 VI

We also need to look at the value functions for the firm. First we define $J_{e}(y-w)$, the value function for a firm that has hired a worked at the wage $w$. This value function must satisfy

$$
J_{e}(y-w)=\beta\left[y-w+(1-\delta) J_{e}(y-w)+\delta J_{v}\right]
$$

where $J_{v}$ is the value function of a firm that has opened a vacancy. We can write this condition as

$$
\begin{equation*}
\rho J_{e}(y-w)=y-w+\delta\left[J_{v}-J_{e}(y-w)\right] \tag{3}
\end{equation*}
$$

## Building model: Step 2 VII

What is the value of a vacancy? As for $V_{u}$, we only consider the steady state where all firms pay the same wage, $w^{5 s}$. The value function must then satisfy

$$
J_{v}=\beta\left[-k+q(\theta) J_{e}\left(w^{5 s}\right)+(1-q(\theta)) J_{v}\right]
$$

where we again simplify by only looking at the option of hiring someone at the steady state wage rate. Rewrite this condition as

$$
\begin{equation*}
\rho J_{v}=-k+q(\theta)\left[J_{e}\left(w^{s s}\right)-V\right] \tag{4}
\end{equation*}
$$

## Building model: Step 2 VIII

With preferences specified [summarized by equations (1)-(4)], we can look at wage bargaining. For simplicity, we only look at the steady state where $u_{t}=u$ and $v_{t}=v$

- The surplus for a worker from a successful match is $V_{e}(w)-V_{u}$
- The surplus for a firm is $J_{e}(y-w)-J_{v}$
$\Rightarrow$ With Nash bargaining, the equilibrium wage maximizes the Nash product:

$$
w=\arg \max _{w^{\prime}}\left\{V_{e}\left(w^{\prime}\right)-V_{u}\right\}^{\alpha}\left\{J_{e}\left(y-w^{\prime}\right)-J_{v}\right\}^{1-\alpha}
$$

subject to $V_{e}\left(w^{\prime}\right)-V_{u} \geq 0$ and $J_{e}\left(y-w^{\prime}\right)-J_{v} \geq 0$, where $\alpha$ is the bargaining weight of workers.

## Building model: Step 2 IX

Assume an internal solution (ignore the non-neg constraints). We find the equilibrium wage by taking the first-order condition of the Nash product. It is:

$$
\alpha V_{e}^{\prime}(w)\left[J_{e}(y-w)-J_{e}\right]-(1-\alpha) J_{e}^{\prime}(y-w)\left[V_{e}(w)-V_{u}\right]=0
$$

The derivatives of $V_{e}$ and $J_{e}$ are found from equations (1) and (3):

$$
V_{e}^{\prime}(w)=J_{e}^{\prime}(y-w)=\frac{1}{\rho+\delta}
$$

which means that the first-order condition can be simplified into

$$
\alpha\left[J_{e}(y-w)-J_{e}\right]=(1-\alpha)\left[V_{e}(w)-V_{u}\right]
$$

## Building model: Step 2 X

Now introduce

$$
\begin{equation*}
S=V_{e}(w)+J_{e}(y-w)-V_{u}-J_{v} \tag{5}
\end{equation*}
$$

as the total surplus generated by the match. It follows from the first order condition that

$$
\begin{equation*}
V_{e}(w)-V_{u}=\alpha S \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{e}(y-w)-J_{v}=(1-\alpha) S \tag{7}
\end{equation*}
$$

The solution to the Nash bargaining is a constant share of the total surplus to each side of the negotiation.

## Building model: Step 3

Step 3 is to specify $w^{*}$. Howver, the Nash solution secures $V_{e}\left(w^{s s}\right)>V_{u}$ provided that $S>0$ (to be confirmed later). Implication for $w^{*}$ ?


## Building model: Step 3 II

$w^{*}$ becomes 'irrelevant' since all wage offers are accepted in equilibrium.


## Building model: Step 4

After specifying preferences, obtaining value functions and deriving the solution to the Nash bargaining, we have 6 independent equations to determine 7 endogenous variables: $V_{e}(w), V_{u}$, $J_{e}(y-w), J_{v}, S, w$ and $\theta .{ }^{1}$ Let us look at our figure to see where the last condition will come from. (This takes us to step 4)

[^0]
## Building model: Step 4 II



## Building model: Step 4 III

Aha! It is clear: We need some description of how much competition it is for workers on the firm side. We assume that new firms are always opening vacancies as long as it has a positive value. In equilibrium we therefore need

$$
\begin{equation*}
J_{v}=0 \tag{8}
\end{equation*}
$$

## Building model: Solution

Great. We have completed the four steps from slide \#11, and are ready to look at the solution. We will use equations (1)-(6) and (8) to solve for the endogenous variables. Summary of these equations:

$$
\begin{aligned}
\rho V_{e}(w) & =w+\delta\left(V_{u}-V_{e}(w)\right) \\
\rho V_{u} & =b+p(\theta)\left(V_{e}\left(w^{s s}\right)-V_{u}\right) \\
\rho J_{e}(y-w) & =y-w+\delta\left[J_{v}-J_{e}(y-w)\right] \\
\rho J_{v} & =-k+q(\theta)\left[J_{e}\left(w^{s s}\right)-J_{v}\right] \\
S & =V_{e}(w)+J_{e}(y-w)-V_{u}-J_{v} \\
V_{e}(w)-V_{u} & =\alpha S \\
J_{v} & =0
\end{aligned}
$$

Trick for analyzing the model: Find the reduced form in terms of $S$ and $\theta$.

## Building model: Solution II

First use (8) together with the (4):

$$
0=-k+q(\theta)\left[J_{e}\left(w^{s s}\right)-J_{v}\right]
$$

Then insert for the Nash solution (equation (7)):

$$
0=-k+q(\theta)(1-\alpha) S
$$

or

$$
\begin{equation*}
S=\frac{k}{(1-\alpha) q(\theta)} \tag{*}
\end{equation*}
$$

## Building model: Solution III

Then start out with (5)

$$
S=V_{e}(w)+J_{e}(y-w)-V_{u}-J_{v}
$$

and insert for the value functions using (1)-(4) for $w=w^{s s}$ :

$$
\begin{aligned}
\Rightarrow \rho S= & w^{s s}+\delta\left[V_{u}-V_{e}\left(w^{s s}\right)\right]+y-w^{s s}+\delta\left[J_{v}-J_{e}\left(y-w^{s s}\right)\right] \\
& -b-p(\theta)\left[V_{e}\left(w^{s s}\right)-V_{u}\right]+k-q(\theta)\left[J_{e}\left(w^{s s}\right)-J_{v}\right] \\
= & y-b+k-\delta S-p(\theta)\left[V_{e}\left(w^{s s}\right)-V_{u}\right]-q(\theta)\left[J_{e}\left(w^{s s}\right)-J_{v}\right]
\end{aligned}
$$

## Building model: Solution IV

Use the implications of wage bargaining in (6) and (7):

$$
\rho S=y-b+k-\delta S-p(\theta) \alpha S-q(\theta)(1-\alpha) S
$$

Finally, from $(*)$, we have $k=q(\theta)(1-\alpha) S$, so that gives us

$$
\begin{equation*}
S=\frac{y-b}{\rho+\delta+\alpha p(\theta)} \tag{**}
\end{equation*}
$$

## Building model: Solution V

These equations will determine the equlibrium value of $S$ and $\theta$ :

$$
\begin{aligned}
& S=\frac{k}{(1-\alpha) q(\theta)} \\
& S=\frac{y-b}{\rho+\delta+\alpha p(\theta)}
\end{aligned}
$$

while the remaining variables can be found from equations (1)-(8). Let us introduce the functions

$$
G(\theta)=\frac{k}{(1-\alpha) q(\theta)}
$$

and

$$
F(\theta)=\frac{y-b}{\rho+\delta+\alpha p(\theta)}
$$

## Building model: Solution VI

- From $q^{\prime}(\theta)<0$, we see that $G^{\prime}(\theta)>0$
- Further, $\lim _{\theta \rightarrow 0} q(\theta)=1$, so $\lim _{\theta \rightarrow 0} G(\theta)=\frac{k}{1-\alpha}>0$
$\Rightarrow G(\theta)$ starts at $k /(1-\alpha)$ and is forever increasing after that
- From $p^{\prime}(\theta)>0$, it follows that $F^{\prime}(\theta)<0$
- Further, $\lim _{\theta \rightarrow \infty} p(\theta)=1$, so $\lim _{\theta \rightarrow 1} F(\theta)=\frac{y-b}{\rho+\delta+\alpha}$
- In addition, $p(0)=0$, so $F(0)=\frac{y-b}{\rho+\delta}$
$\Rightarrow F(\theta)$ starts at $(y-b) /(\rho+\delta)$ and will converge to $(y-b) /(\rho+\delta+\alpha)$. Between these points it is forever decreasing.


## Building model: Solution VII

An equilibrium is secured as long as the two curves intersect for $\theta \in(0, \infty)$. This happens when

$$
G(0)<F(0)
$$

or

$$
k<\frac{(1-\alpha)(y-b)}{\rho+\delta}
$$

i.e. if the cost of vacancies is sufficiently small. The fact that the equilibrium value of $S$ must lie between the (positive) values $G(0)$ and $F(0)$ also confirms that the surplus of a match is positive in equilibrium (which is why all matches lead to employment).

## Building model: Solution VIII



## Building model: Unemployment

What we have determined is the steady state labor tightness, $\theta$. Last thing that remains: Look at flows in and out of unemployment (and vacancies).

- Every period a share $p(\theta)$ of the unemployed will find a job
- Exogenous separation rate: $\delta$

Implies the following law of motion:

$$
u_{t+1}=[1-p(\theta)] u_{t}+\delta\left(1-u_{t}\right)
$$

and steady state level:

$$
\begin{equation*}
u^{s s}=\frac{\delta}{p(\theta)+\delta} \tag{9}
\end{equation*}
$$

Since $\theta=v / u$, (9) gives the equilibrium relationship between $u$ and $v$. We refer to it as the Beveridge curve. The steady state vacancy rate is simply

$$
v^{s s}=\theta u^{s s}
$$

## Building model: Unemployment II

Graphical illustration:


## Comparative statics

Consider now the effect on steady state values from shifts in the exogenous variables. An upward shift in $y-b$ will give:

i.e. increasing both $S$ and $\theta$ in steady state.

## Comparative statics II

Knowing that this increases $\theta$, we can trace out the effects on unemployment and vacancies:


## Comparative statics III

Or analytically:

$$
\begin{aligned}
\frac{d u}{d \theta} & =-\frac{\delta}{(\delta+p(\theta))^{2}} p^{\prime}(\theta) \\
& =-\frac{u p^{\prime}(\theta)}{\delta+p(\theta)}<0
\end{aligned}
$$

An increase in steady state tightness implies a lower unemployment rate.

## Comparative statics IV

Conversely, the effect on vacancies is:

$$
\begin{aligned}
\frac{d v}{d \theta} & =u+\theta \frac{d u}{d v} \\
& =u-\theta \frac{u p^{\prime}(\theta)}{\delta+p(\theta)} \\
& =u\left(\frac{\delta+p(\theta)-\theta p^{\prime}(\theta)}{\delta+p(\theta)}\right)
\end{aligned}
$$

To find the sign here, use that $p(\theta)=m(1, \theta)$. It follows that

$$
\theta p^{\prime}(\theta)=\theta m_{2}(1, \theta)=m(1, \theta)-m_{1}(1, \theta)
$$

since $m(u, v)$ is CRS. Thus:

$$
\frac{d v}{d \theta}=u\left(\frac{\delta+m_{1}(1, \theta)}{\delta+p(\theta)}\right)>0
$$

## Comparative statics V

So higher productivity will increase the steady state surplus of a match, as well as labor market tightness. Interpretation?

- Higher $y$ directly increases firms' value from a match
- Due to Nash bargaining, this increase is shared between the worker and the firm (through higher wages)
- Firms start to post more vacancies since the value of a vacancy turns positive
- Higher $v$ pushes up $\theta$, which also implies a lower unemployment rate (since $p(\theta)$ goes up) Same effects (but with opposite signs) operate if we increase $b$, except that the direct effect comes through the worker's surplus.


## Beveridge curve

Important element of the model:

- Unemployment and vacancy ratios are likely to go in opposite directions (since $\theta$ raises $v$ and lowers $u$ ).
$\Rightarrow$ Implies a so-called Beveridge curve
In our case we have only looked at differences in steady state, but can be shown to hold in regular business cycle models as well.


## Beveridge curve II

Such a relationship is indeed an empirical regularity:


Figure : Quarterly US Beveridge curve, 1951-2003. Source: Shimer (2005).


[^0]:    ${ }^{1}$ Equation (7) is not independent since it is implied by (5) and (6).

