
7 Decisions under uncertainty

Purpose of lecture:

1. Study decisions under uncertainty

2. Understand the permanent income hypothesis

7.1 Expected utility

• Define a state of the world as one particular realization of uncertainty
(e.g., rain or sun tomorrow)

• Make two key assumptions:

1. Suppose households have concave preferences over consumption, u (c),
which are separable between different states of the world. That is,
utility in one state of the world does not depend on events that did
not happen.

2. Assume that households fully understand the probabilities of the risk
they face

• Then households make decisions under uncertainty as if they maximize
expected utility :

maxE {u (c)}

• Example: Compare two lotteries A and B. Lottery A gives cA with prob-
ability pA and zero otherwise. Lottery B gives cB with probability pB and
zero otherwise. What lottery will be preferred? Household will choose A
if

pAu (cA) + (1− pA)u (0) > pBu (cB) + (1− pB)u (0)

• Jensen’s inequality imply that housholds prefer certainty whenever u is
strictly concave (FIGURE):

u (E {c}) > E {u (c)}

• In most cases such behavior makes sense (e.g., purchase of fire insurance)
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• Deviations from expected utility: Preferences for gambling and Allais
paradox. These deviations imply one of two things: (1) households of-
ten misunderstand or overweight probabilities close to zero or one, or (2)
preferences do not satisfy expected utility theory, for example because
they have prospect theory preferences

7.2 A two-period consumption-savings problem

• Consider the following problem:

maxE1 {u (c1) + βu (c2)}
subject to

c1 = 1− a2

c2 = w̃2 + (1 + r) a2,

where income in period 2, w̃2, is uncertain:

w̃2 =

{
1 + ε with prob. p
1− ε with prob. 1− p

• Substitute the budget constraints into the utility function and rewrite the
problem:

max
a2

E1 {u (1− a2) + βu (w̃2 + (1 + r) a2)}

= max
a2

2∑
i=1

pi {u (1− a2) + βu (w̃2 + (1 + r) a2)}

= max
a2
{u (1− a2) + pβu (1 + ε+ (1 + r) a2)

+ (1− p)βu (1− ε+ (1 + r) a2)}

Differentiate w.r.t. a2:

0 = −u′ (1− a2) + β (1 + r) ·
[pu′ (1 + ε+ (1 + r) a2) + (1− p)u′ (1− ε+ (1 + r) a2)]

⇒

u′ (1− a2) = β (1 + r) · [pu′ (1 + ε+ (1 + r) a2) + (1− p)u′ (1− ε+ (1 + r) a2)]

= E1 {(1 + r) · βu′ (w̃2 + (1 + r) a2)}
⇒

u′ (c1) = E1 {(1 + r) · βu′ (c2)} (13)

Comments:

—This is the Euler equation under uncertainty.
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—Note that solving this problem did require rational expectations (but
not necessarily perfect foresight). Rational expectations requires that
the household knows the future probabilities, not the realized out-
comes.

• Dynamics: Suppose there are more periods, so the problem is

maxE0

{ ∞∑
t=0

βtu (ct)

}
ct + at+1 = w̃t + (1 + r) at for all t ≥ 0

Write this problem in value function form:

V (at, wt) = max {u (ct) + EtV (at+1, wt+1)}
subject to

ct + at+1 = wt + (1 + r) at,

where the value function V is the expected discounted utility, and a and
w are the state variables. Given the function V , consumption can be
expressed as a function of the same state variables: C (a,w). This is
the policy rule for consumption. It can be shown that a condition for
optimality is the Euler equation, u′ (ct) = Et {(1 + r) · βu′ (ct+1)}, so the
policy rule must satisfy the following Euler equation for any combination
of the state variables (a,w):

u′ (C (at, wt)) = Et {(1 + r) · βu′ (C (at+1, wt+1))} .

• Detour on asset pricing : Note that the Euler equation determines the
price of a (riskless) bond q by rewriting equation (13) as follows:

q ≡ 1

1 + r
= E1

{
β
u′ (c2)

u′ (c1)

}
To get this, note that c1 is known at time t = 1, so it is allowed to divide
inside the expectation operator. This equation can also be used to find the
period-1 price p1 of any asset (whose price and dividends are stochastic
and given by p̃2 and d̃2 next period):

p1 · u′ (c1) = E1

{
βu′ (c2) ·

(
p̃2 + d̃2

)}
⇒

p1 = E1


β
u′ (c2)

u′ (c1)︸ ︷︷ ︸
s t o ch a s t i c d i s c o u n t fa c t o r

·
(
p̃2 + d̃2

)
This equation is what the field of asset pricing in finance is all about.
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7.3 Permanent income hypothesis: a special case

• We will now consider a special case of decisions under uncertainty, namely
when preferences are linear-quadratic:

u (c) = c− a

2
c2

Note that in this case, marginal utility is given by

u′ (c) = 1− a · c

• Linear-quadratic preferences imply the following Euler equation:

1− act = Et {(1 + r) · β (1− act+1)} (14)

= (1 + r)β − (1 + r)βaEt {ct+1}
⇒

ct =
1− (1 + r)β

a
+ (1 + r)β · Et {ct+1} (15)

• Suppose, for simplicity, that r is such that (1 + r)β = 1, i.e., there is no
intertemporal motive to save. In this case the Euler equation (15) becomes

ct = Et {ct+1} ,

so the household wants to hold expected consumption constant.

• Recall that the budget constraint has to hold with equality. Since Ponzi
schemes are ruled out (1 + r = 1/β > 1), the discounted value of con-
sumption must equal discounted income:

(1 + r) a0 +

∞∑
t=0

wt

(1 + r)
t =

∞∑
t=0

ct

(1 + r)
t

Take the expected value on both sides to obtain that consumption must
equal expected income:

(1 + r) a0 + E0

{ ∞∑
t=0

wt

(1 + r)
t

}
= E0

{ ∞∑
t=0

ct

(1 + r)
t

}

=

∞∑
t=0

E0ct

(1 + r)
t

The law of iterated expectations says that

E0 {xt} = E0 {E1 {xt}} ,

which implies that

E0ct = E0 {E1ct} = ... = E0 {E1 {E2... {Et−1ct}}} = c0.
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The Euler equation can then be rewritten as

(1 + r) a0 + E0

{ ∞∑
t=0

wt

(1 + r)
t

}
=

∞∑
t=0

E0ct

(1 + r)
t

= c0

( ∞∑
t=0

1

(1 + r)
t

)
=

(1 + r)c0
r

which implies that consumption is given by

c0 = r ·
[
a0 +

1

1 + r
E0

{ ∞∑
t=0

wt

(1 + r)
t

}]
,

Conclusion: optimal consumption is to consume a constant share r of
expected lifetime wealth W . This is the permanent income hypothesis:
c = rW

• By the definition of expectations, we can always write
ct = Et−1 {ct}+ εt,

where εt is a stochastic variable with

Et−1 {εt} = 0

Since ct = Et−1 {ct}, we can then write
ct = ct−1 + εt,

which is the random-walk hypothesis of Hall (1978).

• What is εt? Simplify by setting r = 0 and finite horizon, so that

c0 =
1

T + 1
·
[
a0 + E0

{
T∑
t=0

wt

}]
Compute c1

c1 =
1

T
·
[
a1 + E1

{
T∑
t=1

wt

}]

=
1

T
·
[
−c0 + a0 + w0 + E1

{
T∑
t=1

wt

}]

=
1

T
·
[
−c0 + a0 + w0 + E0

{
T∑
t=1

wt

}
− E0

{
T∑
t=1

wt

}
+ E1

{
T∑
t=1

wt

}]

=
1

T
·
[
−c0 + (T + 1)c0 − E0

{
T∑
t=1

wt

}
+ E1

{
T∑
t=1

wt

}]

= c0 +
1

T
·
[
E1

{
T∑
t=1

wt

}
− E0

{
T∑
t=1

wt

}]
≡ c0 + ε1
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Here, ε1 is the innovation in permanent income. Note:

—A permanent increase in period t = 1 which was unexpected in period
t = 0: wt = w0 + ∆ (and no further change in wt) would give a one-
for-one increase in consumption:

c1 = c0 +
1

T
·
[
E1

{
T∑
t=1

(w0 + ∆)

}
− E0

{
T∑
t=1

w0

}]

= c0 +
1

T
·
T∑
t=1

∆

= c0 + ∆

—A transitory (one-period) increase in period t = 1 which was unex-
pected in period t = 0: w1 = w0 + ∆ (and wt = w0 thereafter) would
give only a small increase in consumption:

c1 = c0 +
1

T
·
[
E1

{
w0 + ∆ +

T∑
t=2

w0

}
− E0

{
T∑
t=1

w0

}]

= c0 +
1

T
∆

• Note: linear-quadratic preferences exhibit certainty equivalence, in the
sense that rise does not matter for savings.

• Empirical tests of the random-walk hypothesis using household-level data:

— Souleles (1999), Johnsen et al. (2003), and others show that household-
level consumption responds to (small) predictable income changes
(for example tax rebates that are announced long time in advance).
For example, the Bush tax rebates had big effects on consumption.
This is inconsistent with PIH.

—Using household-level data, Paxson (1993) and Hsieh (2003) show
that for large predicted income changes (+/- 10%), there is no re-
sponse in consumption (which is consistent with PIH).

—How can this be true? Potential resolution: many housholds may be
locked into a mortgage and may be liquidity constrained in terms of
temporary expenditurs. It may be costly to change the mortgage, so
one would pay such a cost (and potentially get less constrained) only
if the future income change is suffi ciently large. Or perhaps not all
households pay attention.
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