Labor supply in RBC models
 ECON 4310

Marcus Hagedorn

October, 2016

Labor supply in the basic model

So far in the course we have considered models where a representative agent (or a social planner) maximizes

$$
\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)
$$

with some fixed amount of labor available for production. Now we consider the more general case where we maximze

$$
\sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, h_{t}\right)
$$

with h_{t} measuring hours worked, making $1-h_{t}$ the hours of leisure.

Labor supply in the basic model II

In RBC models we will see that the labor supply response to changes in wages (driven by productivity shocks) is an important propagation mechanism.

Labor supply in the basic model III

To understand the basics, take one step back, and consider only a simple two-period model of labor supply, where we assume that utility is separable in consumption and labor supply:

$$
\begin{aligned}
\max _{\left\{c_{0}, c_{1}, h_{0}, h_{1}, a_{1}\right\}} & u\left(c_{0}\right)-v\left(h_{0}\right)+\beta\left[u\left(c_{1}\right)-v\left(h_{1}\right)\right] \\
\text { s.t. } & \\
c_{0}+a_{1} & =w_{0} h_{0}+\left(1+r_{0}\right) a_{0} \\
c_{1} & =w_{1} h_{1}+\left(1+r_{1}\right) a_{1}
\end{aligned}
$$

for a_{0} given.

Labor supply in the basic model IV

This problem has the following first order conditions (letting λ_{0} and λ_{1} be the Lagrange multipliers)

$$
\begin{align*}
u^{\prime}\left(c_{0}\right) & =\lambda_{0} \tag{1}\\
\beta u^{\prime}\left(c_{1}\right) & =\lambda_{1} \tag{2}\\
v^{\prime}\left(h_{0}\right) & =\lambda_{0} w_{0} \tag{3}\\
\beta v^{\prime}\left(h_{1}\right) & =\lambda_{1} w_{1} \tag{4}\\
\lambda_{0} & =\lambda_{1}\left(1+r_{1}\right) \tag{5}
\end{align*}
$$

Labor supply in the basic model V

- As before, combine (1), (2) and (3) to find the Euler equation:

$$
u^{\prime}\left(c_{0}\right)=\beta\left(1+r_{t+1}\right) u^{\prime}\left(c_{1}\right)
$$

We refer to the Euler equation as the intertemporal optimality condition.

- Then to learn more about labor supply, combine (1) and (3) to find:

$$
\frac{v^{\prime}\left(h_{0}\right)}{u^{\prime}\left(c_{0}\right)}=w_{0}
$$

This is a standard MRS = relative price condition. The LHS measures the utility loss (in terms of c_{0}) of one extra hour of work. The RHS gives the gain (in terms of c_{0}) from taking this hour of leisure. We refer to this as the intratemporal optimality condition.

- A similar condition holds of course for the last period:

$$
\frac{v^{\prime}\left(h_{1}\right)}{u^{\prime}\left(c_{1}\right)}=w_{1}
$$

Labor supply in the basic model VI

Notice that you can combine the Euler equation with the intratemporal optimality conditions to find:

$$
\frac{v^{\prime}\left(h_{0}\right)}{w_{0}}=\beta\left(1+r_{1}\right) \frac{v^{\prime}\left(h_{1}\right)}{w_{1}}
$$

or:

$$
\frac{\beta v^{\prime}\left(h_{1}\right)}{v^{\prime}\left(h_{0}\right)}=\frac{w_{1}}{\left(1+r_{1}\right) w_{0}}
$$

which we can refer to as the intertemporal labor supply condition. It is illustrating that we also face a choice along the intertemporal dimension when we choose labor supply.

Labor supply in the basic model VII

OK. Summary? We have one Euler equation and two intratemporal conditions:

$$
\begin{aligned}
& u^{\prime}\left(c_{0}\right)=\beta\left(1+r_{1}\right) u^{\prime}\left(c_{1}\right) \\
& v^{\prime}\left(h_{0}\right)=u^{\prime}\left(c_{0}\right) w_{0} \\
& v^{\prime}\left(h_{1}\right)=u^{\prime}\left(c_{1}\right) w_{1}
\end{aligned}
$$

These three equations, together with the resource constraints:

$$
\begin{aligned}
c_{0}+a_{1} & =w_{0} h_{0}+\left(1+r_{0}\right) a_{0} \\
c_{1} & =w_{1} h_{1}+\left(1+r_{1}\right) a_{1}
\end{aligned}
$$

will determine the five endogenous variables $c_{0}, c_{1}, h_{0}, h_{1}$ and a_{1}.

Labor supply in the basic model VII

Assume that

$$
u(c)-v(h)=\log c-\phi \frac{h^{1+\theta}}{1+\theta}
$$

The Euler equation and the intratemporal conditions are in this case given by:

$$
\begin{aligned}
c_{1} & =\beta\left(1+r_{1}\right) c_{0} \\
\phi h_{0}^{\theta} & =\frac{w_{0}}{c_{0}} \\
\phi h_{1}^{\theta} & =\frac{w_{1}}{c_{1}}
\end{aligned}
$$

Labor supply in the basic model VIII

As we have seen before when utility of consumption is a log-function, we can combine the Euler equation with the resource constraints to find

$$
c_{0}=\frac{1}{1+\beta}\left[w_{0} h_{0}+\frac{w_{1} h_{1}}{1+r_{1}}\right]
$$

This solution for c_{0}, together with

$$
\begin{aligned}
\phi h_{0}^{\theta} & =\frac{w_{0}}{c_{0}} \\
\phi h_{1}^{\theta} & =\frac{w_{1}}{\beta\left(1+r_{1}\right) c_{0}}
\end{aligned}
$$

are the conditions for optimum.

Labor supply in the basic model IX

Combining the intratemporal conditions we find

$$
\left(\frac{h_{1}}{h_{0}}\right)^{\theta}=\frac{w_{1}}{\beta\left(1+r_{1}\right) w_{0}}
$$

or

$$
h_{1}=\left(\frac{w_{1}}{\beta\left(1+r_{1}\right) w_{0}}\right)^{\frac{1}{\theta}} h_{0}
$$

Labor supply in the basic model X

Then solve for h_{0} by using the expressions for c_{0} and h_{1} :

$$
\begin{aligned}
\phi h_{0}^{\theta} & =\frac{w_{0}}{c_{0}} \\
\Rightarrow \phi h_{0}^{\theta}\left[w_{0} h_{0}+\frac{w_{1} h_{1}}{1+r_{1}}\right] & =w_{0}(1+\beta) \\
\Rightarrow \phi h_{0}^{\theta}\left[w_{0} h_{0}+\frac{w_{1}}{1+r_{1}}\left(\frac{w_{1}}{\beta\left(1+r_{1}\right) w_{0}}\right)^{\frac{1}{\theta}} h_{0}\right] & =w_{0}(1+\beta) \\
\Rightarrow \phi h_{0}^{\theta}\left[h_{0}+\frac{w_{1}}{\left(1+r_{1}\right) w_{0}}\left(\frac{w_{1}}{\beta\left(1+r_{1}\right) w_{0}}\right)^{\frac{1}{\theta}} h_{0}\right] & =(1+\beta) \\
\Rightarrow \phi h_{0}^{1+\theta}\left[1+\left(\frac{w_{1}}{\left(1+r_{1}\right) w_{0}}\right)^{1+\frac{1}{\theta}} \beta^{-\frac{1}{\theta}}\right] & =(1+\beta)
\end{aligned}
$$

Labor supply in the basic model XI

What is there to learn from this equation?

$$
\phi h_{0}^{1+\theta}\left[1+\left(\frac{w_{1}}{\left(1+r_{1}\right) w_{0}}\right)^{1+\frac{1}{\theta}} \beta^{-\frac{1}{\theta}}\right]=(1+\beta)
$$

- h_{0} is increasing in w_{0}
- But it is also decreasing in w_{1} (intertemporal substitution)
- An increase in w_{0} and w_{1} of the same relative size will not affect labor supply!
- So you get the result that if only w_{0} goes up, then h_{0} is also increased. But if w_{0} and w_{1} go up with w_{1} / w_{0} constant, h_{0} is unchanged. And if w_{1} goes up, h_{0} goes down.
[These conclusions are of course dependent on the utility function you use, but they illustrate general tendencies]

Two important elasticities

There are two important elasticities we need to care about:
(1) Frisch elasticity: The elasticity of labor supply with respect to the wage, keeping marginal utility of wealth constant. Measures the substitution effect
(2) Intertemporal elasticity of substitution (IES) for labor supply: The elasticity of relative labor supply across periods with respect to the present value of wage growth

Frisch elasticity

How to find the Frisch elasticity? Use the intratemporal optimality condition.

$$
\frac{v^{\prime}\left(h_{t}\right)}{u^{\prime}\left(c_{t}\right)}=w_{t}
$$

for $t=0,1$. For a given marginal utility of consumption, this defines an implicit function $h_{t}=q\left(w_{t}\right)$. Let us differentiate with respect to w_{t} :

$$
\frac{v^{\prime \prime}\left(q\left(w_{t}\right)\right) q^{\prime}\left(w_{t}\right)}{u^{\prime}\left(c_{t}\right)}=1
$$

Frisch elasticity II

Then we multiply by $v^{\prime}\left(q\left(w_{t}\right)\right) / q\left(w_{t}\right)$:

$$
\frac{v^{\prime}\left(q\left(w_{t}\right)\right)}{q\left(w_{t}\right)} \frac{v^{\prime \prime}\left(q\left(w_{t}\right)\right) q^{\prime}\left(w_{t}\right)}{u^{\prime}\left(c_{t}\right)}=\frac{v^{\prime}\left(q\left(w_{t}\right)\right)}{q\left(w_{t}\right)}
$$

Divide both sides by $v^{\prime \prime}\left(q\left(w_{t}\right)\right)$ and re-arrange the terms on the left to get

$$
E l_{w_{t}} h_{t}=E l_{w_{t}} q\left(w_{t}\right)=\frac{w_{t}}{q\left(w_{t}\right)} q^{\prime}\left(w_{t}\right)=\frac{v^{\prime}\left(h_{t}\right)}{h_{t} v^{\prime \prime}\left(h_{t}\right)}
$$

This is the Frisch elasticity of labor supply.

Frisch elasticity III

Continue using our last choice for $v(h)$:

$$
v\left(h_{t}\right)=\phi \frac{h_{t}^{1+\theta}}{1+\theta}
$$

With this, $v^{\prime}(h)=\phi h_{t}^{\theta}$ and $v^{\prime \prime}(h)=\theta \phi h^{\theta-1}$, implying:

$$
E l_{w_{t}} h_{t}=\frac{\phi h_{t}^{\theta}}{h_{t} \theta \phi h_{t}^{\theta-1}}=\frac{1}{\theta}
$$

i.e. a constant Frisch elasticity at $1 / \theta$.

IES for labor supply

What about the IES for labor supply? Keep the particular choice of $v(h)$. To find this elasticity, we use the intertemporal optimality condition for labor:

$$
\frac{\beta v^{\prime}\left(h_{1}\right)}{v^{\prime}\left(h_{0}\right)}=\frac{w_{1}}{\left(1+r_{1}\right) w_{0}}
$$

which now becomes

$$
\beta\left(\frac{h_{1}}{h_{0}}\right)^{\theta}=\frac{w_{1}}{\left(1+r_{1}\right) w_{0}}=\tilde{W}_{0}
$$

where \tilde{W}_{1} denotes the present value of wage growth.

IES for labor supply II

The IES for labor supply is the elasticity of h_{1} / h_{0} with respect to \tilde{W}_{0}. To find it, we can either find derivatives etc. like for the Frisch case, or simply use that:

$$
E I_{x} y=\frac{d \log y}{d \log x}
$$

Taking logs of the intertemporal optimality condition for labor we get:

$$
\log \beta+\theta \log \left(\frac{h_{1}}{h_{0}}\right)=\log \tilde{W}_{0}
$$

Hence:

$$
E I_{\tilde{W}_{0}} \frac{h_{1}}{h_{0}}=\frac{1}{\theta}
$$

In this case the IES for labor supply equals the Frisch elasticity.

Using the elasticities

- The higher the Frisch elasticity, the more willing are you to work if the wage increases
- The higher the IES for labor supply, the more willing are you to shift the path of labor supply in response to temporary changes in the wage

Using the elasticities II

With $v(h)=\phi \frac{h^{1+\theta}}{1+\theta}$:

- Empirical estimates of the Frisch elasticity are often in the range of 0.5 , implying $\theta=2$
- In contrast, maximum volatility in hours is obtained by setting $\theta=0$ (since then the Frisch elasticity $\rightarrow \infty$). This would make

$$
v(h)=\phi h
$$

i.e. linear in hours.

Using the elasticities III

- Since we want to choose values for our structural parameters that are consistent with micro evidence, we should also set θ close to 2 in an RBC model.
- But values of θ around 2 are often producing too little volatility in labor supply in RBC models!
- To get more volatile labor supply, one would rather be somewhere closer to $\theta=0$, in which case $v(h)$ is linear in h and we get maximium volatility.
- This is a problem

But we know that (e.g. as shown in Kydland and Prescott, 1990) fluctuations in labor supply seems to be driven primarily by changes in the extensive margin - not so much by the intensive. Can we change our model to account for this?

Labor lotteries

This is the motivation for models of indivisible labor combined with labor lotteries (see Hansen (1984) and Rogerson (1988)).

- In the simple model the agent could choose h to be anywhere between zero and one
- With indivisible labor, we will require $h=\{0,1\}$, i.e. working becomes a 'yes/no' choice
- Labor lotteries (Rogerson, 1988) offers an elegant way of introducing this mechanism

Labor lotteries II

Consider the following setting:

- There exists a continuum of households on the unit interval, each with a utility function $\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-v\left(h_{t}\right)\right]$
- Hours worked must by each agent is either 0 or 1
- All agents agree to join in a 'labor lottery': With probability ξ_{t} they will have to work, and with probability $1-\xi_{t}$ they will be unemployed. But no matter if they work or not, all will recieve the same income (and therefore consumption).
- ξ_{t} is then chosen by the group or a social planner to maximize welfare
- With a continuum of agents, ξ_{t} can be interpreted as the share of agents that must work

Labor lotteries III

Since all agents are the same, we maximize welfare by maximizing

$$
\begin{aligned}
E\left\{\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-v\left(h_{t}\right)\right]\right\} & =E\left\{\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-v\left(h_{t}\right)\right] \mid \text { Work }\right\} \\
& +E\left\{\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-v\left(h_{t}\right)\right] \mid \text { Not work }\right\} \\
& =\sum_{t=0}^{\infty} \xi_{t} \beta^{t}\left[u\left(c_{t}\right)-v(1)\right]+\sum_{t=0}^{\infty}\left(1-\xi_{t}\right) \beta^{t}\left[u\left(c_{t}\right)-v(0)\right] \\
& =\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-\xi_{t} v(1)-\left(1-\xi_{t}\right) v(0)\right] \\
& =\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-\xi_{t}[v(1)-v(0)]-v(0)\right]
\end{aligned}
$$

Let us define $D=v(1)-v(0)$ and ignore the last $v(0)$ term (since a constant is not relevant for maximizing a function). The objective function we are left with is

$$
\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-D \xi_{t}\right]
$$

Labor lotteries IV

But this is like magic! We started out with an economy where every agent was identical, such that the social planner problem would be to maximize

$$
\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-v\left(h_{t}\right)\right]
$$

Introducing labor lotteries instead, gives us:

$$
\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-D \xi_{t}\right]
$$

where ξ_{t} can be interpreted as our new 'labor supply' since total labor supply n_{t} must equal ξ_{t}. This latter utility function is linear in labor supply, which gives us hope that it will also give larger labor supply responses when shocks are hitting the economy.

Labor lotteries V

- Recall, if we have

$$
v(h)=\phi \frac{h^{1+\theta}}{1+\theta}
$$

then $\frac{1}{\theta}$ is the Frisch elasticity.

- We can set $\theta=2$ to have micro elasticities that are plausible
- For the model with labor lotteries, the value of θ only affects D, since:

$$
D=v(1)-v(0)=\frac{\phi}{1+\theta}
$$

so it does not affect the substitution effects.

- Since the labor lotteries model gives us a model as if utility was linear, we get a macro Frisch elasticity equal to infinity, no matter what we set the micro elasticity to be!
- So there is a difference between micro and macro elasticities

Labor lotteries VI

Intuition for the possible difference between micro and macro elasticities:

- For the micro elasticity, we look at the effect on hours worked from a marginal change in the wage. When hours are changing, your disutility of labor change as well, dampening the impact
- For a macro elasticity, we only look at the effect on aggregate hours worked when the wage level changes. If all labor is indivisible, all changes in ours are due to people going from unemployment to employment. Their disutility of work is constant since work is a zero-one choice. So there is no dampening effect from changes in disutility of labor.

Labor lotteries VII

RBC models therefore often assume utility functions where utility is linear in labor supply, using a labor lottery argument as fundament.

