ECON 4325 – Monetary Policy and Business Fluctuations

Tommy Sveen

Norges Bank

January 18, 2009

Introduction Syllabus

- 15/1: Introduction and empirical evidence (Sveen) Readings: Galí, ch. 1, Christiano, Eichenbaum and Evans (2005)
- 22/1: A simple RBC model, log-linearization (Sveen) Readings: Galí, ch. 2
- 29/1: The basic new Keynesian model (Haugland) Readings: Galí, ch. 3
- 5/2: The basic new Keynesian model (Haugland)
- 12/2: Interest rate rules (Sveen) Readings: Galí, ch. 4
- 19/2: The credit channel of monetary policy (Alstadheim) Readings: Walsh, ch. 7
- 26/2: Monetary policy and financial crises (Alstadheim) Readings: To be announced

Introduction Syllabus

- 12/3: Time-inconsistency (Røisland) Readings: Lecture notes
- 19/3: Optimal policy in the New Keynesian model (Røisland) Readings: Galí, ch. 5.
- 26/3: Monetary policy in Norway (Røisland) Readings: Holmsen, Qvigstad, Røisland and Solberg-Johansen (2008), Faust and Henderson (2004), Woodford (2005)
- 2/4: Welfare costs of business fluctuations (Holden) Readings: Gali, Gertler, López-Salido
- 23/4: Monetary policy, unemployment and wages (Holden) Readings: To be announced
- 30/4: Summary and some loose ends (Holden) Readings: To be announced

Monetary Economics (ME) analyzes the relationship between real variables – such as real GDP, real interest rates, employment or unemployment, and real exchange rate – and nominal variables – such as rate of inflation, nominal interest rates, nominal exchange rate, and money supply:

- Relationship between different nominal variables.
- Relationship between different real variables in monetary models.

- IS-LM and AD-AS models (60-70's):
 - Ad hoc static models. Completely fixed prices.
 - AD-AS adding a supply side: focus still on price level.
 - ME concerned with inflation.
 - Central bank controls money supply.

- Flexible-price models:
 - RBC-models: new-classical models with flexible prices and wages, microfounded, productivity shocks important.
 - Monetary models: Lucas' supply curve, LPC-models, MIU-models. Generally small effects from monetary disturbances.
- New-Keynesian models: Most models have classical long-run properties, microfoundation, monopolistic competition in product and factor markets, nominal rigidities.

- Correlation between the growth rate of money supply and inflation is almost 1 (varying between 0.92-0.96).
 - If money growth exogenous evidence that money growth causes inflation (one-for-one).
 - The reverse causality equally consistent with high correlation the CB adjusts money growth to the rate of inflation.
 - Theoretical models should be consistent with this finding.
- No correlation between inflation and GDP growth, but this result is less robust:
 - Slightly positive correlation at low levels of inflation.
 - Negative correlation for high levels of inflation.

Some Stylized Facts – Business Cycle

Table 1 Business Cycles in 10 Developed Countries* 1970-mid-1990

Country	Volatility													
	Standard Deviation		Ratio of Standard Deviation to That of Output					Persistence:	Comovement: Correlation With Output					
	Output	Net Exports	Consumption	Investment	Government Purchases	Employment	Productivity Shock	correlation of Output	Consumption	Investment	Government Purchases	Net Exports	Employment	Productivity Shock
Australia	1.45%	1.23%	.66	2.78	1.28	.34	1.00	.60	.46	.68	.15	01	.12	.98
Austria	1.28	1.15	1.14	2.92	.36	1.23	.84	.57	.65	.75	24	46	.58	.65
Canada	1.50	.78	.85	2.80	.77	.86	.74	.79	.83	.52	23	26	.69	.84
France	.90	.82	.99	2.96	.71	.55	.76	.78	.61	.79	.25	30	.77	.96
Germany	1.51	.79	.90	2.93	.81	.61	.83	.65	.66	.84	.26	11	.59	.93
Italy	1.69	1.33	.78	1.95	.42	.44	.92	.85	.82	.86	.01	68	.42	.96
Japan	1.35	.93	1.09	2.41	.79	.36	.88	.80	.80	.90	02	22	.60	.98
Switzerland	1.92	1.32	.74	2.30	.53	.71	.67	.90	.81	.82	.27	68	.84	.93
United Kingdom	1.61	1.19	1.15	2.29	.69	.68	.88	.63	.74	.59	.05	19	.47	.90
United States	1.92	.52	.75	3.27	.75	.61	.68	.86	.82	.94	.12	37	.88	.96
Europe	1.01%	.50%	.83	2.09	.47	.85	.98	.75	.81	.89	.10	25	.32	.85

*All data are quarterly and have been detrended with the Hodrick-Prescott filter. All but net exports have also been logged. The specific variables included are real output; real

consumption; real lixed investment; real government purchases; the ratio of net exports to output, both measured in current prices; civilian employment; and a productivity shock,

which is the Solow residual, as defined in equations (1) and (2).

Sources of basic data: OECD and IMF

TS (NB)

Common features

- Standard deviation of output 1.5-1.9 (except FRA).
- Consumption smoother than output (not in UK and A), while investments are 2-3 times as volatile as output.
- Employment smoother than output, but some differences across countries.
- Persistence fluctuations in output.
- Employment, consumption and investment are pro-cyclical.

- Have monetary policy disturbances played a role in economic fluctuations?
- Are the predictions from theoretical models consistent with empirical evidence?

Friedman and Schwartz

- Faster money growth tends to be followed by increases in output above trend slower money growth by declines in output.
- Variations in money growth cause with long and variable lags variations in real activity.

- Proposed by Christopher Sims in 1970s, 1980s (see, e.g., "Macroeconomics and Reality", *Econometrica* 48, 1-48.).
- Useful way to organize data.
- We want to answer the following question: "How does the economy respond to a particular shock?"
 - The answer can be very useful for discriminating between models, and for estimating the parameters of a given model.
 - VARs can not actually address such a question! We need Structural VARs.

The Basic Set-Up

• Let Y_t be a $N \times 1$ vector of macroeconomic variables. A Vector Autoregression is:

$$Y_t = B_1 Y_{t-1} + B_2 Y_{t-2} + \ldots + B_p Y_{t-p} + u_t,$$

where the B's are parameters and u_t is a vector of shocks. Moreover we have $Eu_t u'_t = \Sigma_u$.

• It is easy to get estimates for the B's, the u's, and Σ_u , but we are interested in impulse response functions to *fundamental* shocks:

$$u_t = Ce_t,$$

 $Ee_te'_t = \Sigma_e = I,$
 $CC' = \Sigma_u.$

• The structural VAR:

$$Y_t = B_1 Y_{t-1} + B_2 Y_{t-2} + \ldots + B_p Y_{t-p} + Ce_t.$$

• The impulse response to the *i*th shock:

$$Y_t - E_{t-1}Y_t = C_i e_{i,t},$$

$$E_t Y_{t+1} - E_{t-1}Y_{t+1} = B_1 C_i e_{i,t},$$

. . .

• To compute impulse responses we need $B_1, ..., B_p$, and C.

Identification

- There are n^2 different terms in *C*, while there are only n(n+1)/2 independent equations in $CC' = \Sigma_u$.
- Identification problem: not enough restrictions to pin down all the parameters in *C*.
- We need additional n(n-1)/2 identifying restrictions.

Empirical Evidence

Vector Autoregressions (VARs)

Example

• Consider a bivariate VAR in x_t and π_t with two lags:

$$\begin{aligned} x_t &= B_{xx}^1 x_{t-1} + B_{x\pi}^1 \pi_{t-1} + B_{xx}^2 x_{t-2} + B_{x\pi}^2 \pi_{t-2} + u_{x,t}, \\ \pi_t &= B_{\pi x}^1 x_{t-1} + B_{\pi \pi}^1 \pi_{t-1} + B_{\pi x}^2 x_{t-2} + B_{\pi \pi}^2 \pi_{t-2} + u_{\pi,t}, \end{aligned}$$

and it is assumed that

$$u_{x,t} = C_{xx}e_{x,t} + C_{x\pi}e_{\pi,t},$$

$$u_{\pi,t} = C_{\pi x}e_{x,t} + C_{\pi\pi}e_{\pi,t},$$

• From the OLS estimation we get

$$\Sigma_{u} = \left[\begin{array}{cc} \sigma_{u_{x}}^{2} & \sigma_{u_{x},u_{\pi}} \\ \sigma_{u_{x},u_{\pi}} & \sigma_{u_{\pi}}^{2} \end{array} \right]$$

•

• We need one additional restriction.

TS (NB)

Identification

- Three basic approaches to solve the identification problem:
- (i) Contemporaneous restrictions:
 - No short-run effects from policy shocks to some variable(s).
 - E.g. monetary policy shocks do not affect output within the same period.
 - No short-run effect from shocks to the policy instrument.
 - Monetary policy does not react within the period to certain shocks or variables.

Identification

- (ii) Long-run restrictions:
 - Monetary neutrality.
 - Monetary policy disturbances have no long-run effect on real variables (output, unemployment, real exchange rate, etc).
 - Demand shocks no long-run effects on output and unemployment.
- (iii) Sign restrictions:
 - Positive demand shocks increase inflation, while positive supply shocks decrease inflation.

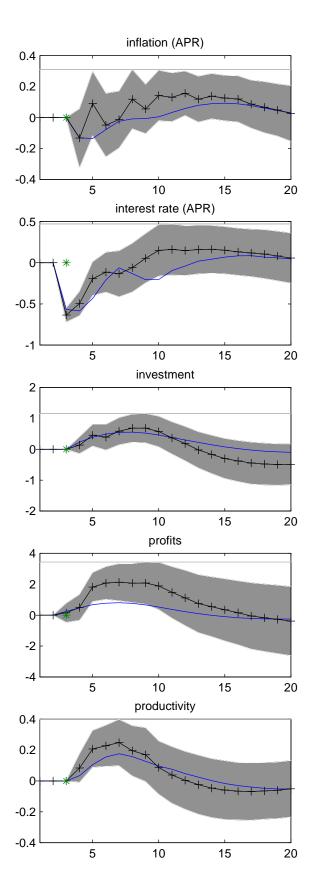
Christiano, Eichenbaum and Evans (2005)

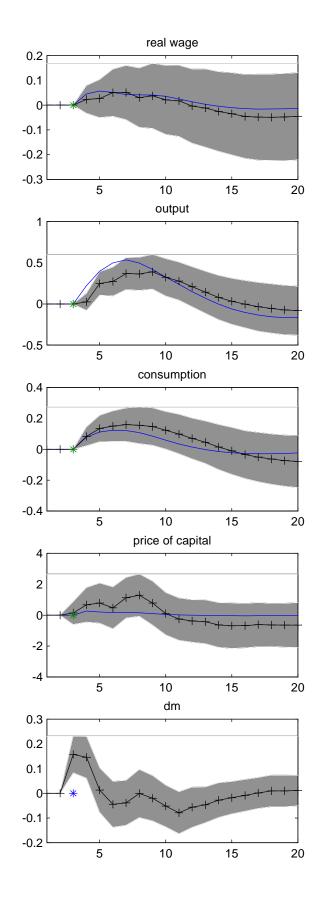
• Use short-run restrictions to identify a monetary policy rule and the corresponding shock to policy:

$$R_t = f(\Omega_t) + \epsilon_t$$
,

where R_t is the federal funds rate, f is a linear function of the information set Ω_t , and ϵ_t is the monetary policy shock.

- Let the vector of variables be $Y_t = [Y_{1,t}, R_t, Y_{2,t}]'$.
 - Variables in Y_{1,t} (GDP, consumption, GDP deflator, investments, real wage, labor productivity) do not react to monetary policy shocks.
 - Variables in $Y_{2,t}$ (real profits and growth in M2) do not belong to Ω_t .





Main Results

- Persistent effects on real variables.
- Inflation is slow to react.
- Hump-shaped responses of real variables.
- Walsh (2003): "We cannot design policy without a theory of how money or monetary policy in general affects the economy".

- Useful method to approximate and solve dynamic models.
- Let x_t denote the log-deviation of variable X_t around it's steady state X:

$$x_t = \log\left(rac{X_t}{X^{ss}}
ight).$$

 Hence, we look at percentage deviations of the variable around it's steady state value:

$$x_t \approx rac{X_t - X}{X}.$$

• If $X_t = F(Y_t, Z_t)$, how do we find the log-linear approximation of X_t ?

Log-Linearizing

• Rewrite the equation as:

$$\log\left(e^{\log X_t}\right) = \log\left(F\left(e^{\log Y_t}, e^{\log Z_t}\right)\right).$$

• Take a first-order Taylor approximation around the (log of) steady state on both sides:

• LHS:

$$\log X + \frac{e^{\log X}}{e^{\log X}} \left(\log X_t - \log X\right)$$

RHS;

$$\begin{split} &\log F\left(Y,Z\right) + \frac{F_{Y}\left(Y,Z\right)e^{\log Y}\left(\log Y_{t} - \log Y\right)}{F\left(Y,Z\right)} \\ &+ \frac{F_{Z}\left(Y,Z\right)e^{\log Z}\left(\log Z_{t} - \log Z\right)}{F\left(Y,Z\right)} \end{split}$$

• Therefore we have:

$$Xx_{t} \simeq F_{Y}(Y, Z) Yy_{t} + F_{Z}(Y, Z) Zz_{t}$$

Log-Linearizing

A Simple Method

- In many (most) cases there is no need to explicitly differentiate the function *F*.
- Let us consider a simpler method:

$$X_t = X\left(rac{X_t}{X}
ight) = Xe^{\log(X_t/X)} = Xe^{x_t}$$

• Take a first-order Taylor approximation:

$$\begin{array}{rcl} Xe^{x_t} &\simeq& Xe^0 + Xe^0 \left(x_t - 0 \right) \\ &\simeq& X \left(1 + x_t \right). \end{array}$$

• Consider an equation like $X_t = Y_t Z_t$:

$$\begin{array}{rcl} Xe^{x_t} &=& YZe^{y_t+z_t}\\ X\left(1+x_t\right) &\simeq& YZe^0+YZe^0y_t+YZe^{0_t}z_t\\ x_t &\simeq& y_t+z_t. \end{array}$$

A Useful Observation

• Consider again the function $X_t = F(Y_t, Z_t)$:

$$\begin{array}{rcl} X_t &\simeq & F\left(Y,Z\right) + F_Y\left(Y_t,Z_t\right)\left(Y_t-Y\right) + F_Z\left(Y_t,Z_t\right)\left(Z_t-Z\right) \\ &\simeq & F\left(Y,Z\right) + F_Y\left(Y,Z\right)Y\left(Y_t/Y-1\right) \\ &\quad + F_Z\left(Y,Z\right)Z\left(Z_t/Z-1\right) \\ &\simeq & F\left(Y,Z\right)\left[1 + \epsilon_{x,y}y_t + \epsilon_{x,z}z_t\right], \end{array}$$

where $\epsilon_{x,y} = \frac{\partial F}{\partial Y} \frac{Y}{X}$ is the steady state elasticity of X wrt Y.

• Cobb-Douglas production function: $Y_t = K_t^{\alpha} N_t^{1-\alpha}$. What is log-linearized output?

$$Y_t = A_t K_t^lpha N_t^{1-lpha}$$
 ,

where Y_t is output, A_t is the level of technology, K_t is the capital stock, and N_t is labor. Parameter α is the capital share in production.

• Rewriting gives:

$$e^{y_t} = e^{a_t + \alpha k_t + (1-\alpha)n_t}$$
,

where we have used the steady state relationship.

• Next, we take a first-order Taylor approximation:

$$y_t = a_t + \alpha k_t + (1 - \alpha) n_t.$$

• The aggregate resource constraint:

$$Y_t = C_t + I_t,$$

where C_t is consumption and I_t is investment.

• Rewriting:

$$1=\frac{C_t}{Y_t}+\frac{I_t}{Y_t}.$$

• Taking a first-order Taylor approximation of the different terms gives:

$$1 \simeq \frac{C}{Y} (1 + c_t - y_t) + \frac{I}{Y} (i_t - y_t)$$
$$y_t = \frac{C}{Y} c_t + \frac{I}{Y} i_t.$$